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Autocorrelation of hadrons in jets produced in heavy-ion collisions

Charles B. Chiu' and Rudolph C. Hwa?
Center for Particle Physics and Department of Physics, University of Texas at Austin, Austin, Texas 78712-0264, USA
2Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, Oregon 97403-5203, USA
(Received 20 October 2005; published 24 January 2006)

Autocorrelation of two pions produced in heavy-ion collisions at intermediate pr is calculated in the framework
of the recombination model. The differences of the pseudorapidities and azimuthal angles of the two pions are
related to the angle between two shower partons in a jet. It is shown how the autocorrelation distribution reveals
the properties of the jet cone of the shower partons created by high- pr partons in hard collisions.

DOI: 10.1103/PhysRevC.73.014903

I. INTRODUCTION

Correlations among hadrons produced at high and in-
termediate pr in heavy-ion collisions (HIC) have gener-
ated considerable interest in their implications on how the
hadronization mechanism and jet structure may differ from
those in pp collisions [1-4]. Experimental investigations in
the subjects can be broadly divided into two types: those
that use triggers to identify near- and away-side jets [1,2,4,5]
and those that use no triggers [3,4,6,7]. Among the latter
is the study of autocorrelations. Autocorrelation has been
used extensively in time-series analysis. Its application to
multiparticle production in HIC was pioneered by Trainor
and his collaborators [3,4,8,9], and has generated a wealth
of information independent of triggers and their biases [6,7].
Theoretical interpretation of autocorrelation has been slow in
its development. In this paper, we present the first prediction
of how autocorrelation should behave at intermediate pr in
the framework of parton recombination [10].

Theoretical studies of hadron correlation follow a wide
variety of approaches; they differ mainly in the ways in
which the interaction of jets with the medium is treated.
Energy loss of hard partons in medium has been extensively
studied in pQCD [11-15], and its application to correlation
on the same side of a trigger particle has been considered
with emphases placed on various separate but related issues,
such as the medium-modified fragmentation functions, the
effect of collective flow on jets, and soft hadrons associated
with medium-induced radiation [16-21]. In such studies,
hadronization is usually treated by use of local parton-hadron
duality (LPHD) or in terms of fragmentation functions (FFs),
neither of which can shed any light on the baryon puzzle
in the intermediate p7 region, e.g., the high p/m ratio [22].
Since the baryon problem has been well explained in the
parton recombination model [10,23-25], the approach that
we adopt here for the study of hadron correlations will be
in the framework of that model. In that framework, a number
of investigations have already been carried out on dihadron
correlations [26—29]. The medium effect is taken into account
through the recombination of shower partons with the thermal
partons that are in the environment, when the hard collision
occurs near the surface of the medium. Our emphasis in
this paper is on autocorrelation. Correlation of the hadrons
produced on the side opposite to the trigger particle has also
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been investigated recently in numerous ways [30-34]. Since
the path length of a hard parton in the medium in such problems
is large, these studies belong to a category of subjects not
immediately relevant to our concern here, which is restricted
to hadrons that are in the same jet.

The use of a trigger has its advantages, especially in
showing the properties of the away-side azimuthal distribution
that reveals the effects of jet quenching. However, it is nec-
essary to subtract the background, which is not unambiguous.
Autocorrelation is a measure of the difference between two
nearby values of a variable, with all other variables being
integrated over. When those values are close, they are domi-
nated by contributions arising from the same jet in an event. No
background subtraction is needed. So far, autocorrelation in the
data from the Relativistic Heavy-Ion Collider (RHIC) has been
analyzed for differences in pseudorapidity 7 and in azimuthal
angle ¢, but only at low p7 [6,7]. The model that we shall use
to study the autocorrelation in jets involves thermal-shower re-
combination for which the reliable pr region is above 2 GeV/c.
Thus at this point, our predictions cannot be compared to the
results of the autocorrelation analysis of the experimental data.
Nevertheless, on theoretical grounds it is of interest to show
how the angular distribution of shower partons can be related
to the autocorrelation of pions in the differences in n and ¢.
We await with anticipation the forthcoming relevant data.

II. THE PROBLEM

Autocorrelation is a measure of two-particle correlation in
multiparticle production with a minimum loss of information
and without trigger bias. It has been studied extensively in
pp and HIC [6-8]. At intermediate to high pr, the dominant
contribution to the two-particle correlation comes from jets,
when the momenta for the two particles are close together.
Our problem in this paper is to calculate the autocorrelation
distribution from a model in which the shower partons in a
jet has certain prescribed properties; in this section, we outline
our plan of attack, leaving the details to the following sections.

Let x; be an attribute of the momentum p; of the ith particle,
such as its angle relative to some axis. The two-particle
correlation function in terms of x; is

Ca(x1, x2) = pa(x1, x2) — p1(x1)p1(x2), ()
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where p; and p, are one- and two-particle distributions,
respectively. For autocorrelation, one defines the sum and
difference of x; as

X4+ = X2 + X1 (2)

and rewrites Eq. (1) in the form
Coloxy, x2) = P2y, x2) — pr((ey — x-)/2)p1((x4 + x-)/2).
(€)]

This would vanish if there is no correlation in p,. Anticipating
correlation in the variable x_ and mild dependence on x, one
defines the autocorrelation distribution to be

1
Alx-) = E/ dx; Cyxy, x-), “
R

where the integration is carried out over a range R. Usually, if
there are other variables in the problem that are not germane
to the correlation measure, they are also integrated over. If
the range R is wide enough so that the boundaries depend on
x_, then one must proceed carefully to account for the x_
dependence arising from R. Details of that problem related
to binning can be found in Refs. [8,35]. In our consideration
in the following, R will be small enough not to involve such
complications. Clearly, only the correlated part in pp(x4, x_)
contributes to A(x_). If pa(x, x_) has mild dependence on
X, not much information is lost by the integration in Eq. (4).
A(x_) treats the two particles on equal footing and requires no
subtraction of background besides what is explicit in Eq. (3).

In HIC, if the transverse components of p; are >2 GeV/c,
then jets are involved; furthermore, if the angle between p; and
P2 is less than, say, 7t /4, then the two particles are highly likely
to be the particles in the same jet. Thus the angular differences
between the momentum vectors provide information about
the structure of the jet. Let the angular variables of p; and
D2, referred to the longitudinal axis, be (8;, ¢) and (6, ¢7),
respectively. Define

br=0,£01, ¢r=¢r L. &)

In a central collision ¢, is irrelevant by azimuthal symmetry,
which we shall assume. Thus the essential variables for
correlation are 6,,60_, and ¢_. If the correlation function
is determined experimentally at midrapidity with a narrow
rapidity window, the range of 6. is not large. Then in applying
Eq. (4) to this problem, we have

Al-, ¢-) = L/ d0,C(04,0-. ¢-), (6)
Ry, Jr,,

where Ry, is some range in 6, that is not constrained by
the ranges of 6_ and ¢_ of interest. Experimentally, the pr
variables are integrated over specific ranges of choice and are
not expressed explicitly. It is important to note that A(6_, ¢_)
depends only on the difference in angular variables and is,
therefore, in principle, independent of the coordinate system
in which the angles are defined. The only angle associated with
two momentum vectors that is independent of the coordinate
system is the angle x between the two vectors, i.e.,

cos x = cos by cos B, + sin b sin6, cos(pr — ¢p1), (7)
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which can be expressed in terms of 61 and ¢_ as
cos x = %[cos 0_(14+cos¢p_)+cosO, (1 —cosgp_)]. (8)

How this is used in Eq. (6) to obtain the autocorrelation
distribution will be discussed in Sec. I'V.

The angle x provides the crucial link between the observ-
ables and the variables that can suitably describe the dynamics
of the partons that are associated with jets. At intermediate
and high pr in HIC, the partons that hadronize are the
shower partons in jets produced by hard scattering. The axis
in reference to which those partons can best be described is
the jet axis. For detection at midrapidity, the jet directions are
approximately perpendicular to the beam axis. Thus, to relate
the angular variables of the partons, referred to the jet axis, to
the angular variables of the hadrons, referred to the beam axis,
is a complicated geometrical problem. In the recombination
model, the hadrons and the constituent partons are collinear.
The angle between two shower partons is, therefore, also the
angle between the two pions that they hadronize into. That
angle is x. Hence, x serves as the bridge that connects the
momentum space of the partons in the underlying dynamics
to the momentum space of the hadrons that can be measured.
Autocorrelation in terms of 6_ and ¢_ can thus directly reveal
the angular properties of the shower partons via x. To put
this strategy into concrete formulation, we proceed first to the
momentum space of the partons in the next section, and then to
the momentum space of the hadrons in the following section.

III. CORRELATION BETWEEN SHOWER PARTONS

Suppose that in a HIC, a hard scattering takes place that
sends a parton to a momentum k with a large transverse
momentum. Such a hard parton generates a shower of partons
whose momentum-fraction distributions have been determined
in Ref. [36]. It should be stressed that the shower partons
under discussion here are not to be identified with the
radiated gluons in pQCD. Those shower partons are defined
by their recombination with each other to form hadrons, and
their distributions are determined by fitting the appropriate
nonperturbative FFs in the recombination formalism [36]. The
gluons emitted by a hard parton, on the other hand, are the
products of an evolution process well formulated in pQCD, but
their hadronization is not well treated because the process is not
perturbative. Of course, the physics of the shower partons that
recombine and the gluons that are perturbatively radiated are
related in some nonperturbative way, which need not distract
us here. Since our goal is to determine the correlation between
hadrons at intermediate pr, we consider the shower partons
that are defined for immediate hadronization by recombination
in that pr range.

As stated above, those shower partons recombine among
themselves to form hadrons whose momentum-fraction distri-
butions are the FFs of the initiating hard parton. But when the
hard parton is produced near the surface of a thermal medium,
the shower partons can also recombine with the soft thermal
partons in the environment to form hadrons at intermediate py.
In the recombination model, that is how hadron production
is affected by the medium. Thus, for pion production, one
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considers S7 recombination; and for proton production, one
has S77 and SS7 recombinations, where S denotes the
shower-parton distribution (SPD) and 7 the thermal parton
distribution. Indeed, it has been shown in such an approach
that the p/m ratio in Au+Au collisions can be as large as
1 at pr ~ 3 GeV/c [10].

Now to study the correlation between two pions, both in the
intermediate pr range, we need to consider two shower and
two thermal partons in the combination (S7)(S7), where the
parentheses in (S7°) denote the partners that are to recombine.
Since only collinear partons can recombine, the angle x
between the two pions that are formed is the same as the angle
between the two shower partons, whose momenta magnitudes
are generally larger than the two softer thermal partons. Let us
then concentrate on the two shower partons and consider the
joint distribution

(5817 @ d = Y [ akico [sf (%vn. ).

xS/ (k fqu,wz,ﬁz)}, ©

which is in the form used previously in Ref. [29]. The curly
brackets denote symmetrization of the momentum fractions
of the two shower partons [10], but it is a process that is
not important in the following, since our emphasis will be on
the angular variables. For the same reason, we shall not be
concerned with £, which denotes the fraction of hard partons
that emerge from the dense medium to hadronize, and the
integral over k, weighted by f; (k) that is the distribution of the
hard parton i in HIC. v, and y, are the polar angles of the j
and j’ shower parton momenta g; and g, with reference to the
jet axis k; B and B, are their corresponding azimuthal angles.
§/" are the SPDs.

The angle between g; and ¢», denoted by x also, can be
expressed similarly as in Eq. (7)

COS ¥ = €0s ¥ cos Yp + sin g sin ¥, cos(By — B1). (10)
If we define, as before,
Ve = Y = Y, B- = B — B, (1D

then we have the alternative form similar to Eq. (8), which in
turn can be written as

cosx = A+ Bcosp, (12)

where
A = J(cosy_ + cosyry), (13)
B = j(cosy_ — cos ¥, (14)

and B8 = B_ for brevity. Note that A and B are linear in cos ¥/,
while the corresponding terms in Eq. (10) are quadratic in
cos Y1 2. Since x serves as the bridge to the hadron momentum
space, we want to determine here the distribution in x that
corresponds to the dynamical properties of the jet cone defined
with respect to k.

The joint shower-parton distribution, as expressed in
Eq. (9), is based on the assumption that the shower partons
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are dynamically independent, but kinematically constrained
by momentum conservation

q1 +q2<k. (15)

The constraint on the momentum magnitudes in Eq. (15) does
not imply angular constraint on ¥, and y,. We shall assume
angular independence of the two partons, which implies that
their distribution G,(y, ¥,) is factorizable

Gy(Y1, ¥) = G1(Y1)G1(Y2), (16)

where G () is the single-parton angular distribution in a jet
cone. We assume that it has a Gaussian form

G1(y) = exp(—y?/207), (17)

with a width o that is basically unknown, since no reliable
theory is calculable at intermediate k. We make the assumption
here that o is independent of the momentum fraction of the
shower parton in a jet. That assumption renders significant
simplification of our consideration below, and is a reasonable
first step in this exploratory study of autocorrelation. If we can
relate o to some observable through autocorrelation, we will
have achieved the objective of probing the microscopic dy-
namics by phenomenology, at least in the first approximation.

As stated in the beginning of this section, the shower partons
considered in Eq. (16) are not directly identifiable as the
gluons and their associated low-virtuality partons emitted by
the hard parton in pQCD because the properties of the partons
Jj and j’ in Eq. (9) are not determined by any perturbative
calculation, but by fitting the nonperturbative FFs through
recombination. Although it is known that a branching process
can lead to angular ordering of the emitted partons [37,38],
the physics of which has recently been applied to the study
of jets traversing dense medium [39], the formalism is more
reliable at higher jet energy than what we are concerned with
here at intermediated p7. Besides, hadronization by LPHD is
what we can avoid when recombination has the advantage of
proven phenomenological reliability. Note also that we study
hadron correlation in jets produced near the surface of a dense
medium, so the initiating hard partons do not have long path
lengths through the medium. The only medium effect that we
consider is the recombination with thermal partons, which does
not, in first approximation, influence the angular consideration
to follow. For these various reasons, the angles ¥ and v, in
Eq. (16) cannot be assigned the angular ordering property of
the emitted partons in pQCD. For a simple first try, we assume
factorizability in Eq. (16) and the independence of o on the
momentum fraction of the shower parton. In a future extension
of this study, it would be reasonable to investigate the scenario
where o increases with decreasing momentum fraction. But
for the constant o considered here, the momentum-dependent
part factors out and the angular properties are exposed with
transparency.

Given the two-parton angular distribution G,(Yq, V)
shown in Egs. (16) and (17), we can calculate the x distribution
by allowing for all possible orientations of the two vectors
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¢1 and ¢>. Denoting it by H(x), we have

H(x) = /dcos Yo d cos YidBGLr (Y, ¥2)

X 8[cos x — (A + Bcos B)], (18)

where Eq. (12) has been used to constrain the four angles
Y4, B, and x. Since H(x) is invariant under the interchange
of ¢) and ¢, we consider only the ranges

O<y1<yn<a. 19)

In actual calculation, we set « = /4. In view of the definitions
of A and B given in Egs. (13) and (14), we change the
integration variables to ¥, and B. After some algebra, we
obtain

1 [« Yin
H(x) = 4_1/ dK[er/(;
X

(cosy_ —cos Y)g(Yy, ¥-)

dy- [(cos Y_ — cos x)(cos x — cos ¥y )]1/2’

(20)

where
Vm = min(x, 2o — Y1), (21)

and
2 4y
gy, ¥-) = exp <_1ﬁ+4—2¢> : (22)
o

In Fig. 1(a) we show H(x) for four values of o. To see more
clearly the dependence of the width of H () on the width o of
G1(¥), we normalize the function H () by its value at y =0
by defining

_HG
- H©O)
It can be shown that in the approximation o < o, H(x)
has the limit, as y — 0, H(0) ~ (7‘[/4)0’2 exp(—02/4). The
corresponding normalized distribution H(x) is shown in
Fig. 1(b). In the o range illustrated, the width of H(x) is
very closely given by oy = V20,

AH(x) (23)
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FIG. 1. (Color online) (a) Distributions in the angle x for

four values of width parameter o of the jet cone; (b) normalized
distributions H(x).
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It is important to recognize that the factorizable form
of G,(y1, ¥) in Eq. (16) does not imply an absence of
correlation between Y| and . That is because the two
shower partons with momenta ¢g; and g, are from the same
jet, and the angles ¥, and ¥, refer to the same jet axis
along k. When Gy, ¥p) is included in the expression for
{SS}7'(g1, §») in Eq. (9), the contribution to the two-parton
distribution (g1, ¢») is not factorizable. On the other hand,
02(q1, g») contains a factorizable part p(q;)01(g2), in which
the two shower partons belong to two independent jets that
are randomly related to each other. Such a component would
be canceled in the calculation of the correlation function
C>(q1, g2), which can be defined as in Eq. (1) for partons.

Finally, before leaving this section on parton correlation,
it should be noted that despite their appearances the peaks
in Fig. 1 should not be confused with the common notion of
the properties of jet cone. H(y) is the distribution of x, the
angle between g; and s, neither of which need to be close to
the jet axis. That is, x should not be interpreted as the angle
between the hard parton and a radiated parton. A collection of
all events with a fixed value of x is a large set that contains a
small subset in which a parton is radiated at an angle x with
respect to the jet axis. This point is so important that a simple
example might be useful to make the difference clear. Suppose
g1 and g, are collinear so that y = 0. However, both g; and
g» can be directed at some angle v, = v, that need not be
zero, so that x can in no way represent the angle between a
radiated parton and the jet axis. Thus H () should not be taken
as a representation of the angular distribution of a radiated
parton relative to the initiating hard parton. Since x will play a
principal role in autocorrelation, this distinction underlies the
difference between autocorrelation and the correlation based
on triggers.

IV. AUTOCORRELATION BETWEEN HADRONS

Having obtained the distribution in y, the angle between
two shower partons in a jet, we can now determine the
correlation between two hadrons in a jet. We shall consider
only the pions, since they are the dominant hadrons in a jet. As
we stated earlier, we consider the intermediate py region where
the thermal-shower recombination is most important, i.e.,
3 < pr < 8 GeV/c in central Au+Au collisions [10,26,29].
Furthermore, we restrict our attention to only the pions
produced at midrapidity so that all momentum vectors are
nearly transverse to the beam direction. In this case, we
can simplify our notation by denoting the pion transverse
momentum pr and the parton transverse momentum g7 by
p and ¢, respectively. The (7S)(7S) contribution to the
two-particle distribution is then

dNTSTS
T
pidpidnidi prdprdnrdes

m / dqidgrd cos yrid cos YrrdB1dBr T
102

x (p1 — q)7T (p2 — @){SSHq1, V1, Bi: g2, V2, B2)A
x (Y1, Br, M, d15 V2, B2, M2, $2), (24)
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where 7 is the thermal distribution of exponential form
[10], and {SS} is given in Eq. (9). The recombination
functions, written out explicitly in Ref. [29], have already
been integrated over, resulting in (a) the momenta of the
thermal partons being p; — ¢;, and (b) a constraint between
the pions’ angular variables 6;, ¢; and the shower partons’
angular variables v;, §;, contained in the A function in
Eq. (24). We have exhibited only the essential content of
the (7S)(7S) recombination, where the momenta of the
thermal and shower partons that recombine are collinear,
so all the dynamical characteristics of the problem are in
{SS}, which we studied in the preceding section, while all
the kinematic relationships to the observed pions are in A.
Although the pseudorapidity variables 1, and n, appear in
Eq. (24), it is only a technical step to be taken later to relate
their differences to the angular differences 6_ and ¢_ that
appear in the autocorrelation, Eq. (6). Our task now is to first
relate A(6_, ¢_) to the two-particle distribution in Eq. (24).

In our study of the autocorrelation, our emphasis has been
on the dependence on the angular differences 6_ and ¢_,
relegating the pr values to the category of other variables
that are to be integrated over. If we define the full correlation
function to be

Ca2(1,2) = p2(1, 2) — o1 (D1 (), (25)

where the arguments symbolize the whole sets of variables of
the two detected particles, then the LHS of Eq. (24) represents
the TSTS component of p,(1,2), which we now denote by
pT5T5(1,2). Both in the analysis of the experimental data
and in our construction of autocorrelation, the py values are
integrated over some chosen ranges. In our work here the
autocorrelation does not depend sensitively on that py range so
long as it is the intermediate pr range, where TS recombination
is dominant for the formation of a pion. Let us then define the
integrated correlation

L1, @1, m2, ¢2) = /dpldpzplpzcz(l, 2). (26)
With n4 defined by

ne =n2 £, 27

and ¢4 given in Eq. (5), ['(n+, ¢+ ) receives its contribution
mainly from the TSTS component, p 575(1, 2), expressed in
Eq. (24), when n_ and ¢_ become small.

We now focus on pzT STS(1,2) and, in particular, on the A
function in Eq. (24), which contains only the angular variables
of the parton and pion momenta. As we emphasized earlier,
with the autocorrelation A(6_, ¢_) as the aim of our analysis,
the angle y is the bridge between the parton and pion angular
variables that are independent of the coordinate system. With
that simplification in mind, we write A in the form

A(Wh ﬂh n, ¢l§¢2» ﬂ25 2, ¢2)
= /dcos x68[cos x — (A + BcosB_)]
X 8[cos x — (C + Dcos¢_)], (28)

where A and B are functions of ¥y, defined in Egs. (13) and
(14), while C and D are similar functions of 6. that follow
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from Eq. (8) and are explicitly
C = %(cos 0_ +cosf,), 29)

D = 1(cosf_ — cosf,). (30)

It is clear that the two § functions in Eq. (28) express the two
ways of referring y to the two different sets of angles defined
with respect to the jet axis on the one hand and to the beam
axis on the other.

Substituting Egs. (9) and (28) into Eq. (24) and performing
the angular integration as in Eq. (18), we obtain H(yx)
multiplied by some factors involving the momenta magnitudes.
Such factors are irrelevant to our study, so we normalize it out
by defining

. T(74, 03 1 )

Co(n+, ¢+) FOe. 0.y, 0) (31
Pending the connection between 4 and 6, we have from the
above process of integrations

Cr(Ox, ¢y) = fdcosxﬁ(x)a[cosx —(C 4 Dcos¢_)].
(32)

This integration over x need not be performed explicitly, since
it is only necessary to determine the domain of 61 and ¢_ that
corresponds to each fixed value of xy and denote the result as
H (04, ¢_). The final step is to integrate over 6, as in Eq. (6).
Conceptually, it is simpler to visualize the average angle 8,
defined by

0=064/2, (33)

which should be around /2, since the two detected pions are
restricted to a narrow interval at midrapidity, corresponding to
a jet at roughly 7 /2 relative to the beam axis. If we denote the
interval of by 2¢, then we have
A@B_.¢) = AO9) _ 1 /ﬂmE doC(0,,6_,¢_)
T T A0 T e TS
(34)

while ¢ is an irrelevant angle in an azimuthally symmetric
problem. Experimentally, A(6_, ¢_) is to be determined by
use of Egs. (6) and (25).

The transference from 6_ to n_ involves 6, and is just an
algebraic problem. Since

tan6; /2
=1 : 35
-=n (tan92/2> (33)
1 1
0 = 5(9+ —0.), 6= §(9+ +60-), (36)

we can solve for A_ in terms of n_ and 6,.. For # not
far from /2, 6_ behaves essentially as n_. Substituting the
exact dependence of #_ on 7_ and 6, into C»(6,,0_, ¢_) in
Eq. (34) and then averaging over 8, we obtain

B T/24€ . _
A 9= o / IR R

This is our main result, except for the three-dimensional dis-
play of A(n_, ¢_) after numerical computation. The essence
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FIG. 2. (Color online) Normalized autocorrelation function
A(_, ¢_)in 3D plotin n_ — ¢_ foro = 0.2.

of autocorrelation is basically already contained in Fig. 1(b),
where H(x) is shown for various values of the jet cone width
o. For every value of x, there is a set of values of _, ¢_, and
6, whose contour plot gives a representation of A(1_, ¢_).

In Fig. 2, we plot A(5_, ¢_) for o = 0.2. There is very
little sensitivity to the dependence on € in Eq. (37); we set
€ = 0.3. The dependence on o is, however, significant, as we
have already seen in Fig. 1. The general shape of A(1_, ¢_)
is similar, the peak being broader for higher values of o. The
utility of this result is, of course, the reverse. When the data on
A(n—, ¢—) become available, we can use A(n_, ¢_) to infer
what the corresponding cone width ¢ should be. To facilitate
that deduction, we show in Fig. 3 A(5_, 0) and A(0, ¢_) for
various values of o. We see that the width in n_ is numerically
larger than that in ¢_. While in the small 5_ region one has
n— ~ ¢_, the two variables should not be directly compared
since n_ is not an angle. The more important implication of
this result is that we have in Fig. 3 peaks in the measurable
variables n_ and ¢_ for four values of the theoretical variable
o whose magnitude is not known from first principles. Thus,
any experimental information on the autocorrelation can give
us direct information on the nature of the jet cone. As already
mentioned in Sec. I, no trigger-related background subtraction
is needed for autocorrelation, which is defined in terms of

1.2
;
— =
) S
o < 038
= <
< 5
=y =
<, S 06
£ <
<
0.4
0.2
0

FIG. 3. (Color online) (a) Normalized autocorrelation A(1j_, 0)
for four values of o'; (b) normalized A(0, ¢_).
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Cy(1,2). Indeed, experimental data on autocorrelation are
already available at low pr [6,7].

Finally, we note that the width of the peak in A(1_, 0) is
wider than that in A(O, ¢-), as shown in Fig. 3, not because
of any flow effect in the longitudinal direction, such as that
found [18]. We have not considered any medium flow and
its interaction with the shower partons. Our result follows
strictly from a Gaussian distribution for both i, and ¥, of
the shower partons relative to the jet axis. The variables 6_
and ¢_ are differences of angles of p; and p, relative to the
beam axis and should not be mistaken to be the angles defined
for an associated particle with respect to a trigger particle.
The example given at the end of the preceding section on the
angle between parton momenta can be translated now to
be the angle between detected hadrons, thereby illustrating
the difference between autocorrelation and the correlation
between a trigger and its associated particle.

V. CONCLUSION

We have determined the autocorrelation distribution in 7_
and ¢_ for two pions produced in HIC in the intermediate
pr region. We have used the parton recombination model to
relate the hadronic angles to the partonic angles. By empha-
sizing thermal-shower parton recombination, we exploited the
equivalence of the angle between the two shower partons and
that between the two observed pions. Thus, when the data on
autocorrelation at intermediate pr become available, the width
of the observed peak can then be related to the width of the jet
cone, which is the property of the jet physics in HIC that is the
goal of this study.

Our investigation has focused on the angular relationship
among the partonic and hadronic momenta. That relationship is
independent of pr so long as all the transverse momenta in the
problem are in the intermediate p7 region. Since the thermal
partons are soft, the shower parton and the pion that is formed
by TS recombination are roughly of the same magnitudes and
are collinear. Thus the angle x between two shower partons
in a jet is the same as the angle y between the two pions,
independent of their momentum magnitudes. However, we
have made use of the simplifying assumption that the jet
cone has a width o that is independent of the momentum
fraction of the shower partons. While it is sensible to make that
assumption in this first attempt to calculate the autocorrelation,
we expect the realistic situation to be more complicated. Once
that dependence on momentum fraction is considered, the
magnitude of the hard parton momentum becomes relevant,
and the final result on autocorrelation will exhibit dependence
on the pr range, even within the intermediate p; region
3 < pr < 8 GeV/c. Needless to add, when pr goes outside
that region, 7S recombination no longer dominates and the
basis for our study in this paper will have to be revised.

Despite the simplifying assumption made in this paper,
it will be of great interest to compare our result with the
forthcoming data on autocorrelation at intermediate pr. As
far as we know, there exists no other theoretical study that
relates the observables to the partonic structure in a jet, since
no other hadronization scheme has been shown to be reliable
in the pr range considered. In addition to pions, one can
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also study protons and other heavier particles in the jets and
their autocorrelations. Even in the pion sector alone, it is of
interest to consider the complications arising from different
charge states, since multiple shower partons in a jet can exhibit
dependence on their flavors. Thus there remains much to be
learned on the subject; the present study is only a beginning.
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