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η mesons in nuclear matter
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The η-nucleon (ηN ) interactions are deduced from the heavy-baryon chiral perturbation theory to the next-
to-leading-order terms. Combining the relativistic mean-field theory for nucleon system, we have studied the in-
medium properties of the η meson. We find that all the elastic-scattering ηN interactions come from the
next-to-leading-order terms. The ηN sigma term is found to be about 280 ± 130 MeV. The off-shell terms are
also important to the in-medium properties of the η meson. On application of the latest determination of the
ηN scattering length, the ratio of the η-meson effective mass to its vacuum value is near 0.84 ± 0.015, whereas
the optical potential is about −(83 ± 5) MeV, at the normal nuclear density.
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I. INTRODUCTION

The studies of meson-baryon interactions and the meson
properties in nuclear medium are interesting subjects in
nuclear physics. The pion-nucleon/pion-nucleus and kaon-
nucleon/kaon-nucleus interactions have been much studied,
both theoretically and experimentally. Because of the lack
of η beams, the η-nucleon/η-nucleus interaction is still not
as clear as that of the pion-nucleon/pion-nucleus and kaon-
nucleon/kaon-nucleus. Because the η-nucleus quasibound
states were first predicted by Haider and Liu [1] and Li
et al. [2], when it was realized that the η-nucleon interaction
is attractive, the study of the η-nucleus bound states has been
one of the focuses in nuclear physics [3–11].

The key point for the study of η-nucleus bound states is the
η-nuclear optical potential. There have been some works in
this field. Waas and Weise studied the s-wave interactions of
η mesons in nuclear medium and obtained a potential Uη �
−20 MeV [12]. Chiang et al. [13] obtained Uη � −34 MeV by
assuming that the mass of the N∗(1535) did not change in the
medium. Tsushima et al. predicted that the η-meson potential
was typically −60 MeV using the quark-meson coupling
(QMC) model [14]. Inoue and Oset also obtained Uη �
−54 MeV with their model [15]. Obviously, there are model
dependencies in describing the in-medium properties of the
η meson. Therefore, further studies are needed. In this article,
first, we deduce the ηN interactions from chiral perturbation
theory and then, second, using the relativistic mean-field
theory for the nucleon system, we study the properties of the
η meson in uniform nuclear matter. The relativistic mean-field
theory (RMF) is one of the most popular methods in modern
nuclear physics. It has been successful in describing the proper-
ties of ordinary nuclei/nuclear matter and hypernuclei/nuclear
matter [16,17].
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However, the chiral perturbation theory (ChPT) was first
applied by Kaplan and Nelson to investigate the in-medium
properties of (anti-)kaons [18]. Some years later, an effective
chiral Lagrangian in heavy-fermion formalism [19] was also
introduced to study the kaon-nuclear/nucleon interactions or
kaon condensation [20–22]. The advantage of using the heavy-
fermion Lagrangian for chiral perturbation theory was clearly
pointed out in Ref. [19]. Compared with the previous chiral
perturbation theory [18], the outstanding point in Refs. [20–22]
is that additional next-to-leading-order terms, i.e., off-shell
terms, are added to the Lagrangian. The additional terms are
essential for a correct description of the KN interactions. The
chiral perturbation theory also had been used in the study of
η-meson in-medium properties in Ref. [12,15], where only
the leading-order terms were kept in the calculations. Given
that the higher-order terms, e.g., off-shell terms, are important
to the ηN interactions, and they have not been included
in the previous studies for the ηN interactions with chiral
perturbation theory, we have, in the present work, studied
the ηN interactions with the heavy-baryon chiral perturbation
theory up to the next-to-leading-order terms. Combining the
RMF for nuclear matter, we obtain the in-medium properties
of the η meson. Comparing our results with the previous
results (with only leading-order terms), we find that the
next-to-leading-order terms are important to the calculations
indeed. The η-nucleon sigma term is found to be 280 ±
130 MeV. The ratio of the η-meson effective mass to its
vacuum value is 0.84 ± 0.015, whereas the depth of the optical
potential is −(83 ± 5) MeV at the normal nuclear density. The
large uncertainty in the sigma term �ηN does not affect the
results significantly in low-density region, varying by about
8 MeV at normal nuclear density.

This article is organized as follows. In the subsequent
section, the effective chiral Lagrangian density we used
is given, the effective Lagrangian for ηN interactions is
derived, and the coefficients for the sigma and off-shell terms
are determined. Then, in Sec. III, combining the RMF for
nucleons, we obtain the η-meson energy, effective mass, and
optical potential in nuclear matter. We present our results and
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discussion of the η-meson in-medium properties in Sec. IV.
Finally a summary is given in Sec. V.

II. THE ηN INTERACTIONS IN CHIRAL
PERTURBATION THEORY

A. The theory framework

The interactions between pseudoscalar mesons (pion, kaon,
and eta mesons) and baryons (nucleons and hyperons) are
described by the SU(3)L×SU(3)R chiral Lagrangian, which
can be written as

Lchiral = Lφ + LφB. (1)

Lφ is the mesonic term to the second chiral order [18],

Lφ = 1
4f 2Tr∂µ�∂µ�†

+ 1
2f 2B0[TrMq(� − 1) + h.c.]. (2)

The second piece of the Lagrangian in Eq. (1), LφB , describes
the meson-baryon interactions and reads at lowest order [18]

L(1)
φB = TrB̄(iγ µ∂µ − mB)B + iTrB̄γ µ[Vµ,B]

+DTrB̄γ µγ 5{Aµ,B} + FTrB̄γ µγ 5[Aµ,B], (3)

The next-to-leading order chiral Lagrangian for s-wave
meson-baryon interactions reads [20]

L(2)
φB = a1TrB̄(ξMqξ + h.c.)B + a2TrB̄B(ξMqξ + h.c.)

+ a3TrB̄BTr(Mq� + h.c.) + d1TrB̄A2B

+ d2TrB̄(vA)2B + d3TrB̄BA2

+ d4TrB̄B(vA)2 + d5TrB̄BTrA2

+ d6TrB̄BTr(vA)2 + d7TrB̄AµTrAµB

+ d8TrB̄(vA)Tr(vA)B + d9TrB̄AµBAµ

+ d10TrB̄(vA)B(vA). (4)

In the above equations, Mq = diag{mq,mq,ms} is the cur-
rent quark mass matrix, B0 relates to the order param-
eter of spontaneously broken chiral symmetry, the con-
stants D and F are the axial vector couplings whose
values can be extracted from the empirical semileptonic
hyperon decays, the pseudoscalar meson decay constants
are equal in the SU(3)V limit and denoted by f = fπ �
93 MeV, vµ is the four-velocity of the heavy baryon
(with v2 =1), and � = ξ 2 = exp (i

√
2�/f ), V µ = (ξ∂µξ † +

ξ †∂µξ )/2, and Aµ= (ξ∂µξ †− ξ †∂µξ )/(2i). The 3×3 matrix B
is the ground-state baryon octet, mB is the common baryon
octet mass in the chiral limit, and � collects the pseudoscalar
meson octet.

The next-to-leading-order terms in Eq. (4) have been
developed for heavy baryons by Jenkins and Manohar [19].
The heavy-baryon chiral theory is similar to the nonrelativistic
formulation of baryon chiral perturbation theory [23]. How-
ever, the heavy-baryon theory has the advantage of manifest
Lorentz invariance, and quantum corrections can be computed
in a straightforward manner by the ordinary Feynman graphs
rather than the time-ordered perturbation theory [24]. The
Lagrangian has been shown to be suitable for describing the

chiral properties of nuclear system in Ref. [25], where one
can also find detailed discussions on how to systematically
compute the higher-order terms of this Lagrangian. In this
article, we limit our calculations to the squared characteristic
small momentum scale Q2 (involving no loops) for s-wave
ηN scattering, because the corrections from the higher-order
coupling are suppressed, at low energy, by powers of Q/	χ ,
with 	χ ∼ 1 GeV being the chiral symmetry breaking scale.
Hence no loops need to be calculated in this article. If
the loop corrections are included, the higher-order terms,
i.e., next-to-next-to-leading order, should be added. We will
consider it in our later work.

Expanding � up to the order of 1/f 2, and using the heavy-
baryon approximation, i.e.,

v = p

m
=

(√
1 + p2

m2
, vx, vy, vz

)
≈ (1, 0, 0, 0) (5)

(because vx, vy , and vz are very small), we easily obtain the
Lagrangian for ηN interactions:

Lη = 1

2
∂µη∂µη − 1

2

(
m2

η − �N

f 2
�̄N�N

)
η2

+1

2

κ

f 2
�̄N�N∂µη∂µη, (6)

where mη corresponds to the mass of the η meson, which is
determined by m2

η = 2
3B0(mq + 2ms). �ηN is the ηN sigma

term, which is determined by

�ηN = − 2
3 [a1mq + 4a2ms + 2a3(mq + 2ms)]. (7)

From Eq. (6), we can see that the last three terms of Eq. (3)
do not contribute to the ηN interactions. The �ηN/f 2 term in
Eq. (6) is deduced from the first three terms of Eq. (4), which
corresponds to the chiral breaking and shifts the effective mass
of the η meson in the nuclear medium. The last term of Eq. (6)
is the contribution from the last 10 terms of Eq. (4), which
is called the “off-shell” term. κ is a constant relevant to dis
(i = 1–10). Its value is to be determined from the ηN scattering
length.

B. The determination of the ηN sigma term and κ

To calculate �ηN , we should know the parameters on the
right-hand side of Eq. (7). In fact these parameters have been
previously discussed in Refs. [26–29] and are used in Ref. [18].

As is well known, the KN sigma term can be written as [21]

�KN = −(ms + mq)(a1 + 2a2 + 4a3)/2. (8)

Solving a3 from this equation and then substituting the
corresponding expression into Eq. (7) leads to

�ηN = 2

3

[
2 + r

1 + r
�KN + a1ms

(
1 − r

2

)
− a2ms(2 − r)

]
,

(9)
where r = mq/ms � 1. Expanding the right-hand side of
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Eq. (9) to a Taylor series with respect to r, we have

�ηN = 2
3 (2�KN + a1ms − 2a2ms)

− 1
3 (2�KN + a1ms − 2a2ms) r

+ higher-order terms in r. (10)

Because of the extreme smallness of r, and also because
of the fact that our formulas are valid merely up to the
next-to-leading order, we take only the first two terms, i.e.,
�ηN = (1/3)(2�KN + a1ms − 2a2ms)(2 − r). Usually, r is in
the range of (1/24, 1/26) [30–33], and we use the modest
value r = 1/25. In fact, the concrete value does not matter
significantly because of the extreme smallness of r. The values
for a1ms and a2ms can be well determined by Gell-Mann
Okubo mass formulas, giving the result a1ms = −67 MeV. For
a2ms , one has 125 MeV [20] or a little bigger value 134 MeV
[29], and we take the average a2ms = 130 MeV. The value for
KN sigma term has some uncertainties. The latest result
is �KN = 312 ± 37 MeV in the perturbative chiral quark
model [34]. The lattice gauge simulation gave �KN = 450 ±
30 MeV [35]. The result of lattice quantum chromodynamics
is �KN = 362 ± 13 MeV [36], and the prediction using the
Nambu-Jona-Lasinio model is �KN = 425 (with an error bar
of 10–15%) [37]. Thus, in our calculations, we use �KN =
380 ± 100 MeV in its possible range. Equipped with the
above parameters, we finally obtain �ηN = 283 ± 131 MeV,
where ±131 MeV reflects the uncertainty ±100 MeV in �KN .
Naturally, if one uses a smaller �KN value, e.g., �KN = 2mπ

[20], �ηN would also be smaller.
For the other parameter κ , it is not too difficult, from the

Lagrangian in Eq. (6), to derive the ηN scattering length (on-
shell constraints):

aηN = 1

4πf 2(1 + mη/MN )

(
�ηN + κm2

η

)
. (11)

So we can determine κ with a given �ηN and aηN via the
relation

κ = 4πf 2

(
1

m2
η

+ 1

mηMN

)
aηN − �ηN

m2
η

. (12)

Recently, Green et al. [38] analyzed the new experimental
data from GRAAL [39] and gave the real part of ηN scattering
length aηN = 0.91 fm, which agrees with their previous result
[40]. With the similar method, Arndt et al. [41] also predicted
aηN = 1.03 − 1.14 fm, comparable to that found by Green et
al. So one can assume that aηN is in the range of 0.91 ∼
1.14 fm. Using the central value aηN = 1.02 fm leads to
κ = 0.40 ± 0.08 fm. For the η and nucleon masses, we use
mη = 547.311 MeV [42] and MN = 939 MeV.

It should be pointed out that the ηN interactions in the
present model come from the term of �ηN/f 2 and the off-shell
term, whereas the leading Tomozawa-Weinberg term simply
vanishes. We do not consider any other nondiagonal coupled
channel, which was investigated with the chiral coupled
channel model by Waas and Weise [12]. According to their
calculations, the contribution of nondiagonal coupled channel
to the ηN optical potential is on the order of ∼20 MeV at
normal nuclear density.

III. IN-MEDIUM PROPERTIES OF η MESONS

The Lagrangian for one η meson in nuclear matter is given
by

L = L0 + Lη, (13)

where L0 is the Lagrangian for the nucleon system. In this
article, we adopt the standard Lagrangian, L0, for the nucleon
system in relativistic mean-field theory (given in the appendix).
Lη is the Lagrangian for the η meson, which is given in Eq. (6).
On application of the Lagrangian in Eq. (13), we immediately
have the equation of motion for the η-meson field(

∂µ∂µ + m2
η − �ηN

f 2
�̄N�N + κ

f 2
�̄N�N∂µ∂µ

)
η = 0.

(14)

Defining the �̄N�N fluctuation δ as

�̄N�N = 〈�̄N�N 〉 + δ, (15)

where 〈�̄N�N 〉 is the vacuum expectation value. Because the
mean-field approximation is a very familiar method that has
already been used in studying the in-medium properties of
kaons with a similar chiral approach [43,44], we adopt it in
our present calculations.

At the mean-field level, we neglect the fluctuation δ. Then
the equation of motion for the η-meson field is simplified to(

∂µ∂µ + m2
η − �ηN

f 2
ρs + κ

f 2
ρs∂µ∂µ

)
η = 0, (16)

where ρs ≡ 〈�̄N�N 〉 is the scalar density.
Plane wave decomposition of Eq. (16) yields

−ω2 + 
k2 + m2
η − �ηN

f 2
ρs + κ

f 2
ρs(−ω2 + 
k2) = 0. (17)

The η-meson effective mass, m∗
η, in the nuclear medium is

defined by

ω =
√

m∗
η

2 + 
k2. (18)

Substituting this equation into Eq. (17) leads to the following
definition:

m∗
η =

√(
m2

η − �ηN

f 2
ρs

) / (
1 + κ

f 2
ρs

)
. (19)

Simultaneously, the last two terms on the right-hand side
of Eq. (17) is the η-meson self-energy, i.e.,

�(ω, 
k; ρs) = −�ηN

f 2
ρs + κ

f 2
ρs(−ω2 + 
k2), (20)

which is a function of the η-meson single-particle energy ω

and the momentum 
k. Accordingly, the optical potential for
η-meson in the nuclear matter is given by the following:

Uη = 1

2mη

�(ω, 
k = 0; ρs) = m∗
η

2 − m2
η

2mη

. (21)

To obtain the η-meson in-medium properties, we need a
relation between the scalar density ρs and the nucleon density
ρN = 〈�†

N�N 〉. Because there is only one single η meson in
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the nuclear matter, its effect on the nuclear matter is negligible.
According to the relativistic mean-field theory, we have the
following relation between ρs, ρN , and the σ mean-field value
σ0:

ρs = (
MN + gN

σ σ0
)3

f (x), (22)

where the function f (x) is defined to be

f (x) ≡ [x
√

1 + x2 − ln(1 +
√

1 + x2)]/π2 (23)

with x being the ratio of the nucleon’s Fermi momentum to its
effective mass, i.e.,

x ≡ kF

M∗
N

=
(

3

2
π2ρN

)1/3 /(
MN + gN

σ σ0
)
. (24)

The mean-field value σ0 is connected to the scalar density ρs

by

ρs = −(
m2

σ σ0 + g2σ
2
0 + g3σ

3
0

)/
gN

σ . (25)

Therefore, for a given nucleon density ρ, we can first solve σ0

from

m2
σ σ0 + g2σ

2
0 + g3σ

3
0 = −gN

σ

(
MN + gN

σ σ0
)3

f (x), (26)

and then calculate the scalar density ρs from Eq. (25) or (22).
The detailed derivation of the Eqs. (22)–(26) can

be seen in Ref. [45]. To be self-contained, we also
attach a brief derivation in the appendix. In numerical
calculations, we adopt the NL3 parameter set [17], i.e., mσ =
508.194 MeV, mω = 782.501 MeV, gN

σ = 10.217, gN
ω =

12.868, g2 = −10.434 fm−1, and g3 = −28.885. The
numerical results for ρs-ρN are given in Fig. 1, where one can
see clearly that ρs is an increasing function of the nuclear
density. When the density is about 1.5 times lower than the
nuclear saturation density, ρs is nearly proportional to ρN .
However, when the density is about 2 times higher than the
normal nuclear density, ρs is nearly a constant. The mean-field
value of the sigma filled is also given in Fig. 1 with a dotted
curve. Its density behavior is similar to that of ρs .

FIG. 1. The scalar density (full curve) and the negative sigma
mean-filled value (dotted curve) as functions of the nucleon density.
They both are increasing functions, but the increasing speed is getting
slower and, finally, when the density is higher than about 2 times the
nuclear saturation density, they are nearly constant.

TABLE I. A selection of the real part of the ηN -scattering length
in literature. m∗

η/mη and Uη are effective mass and the potential
depth at normal nuclear density calculated with the scattering lengths.
Where we use �ηN = 280 MeV in calculations.

Reaction or method aηN (fm) m∗
η/mη −Uη (MeV)

[46] 0.25 0.952 26
[47] 0.27 0.946 27
pn −→ dη [48] �0.3 �0.94 �30
[49] 0.46(9) 0.915 44
[50] 0.487 0.91 46
[51] 0.51 0.905 49
[52] 0.55 0.902 51
[50] 0.577 0.90 54
[53] 0.621 0.89 57
[54] 0.68 0.88 61
[55] 0.717 0.88 63

Coupled K matrices [56] 0.75 0.875 67
ηd −→ ηd [57] �0.75 �0.875 �67
Coupled K matrices [40] 0.87 0.86 76
[38,58] 0.91 0.853 77
[59] 0.98 0.846 79
[60] 0.991 0.845 80

Coupled K matrices [40] 1.05 0.82 82
[41] 1.14 0.825 88

IV. RESULTS AND DISCUSSIONS

In this section, we discuss the effective mass, optical
potential in nuclear medium, and the off-shell behavior of the
η meson, respectively. For zero-momentum η mesons, we can
see, from Eq. (18), that the energy ω is equal to its effective
mass. Therefore, we no longer mention the η-meson energies
in the following discussions.

In the calculation, the precision of the η-meson effective
mass and optical potential are determined by the two parame-
ters �ηN and κ . Equation (12) connects the parameter κ to the
scattering length aηN , whose possible values are collected in
Table I. To reflect uncertainties in the two quantities �ηN and
aηN , we use the sigma term �ηN = 150, 280, and 410 MeV
and the scattering length aηN = 0.91 [38] and 1.04 [41] fm in
numerical calculations.

Figures 2 and 3 show the η-meson effective mass and
nuclear optical potential of the η meson as functions of the
nuclear density. The results from Ref. [12] (straight line) is
also shown in Fig. 2 for comparison. The curves in Figs. 2 and
3 are obviously divided into three groups that correspond to
different scattering lengths aηN = 0.91, 1.14 fm, and κ = 0,
respectively. The dotted, solid, and dash-dotted curves in
each group correspond to �ηN = 150, 280, and 410 MeV,
respectively.

A. Effective mass

It is obvious from Fig. 2 that the η-meson effective mass
decreases almost linearly in the region ρ < ρ0. In this region,
the results of Ref. [12] also show a linear relation for the
effective mass with nuclear density. At higher densities,
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FIG. 2. The effective mass of the η meson as a function of nuclear
density. The straight line is obtained from Ref. [12].

however, the effective mass decreases nonlinearly, and the
decreasing speed becomes smaller and smaller and at last
nearly constant in the range ρ > 2ρ0. The reason is that when
the density is higher than about 2 times the normal nuclear
saturation density, ρs nearly is a constant (see Fig. 1).

For the same scattering length, we find that, in the
low-density region ρ � 0.5ρ0, the effective mass is nearly
independent of the sigma term �ηN . When we set �ηN =
280 ± 130 MeV, which changes in a large range, the variation
of the effective mass is within ±4 MeV at ρ = ρ0. At high
nuclear density, say ρ = 3ρ0, the variation is within ±10 MeV
compared with that at the central value of �ηN = 280 MeV.
Thus, we can conclude that the effective mass of η mesons
is insensitive to the concrete value of �ηN in the low-density
region.

Although the latest predictions [38,41] give large scattering
lengths aηN = 0.91 ∼ 1.14 fm, there are other different pre-
dictions [40,46–60]. To see the effects of different scattering

0 0.5 1 1.5 2 2.5 3
–140

–120

–100

–80

–60

–40

–20

0

Σ
ηN

 =150 MeV

Σ
ηN

 =280 MeV

Σ
ηN

 =410 MeV

κ =0 

κ=0 

 aη N
=1.14 fm

 aη N
=0.91 fmU

η (
M

eV
)

ρ/ρ
0

FIG. 3. The optical potential of η mesons as a function of the
nuclear density.

length values on the η effective mass, we show, in Fig. 2, the
results for aηN = 0.91 and 1.14 fm, respectively. However, in
Table I, we give, at normal nuclear density, the effective mass
corresponding to the respective ηN scattering length in the
literature [38,40,41,46–60]. From Fig. 2, we find that, with
the same sigma term �ηN , the effective mass depends strongly
on the scattering length aηN . At ρ = ρ0, the effective mass
(with �ηN = 280 MeV) is m∗

η/mη = 0.85 for aηN = 0.91
and m∗

η/mη = 0.825 for aηN = 1.14 fm. When the scattering
length varies from 0.25 to 1.14 fm, the effective mass will
run from 0.95 to 0.825mη. Corresponding to aηN = 0.91 ∼
1.14 fm, which are favored by recent works, and �ηN , which
is predicted in Sec. II, the effective mass is (0.84 ± 0.015)mη.

At normal nuclear density, the effective mass in Ref. [12]
is 0.95mη, which agrees with the result of the small scattering
length aηN = 0.25 fm. As pointed out in the above, the
effective mass changes nonlinearly with increasing densities
in the region ρ0 < ρ < 2ρ0. This behavior agrees with the
predictions by Tsushima et al. [14] with quark-meson coupling
model. The effective mass at ρ = ρ0 predicted by them is about
0.88mη, which corresponds only to the result with scattering
length aηN = 0.68 fm. This can be clearly seen from Table I.
The outstanding characteristic of our results is that the present
calculations give much smaller effective mass than the others
when we adopt the larger scattering length.

It should be mentioned that the chiral coupled channel
model [12] gives much larger in-medium effective mass for
η mesons than our predictions. The main reason is as such. In
the chiral coupled channel model, there are only the leading-
order terms, and so the contributions to the effective mass
come only from the nondiagonal coupled channel. Whereas
in our model, the leading-order terms do not contribute to the
calculations. All the contributions to the results come from the
next-to-leading-order terms.

B. Optical potential

The optical potential Uη as a function of nuclear density
is plotted in Fig. 3. We find that the density behavior of Uη

is quite similar to the effective mass in Fig. 3. The reason is
that the optical potential has a relation Uη � m∗

η − mη as an
approximation, which varies linearly with the effective mass
m∗

η of the η meson.
Similarly, it is also seen that the effect from the uncertainties

of sigma term �ηN are quite limited in its possible range,
and the optical potential depends strongly on the value of
the scattering length. At normal nuclear density, the upper
limit of the uncertainties from the sigma term �ηN is no more
than 8 MeV. However, the optical potential can change from
−78 to −88 MeV when we modify the scattering length aηN

from 0.91 to 1.14 fm. Because there are still uncertainties
for the ηN scattering length, we listed the possible poten-
tial depths corresponding to the possible scattering lengths
appearing in the literature cited in Table I. From the table,
we can see that the potential depth at normal nuclear density
ranges from 26 to 88 MeV, because of the uncertainties of
scattering lengths. According to the newest predictions, i.e.,
aηN = 0.91 ∼ 1.14 fm [38,41], the potential depth is about

015205-5



X. H. ZHONG, G. X. PENG, LEI LI, AND P. Z. NING PHYSICAL REVIEW C 73, 015205 (2006)

83 ± 5 MeV. This is a very strong attractive potential that was
never predicted by the previous models.

There have been some predictions for the nuclear potential
of η mesons in other references. According to the SU(3) chiral
dynamics with coupled channels, the optical potential depth at
normal nuclear density is Uη � −20 MeV [12], which is close
to our formulas with a smaller scattering length aηN < 0.25 fm.
In Ref. [13], by assuming that the mass of the N∗(1535) did not
change in the medium, the optical potential Uη = −34 MeV
was obtained, which is close to our calculation with aηN ∼
0.30 fm. The η potential from the QMC model by Tsushima
et al. and chiral unitary approach by Inoue et al. are typically
−60 and −54 MeV, which are comparable to our formulas with
aηN = 0.55–0.68 fm. Therefore, if we want to obtain shallower
optical potential, we need to use a smaller scattering length.
Because recent works favor the bigger scattering length, our
formulas give much deeper optical potential.

C. The effect of off-shell term

Finally, we discuss the role of the off-shell term in
our calculation. In present model, the off-shell term κ is
determined by the scattering length aηN . From the analysis
of Secs. IV A and IV B, we know that the scattering length
aηN strongly affects the calculations. The importance of the
off-shell behavior for low-energy scattering had been pointed
out in many Refs. [20,43,61].

To clarify the effect of off-shell term on our calculation
thoroughly, we turn off the off-shell term (κ = 0) and show the
results in Fig. 2 and 3. At ρ = ρ0, without the off-shell terms,
the effective mass is m∗

η/mη � 0.94 ± 0.03 and the optical
potential is −(32 ± 16) MeV, corresponding to �ηN = 280 ±
130 MeV. Thus, without the off-shell terms, we no longer
have strong attractive potential for the η meson in a nuclear
medium. The calculations are independent of the scattering
length. Also in this case, the calculations depend strongly on
the quantity of �ηN . Without the off-shell terms, the variation
of the optical potential from the uncertainties of �ηN can reach
about 30 MeV at normal nuclear density. However, it is no
more than 8 MeV, when the off-shell behavior is considered.
Thus, the off-shell terms can dramatically depress the effects
from the uncertainties of �ηN .

V. SUMMARY

In this article, we have derived an effective Lagrangian
for ηN s-wave interaction from the effective meson-baryon
chiral Lagrangian, including the next-to-leading-order terms.
Up to 1/f 2 terms for s-wave ηN interaction, only the
sigma term and off-shell term survive. It is found that the
ηN sigma term is �ηN = 280 ± 130 MeV according to the
KN sigma term. The off-shell term κ is determined by the scat-
tering length. If we adopt the newest predictions aηN ≈ 0.91–
1.14 fm for the scattering lengths [38,41], we obtain the value
κ = 0.40 ± 0.08 fm.

Using the relativistic mean-field theory for the nucleon
system, we calculate the effective mass and optical potential
of η mesons in uniform nuclear medium in the mean-field

approximation. According to the latest predictions aηN ≈
0.91–1.14 fm for the scattering lengths [38,41], at normal
nuclear density the effective mass is about (0.84 ± 0.015)mη

and the depth of optical potential is Uη � −(83 ± 5) MeV.
Finally, we should reiterate the importance of the next-

to-leading-order terms of the chiral Lagrangian. In fact, the
leading-order terms do not contribute to the ηN interactions.
All contribution comes from the next-to-leading order terms.
It indicates that the next-to-leading order terms should be
included in the study of the ηN interaction. In the present
article, we do not consider corrections from the nondiagonal
coupled channel. According the study of Waas and Weise, the
correction may be on the order of 20 MeV for the optical
potential.
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APPENDIX A: RELATION BETWEEN THE SCALAR
DENSITY AND NUCLEON DENSITY IN THE
RELATIVISTIC MEAN-FIELD APPROACH

In this appendix, we give a short derivation of the relation
between the scalar density and nucleon density in the RMF
approach.

In RMF, the effective Lagrangian density [16] can be written
as

L0 = �̄N (iγ µ∂µ − MN )�N − gN
σ �̄Nσ�N

− gN
ω �̄Nγ µωµ�N − gN

ρ �̄Nγ µρa
µ

τa

2
�N

+ 1
2∂µσ∂µσ − 1

2m2
σ σ 2 − 1

3g2
2σ

3 − 1
4g2

3σ
4

− 1
4�µν�µν + 1

2m2
ωωµωµ − 1

4RaµνRa
µν

+ 1
2m2

ρρ
aµρa

µ − 1
4FµνFµν

− e�̄Nγ µAµ 1
2 (1 + τ3)�N, (A1)

with �µν = ∂µων − ∂νωµ,Raµν = ∂µρaν − ∂νρaµ, Fµν =
∂µAν − ∂νAµ. On application of the mean-field approxima-
tion, we have the equation of motion for nucleons:(

γµkµ − MN − gN
σ σ0 − gN

ω γ 0ω0 − gN
ρ γ 0τ 3ρ03

)
�N = 0,

(A2)

where the σ, ω, and ρ fields are replaced with their mean-field
values σ0, ω0 and ρ0. σ0 and ω0 satisfy

m2
σ σ0 + g2σ

2
0 + g3σ

3
0 = −gN

σ ρs, (A3)

m2
ωω0 = gN

ω ρN, (A4)

with ρs ≡ 〈�̄N�N 〉 and ρN ≡ 〈�†
N�N 〉. Therefore, at

the mean-field level, the energy density of nuclear
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matter is

ε = 1
2m2

σ σ 2
0 + 1

3g2σ
3
0 + 1

4g3σ
4
0 + 1

2m2
ωω2

0

+ 4

(2π )3

∫ kF

0

(
k2 + M∗
N

2)1/2
d
k, (A5)

where M∗
N = MN + gN

σ σ0 is the effective mass of nucleons.
In Eq. (A5), the energy density has been expressed as an

explicit function of σ0. Because σ0 should minimize ε, i.e.,

∂ε(σ0)/∂σ0, we immediately have

m2
σ σ0 + g2σ

2
0 + g3σ

3
0 = − 4gN

σ

(2π )3

∫ kF

0

M∗
N d
k(
k2 + M∗

N
2)1/2 ,

(A6)

which is nothing but Eq. (26). Equation (A3) corresponds to
Eq. (25). From combining Eq. (A6) with Eq. (A3), Eq. (22) is
derived.
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G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, ibid. 71,
024312 (2005); S. F. Ban, J. Li, S. Q. Zhang, H. Y. Jia, J. P.
Sang, J. Meng, ibid. 69, 045805 (2004).

[17] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540
(1997).

[18] D. B. Kaplan and A. E. Nelson, Phys. Lett. B175, 57 (1986).
[19] E. Jenkins and A. Manohar, Phys. Lett. B255, 558 (1991); B259,

353 (1991).
[20] G. E. Brown, Chang-Hwan Lee et al., Nucl. Phys. A567, 937

(1994).
[21] C. H. Lee, G. E. Brown, D. P. Min, and M. Rho, Nucl. Phys.

A585, 401 (1995).
[22] N. Kaiser, P. B. Siegel, and W. Weise, Nucl. Phys. A594, 325

(1995).
[23] S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3

(1991).
[24] E. Jenkins and A. V. Manohar, in Proceedings of the Workshop

on Effective Field Theories of the Standard Model, Debogoko,
Hungary, Aug. 22–26 (1991), edited by U.-G. Meißner, World
Scientific.

[25] T.-S. Park, D.-P. Min, and M. Rho, Phys. Rep. 233, 341 (1993).
[26] H. Georgi, Weak Interactions and Modern Particle Theory,

Benjamin/Cummings, Menlo Park, California 1984.
[27] R. Shrock and L. Wang, Phys. Lett. 41, 1692 (1978).
[28] W. Langbein, Nuovo Cimento 51, 219 (1979).
[29] H. D. Politzer and M. B Wise, Phys. Lett. B273, 156 (1991).
[30] J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).
[31] S. Weinberg, Trans. New York Acad. Sci. 38, 185 (1977).
[32] H. Leutwyler, Phys. Lett. B378, 313 (1996).
[33] Eur. Phys. J. A 22, 89 (2004).
[34] V. E. Lyubovitskij, Th. Gutsche, Amand Faessler, and E. G.

Drukarev, Phys. Rev. D 63, 054026 (2001).
[35] G. E. Brown and M. Rho, Phys. Rep. 269, 333 (1996).
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