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properties of baryon and electric charge chemical potentials (value, slope and curvature). A possible divergence
of the specific heat as 1/(T0 − T )2 is discussed. A Hagedorn model with ρ ∼ m−τ exp(βhm) is studied and
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I. INTRODUCTION

A statistical model of very high energy collisions can
account for particle production yields from heavy ion colli-
sions [1–5] and also in elementary particle collisions, such as
electron-positron collisions [6,7]. The same model contains
information regarding the thermodynamic properties of this
system of particles. One important thermodynamic property
is the specific heat. The importance of a study of the specific
heat stems from the fact that sudden changes in the specific
heat have been used as signals for phase transitions. A
classic example of this statement is the lambda transition in
liquid helium. The name lambda transition reflects the lambda
shape of the specific heat with a very sharp rise followed
by a sudden decrease. In the liquid-gas phase transition of
nuclear matter at moderate excitation energy or temperature
a very similar sharp peak in the specific heat was found in a
theoretical model developed in Refs. [8,9]. For the situation
discussed here, a rapid rise in the specific heat is associated
with large fluctuations in the mass spectrum of excited
particles. Event-by event studies [10] have also been stressed
along with temperature fluctuations [11]. Large values of the
specific heat are associated with large energy fluctuations. The
compressibility is associated with density fluctuations [12].
Fluctuations associated with net electric charge and baryon
charge have also been of recent interest [13,14] as well as pt

fluctuations [15]. An overview of fluctuations and correlations
can be found in Refs. [16,17].

The organization of this paper is as follows. First, results of
the statistical model are given for particle production yields and
for thermodynamic quantities. The specific heat (here taken as
the heat capacity per particle) is then connected to properties
of the particle production yields and conserved charges such
as baryon number B and electric charge Z. Limiting cases of
the specific heat are discussed which show a connection of it
to the mass fluctuation in the spectrum of excited particles.
Connections of the specific heat with the behavior of the
chemical potential (its value, slope, and curvature) are also
developed. The distribution of particles obtained from the
detailed analysis of fitting the statistical model to hadronic
multiplicities in Pb-Pb collisions at 30A, 40A and 80A GeV

data [3] is then used to study the behavior of the specific heat.
A parametrization of the behavior of the chemical potential
with T from this analysis may indicate a sharp increase in
the specific heat. A resonance gas model description of the
behavior of the chemical potential with temperature is also
given which has some similar properties.

II. STATISTICAL MODEL

A. Statistical and thermodynamic properties

The statistical model of heavy ion collisions assumes
that hadron multiplicities are the result of an established
thermal and chemical equilibrium [18] in some interaction
volume V at some temperature T. The interaction volume is
the freeze-out volume which is the largest volume over which
equilibrium is maintained in the evolution of the fireball. The
underlying dynamical processes that establish the equilibrium
are the collisions between the particles where the elastic
collisions establish the thermal equilibrium and the inelastic
collisions develop the chemical equilibrium. For example,
pion production via a two-body collision is initially through
a process N + N → N + N + π, where N is a nucleon.
Since densities and energies are initially very high in the
collision, three and higher order collision processes leading
to two or more pions can also take place. Moreover, once
new particles are produced through the initial collision of
the nucleons in the colliding target and projectile nuclei in
a nucleus-nucleus collision, these new particles can collide
with existing nucleons or other newly created particles to
produce other particles. As an example of a secondary process,
kaons can be produced via pion induced reactions such as
π+ + π− → K+ + K−. A set of coupled reaction equations
can be developed as in Ref. [18] to study the approach to
equilibrium for each particle. The equilibrium thermodynamic
model is based on the assumption that the reactions are
initially fast enough compared to expansion time scales in the
expanding fireball so that a quasiequilibrium is established.
Since reaction rates depend on high powers of the density,
i.e., the product of the densities of the colliding particles,
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the reaction rate decreases quickly and equilibrium cannot be
maintained in an expanding system. A dynamical model of
hadronization and freeze out can be found in Ref. [19]. The
particle multiplicity distributions in an equilibrium model are
given by

〈Nj 〉 = gj

(
V m2

j T /2π2
)∑

k

(±)k+1K2(kmj/T )

× Exp[bjµBk/T + qjµQk/T ]/k. (1)

The bj and qj are the baryon number and charge of particle j
which has spin degeneracy gj and mass mj . The µB and µQ

are the baryon and charge chemical potentials. The strangeness
chemical potential µS will be set equal to 0. The energy of
particle j is

〈Ej 〉 = gj

(
V m3

j T /2π2
) ∑

k

(±)k+1

(((
3

4

)
K3 +

(
1

4

)
K1

))

× Exp(k(bjµB + qjµQ)/T )/k. (2)

The arguments of the Bessel K functions in Eq. (2) are the
same as in Eq. (1). The sum over k gives the degeneracy
corrections, with the k = 1 term the nondegenerate limit. The
plus (+) sign is for bosons and the minus (−) sign is for
fermions. For nonrelativistic particles in the nondegenerate
limit,

〈Nj 〉 = gj

(
V/λ3

j

)
Exp((−mj + bjµB + qjµQ)/T ). (3)

The λj = h/(2πmjT )1/2. The 〈Ej 〉 = 〈Nj 〉(mj + (3/2)T ).
For zero mass particles: 〈Nj 〉 = gj (V T 3/π2) Exp(bjµB +
qjµQ)/T ), 〈Ej 〉 = 3T 〈Nj 〉.

B. Features of the chemical potentials µB and µQ

The two chemical potentials are determined by the con-
straint conditions on total baryon number B and total charge Q
or Z. Namely, B = �jbj 〈Nj 〉 and Z = �jqj 〈Nj 〉. Moreover,
the derivative of these chemical potentials with respect to T
(all partial derivatives are at constant V in this paper as is
the heat capacity CV ) can be obtained from the conditions
∂B/∂T = 0 and ∂Z/∂T = 0. For 〈Nj 〉 given by Eq. (3),
then

(3B/2) + MB/T + RbbfB + RbqfQ = 0,
(4)

(3Z/2) + MQ/T + RbqfB + RqqfQ = 0.

The MB = �jmjbjNj , MQ = �jmjqjNj , Rbb = �jb
2
jNj ,

Rqq = �jq
2
j Nj , Rbq = �jbjqjNj , fB = ∂µB/∂T − µB/T ,

and fQ = ∂µQ/∂T - µQ/T . In these equations Nj = 〈Nj 〉.
The coupled equations for fB and fQ can be solved to give
fB = (−(3B/2 + MB/T )Rqq + (3Z/2 + MQ/T )Rbq)/R,fQ =
(−(3Z/2 + MQ/T )Rbb + (3B/2 + MB/T )Rbq)/R. The R =
RbbRqq−R2

bq . For massless pions the fB and fQ become
fB = (− (3B/2 + MB/T ) Rqq + (3Z/2 + 3Zπ /2 + MQ/T )
Rbq)/R, and fQ = (−(3Z/2 + 3Zπ/2 + MQ/T )Rbb + (3B/2+

MB/T )Rbq)/R. The Zπ = Nπ+ − Nπ− , while the Z is the
total conserved charge.

C. Expressions for the heat capacity and specific heat of
hadronic matter

The heat capacity CV in the nondegenerate and nonrela-
tivistic limit for all particles is

CV =
(

3

2

)∑
j

Nj +
∑

j

(
3

2
+ mj

T

)2

Nj

+
{

−
(

3B

2
+ MB

T

)2

Rqq −
(

3Z

2
+ MQ

T

)2

Rbb

+ 2

(
3B

2
+ MB

T

) (
3Z

2
+ MQ

T

)
Rbq

}/
R

=
(

3

2

)∑
j

Nj +
∑

j

(
3

2
+ mj

T

)2

Nj − Rbb(fB)2

−Rqq (fQ)2 − 2RbqfBfQ. (5)

This is obtained from CV = (∂E/∂T )V using Eqs. (2)
and (3). The resulting equation will involve terms like ∂µB/∂T

which are evaluated using the constraint equations that lead
to Eq. (4). Derivations of the fundamental equations are
given in Appendix A of this paper.The first term (3/2) on
the right-hand side of Eq. (5) is just the ideal gas specific
heat at constant V of each nonrelativistic particle, with both
mesons and baryons contributing. The second term involves
the mass spectrum of all particles produced. The curly bracket
or third term in the first equality has three contributions and
involves the three coefficients Rbb, Rqq , and Rbq . The second
and the third term arise from the possibility that particle
distributions change with T or ∂Nj/∂T �= 0. The second term
will be canceled by the third term for a system which has
∂Nj/∂T = 0, for all j. Specifically, consider a system of Np

protons and Nn neutrons, so that Np = Z and Np + Nn = B.

Then Rbb = B,Rqq = Z, and Rbq = Z. When these results
are substituted into Eq. (5), along with the results MB = mNB

and MQ = mNZ, the second and the third term exactly cancel
and CV = (3/2)B, the ideal gas result. The last equality in
Eq. (5) replaces the curly bracket term with the functions
−Rbb(fB)2 − Rqq(fQ)2 − 2RbqfBfQ and connects CV to µB

and µZ .
When pions are taken in the zero mass and nondegenerate

limit, the CV is modified to

CV =
(

3

2

)∑
j

Nj+
∑

j

(
3

2
+mj

T

)2

Nj+12(Nπ++Nπ−+Nπ0 )

+
{

−
(

3B

2
+ MB

T

)2

Rqq −
(

3Z

2
+ 3Zπ

2
+ MQ

T

)2

Rbb

+ 2

(
3B

2
+ MB

T

)(
3Z

2
+ 3Zπ

2
+ MQ

T

)
Rbq

}/
R. (6)

The first two sums over j on the right-hand side of this equation
exclude the pion contribution in their evaluation. The pion
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contribution is now contained in the following terms in that
equation. The third term is the direct contribution of the pion
as if it were independent of the charge conservation law and
the curly bracket term arises from the chemical potentials and
associated constraints. The independent pion contribution can
also be calculated using the results of Eqs. (1) and (2). The
exact expression for CV,m/Nm of an unconstrained meson or
boson including statistical corrections reads

CV,m/Nm

= (m/T )2

{∑
k

K2(km/T ) + 3(T/m)K3(km/T )/k

}/
∑

k

K2(km/T )/k. (7)

The m → 0 limit of this equation is CV,m/Nm = 12ς (4)/ς (3).
If statistical corrections are neglected this limit would be 12.
The nondegenerate and large m/T limit of Eq. (7) is
CV,m/Nm = (3/2 + m/T )2 + 3/2, the characteristic depen-
dence of the first two terms in Eq. (6).

D. Simplified model 1; only conserved baryon charge

To gain some further insight into properties of CV , a
simplified situation of conserved baryon charge will be
considered. Then all charge and neutral states of the same
baryon will have equal yields. Mesons and baryons will also
completely decouple. The specific heat CV will be a sum of
independent contributions from mesons given by Eq. (7) and
constrained baryons. The contribution of baryons to CV,B :

CV,B = 3

2

∑
j

Nj,B+
∑

j

(
3

2
+mj

T

)2

Nj,B

−
(

1

Rbb

) (
3B

2
+ MB

T

)2

. (8)

The sums over j are over both baryons and antibaryons.
Antibaryons are usually a small fraction of the baryon number.
If we allow only baryons with bj = 1, then Rbb = B, and

CV,B = 3

2
B + B

1

T 2

(〈
m2

B

〉 − 〈mB〉2
) = 3

2
B + B

1

T 2

(
δm2

B

)
,

(9)

where 〈mB〉 = �jmjNj,B/B, and 〈m2
B〉 = �jm

2
jNj,B/B. The

enhancement to CV,B = (3/2)B involves the mean square
fluctuation in the resonance mass excitation. The mean mass
〈mB〉 = −3T/2 + (Rbb/B)(µB/T − ∂µB/∂T ). The condi-
tion ∂2B/∂T 2 = 0 can be used to obtain an expression for
the mean square fluctuation and CV,B/B as

(δmB)2 = 〈
m2

B

〉 − 〈mB〉2 = −3T 2/2 − T 3∂2µB/∂T 2,
(10)

CV,B/B = 3/2 + (δmB)2/T 2 = −T ∂2µB/∂T 2.

E. Role of antibaryons

The presence of antibaryons will modify the results given
in Sec. II D. For collision energies �100A GeV antibaryons
make up a few percent of B. From Ref. [3], the antiproton,
proton ratio is ∼2% for the 80A GeV Pb + Pb collision.

This ratio rises to ∼5% for the 158A GeV collision. For a
µB ∼ 300 MeV and T ∼ 150, exp(−2µB/T ) = exp(−4.) ∼
2%, which determines the antiparticle/particle ratio in the
absence of µZ . The presence of both antibaryons with
fraction y = NB̄/(NB + NB̄) and baryons with fraction x =
NB/(NB + NB̄) leads to a modified form for the baryonic
(plus antibaryonic)CV,B :

CV,B/(NB+NB̄) = 3/2 + (x(δmB)2 + y(δmB̄)2)/T 2

+ xy(3 + (〈mB〉 + 〈mB̄〉)/T )2

= 3/2 + (δmB)2/T 2+4xy(3/2+〈mB〉/T )2.

(11)

The last equality arises from 〈mB〉 = 〈mB̄〉 and δmB = δmB̄ .
The specific heat is also

CV,B/(NB + NB̄) = ((NB + NB̄)/B)(T ∂2µB/∂T 2)

+ 4(NBNB̄/B2)f 2
B

= − coth(µB/T )T ∂2µB/(∂T )2

+ csch2(µB/T )(∂µB/∂T − µB/T )2

= − ∂(coth(µB/T )T 2(∂(µB/T )/∂T ))/∂T.

(12)

When NB̄ → 0, or µB/T very large, the rhs of Eqs. (11)
and (12) reduces to Eq. (10). The specific heat now involves
both the curvature and slope of the chemical potential
and the value of the chemical potential itself. In the limit
x = y = 1/2 the CV,B of Eq. (12) becomes the uncon-
strained limit: CV,B/(NB + NB̄) = 3/2 + (9/4 + 3〈mB〉/T +
〈m2

B〉/T 2). The ideal gas limit of CV,B/B = 3/2 is realized in
the limit x = 1, y = 0 and δmB= 0. The 〈mB〉 and 〈m2

B〉 −
〈mB〉2 = (δmB)2 are given by

〈mB〉/T = −3/2 − coth(µB/T )(∂µB/∂T − µB/T ),

(δmB)2/T 2 = −3/2 − coth(µB/T )T ∂2µB/(∂T )2 (13)

+ csch2(µB/T )(∂µB/∂T − µB/T )2.

Thus, the values of µB , its derivative and curvature also contain
the information necessary to evaluate various quantities of
interest regarding the mass excitation.

F. Some features of the statistical model analysis of
CERN/RHIC data

The result of the previous sections can be used to evaluate
some features of recent CERN/RHIC data. In Ref. [3], the T
dependence of µB is given as T = .167 − .153µ2

B . The T and
µB are in GeV. It should be stressed that the values of µB

of Ref. [3] are on the freeze-out surface which has a volume
dependence not included in the above expressions. Here, a
more general form for the Tdependence of µB is used, namely
T = T0 − a(µB)1/β . In the next section a discussion of how
such a form may arise is developed in a resonance gas model
with Vconstant. Here it is used as a simple form to study. Then
substituting this result into Eqs. (13), (14) gives for T → T0

〈mB〉/T → β · T0/(T0 − T ), CV,B/(NB + NB̄) ∝ (δmB)2/T 2

→ β · T 2
0 /(T0 − T )2. (14)
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TABLE I. Values of CV,B, 〈mB〉, and δmB in MeV excited in various collisions. Main analysis A is
the first set of numbers in each row, main analysis B is the second set.

Energy T µB 〈mB〉 δmB CV,B/B 〈mB〉 δmB CV,B/(NB + NB̄ )

11.6 118.1 555 1061 277 7.0 1071 277 7.0
119.1 578 1094 286 7.3 1077 267 7.3

30 139.5 428.6 1295 593 19.6 1297 611 20.7
140.3 428. 1316 612 20.6 1313 633 21.9

40 147.6 380.3 1513 853 34.9 1517 914 39.9
145.5 375.4 1426 770 29.5 1444 812 32.8

80 153.7 297.7 1771 1216 64.0 1856 1380 82.1
151.7 288.9 1629 1070 51.2 1715 1187 62.7

158 157.8 247.3 2113 1676 114.3 2331 2038 168.4
154.8 244.5 1804 1313 73.4 1952 1513 97.0

Thus, β does not appear as an exponent in the divergence
of the specific heat which is quadratic or 1/(T0 − T )2 for
all β. The 〈mB〉 → ∞ as T → T0. Using values for µB and
T given in Ref. [3] for Pb + Pb collisions at 30, 40, 80, and
158A GeV and for Au + Au 11.6A GeV collisions, and the
above parametrization of the behavior of µB with T with β =
1/2, the values of 〈mB〉, (〈m2

B〉 − 〈mB〉2)1/2 ≡ δmB in MeV
and CV,B/B are shown in Table I. The last three columns are
obtained from results in Sec. II E that include antibaryons. The
previous three columns are without antibaryons obtained from
expressions in Sec. II D. The curvature and slope functions are
obtained from this parametrization. The antibaryon case also
used this parametrization to evaluate the chemical potential,
while the case with just baryons used the chemical potential
of Ref. [3]. The error bars in T and µB are not given and
generate large error bars in the results for the mean mass,
mass fluctuation, and specific heat, especially at the higher
temperatures. These errors are typically ±20%. Two sets of
numbers for each energy appear in the table since Ref. [3] has
two main analysis of the data, called A and B. The results
show that CV,B/(NB + NB̄) are very different from the ideal
gas value 1.5 and increase very sharply.

The contribution of decoupled mesons to CV can be
obtained from Eq. (7). In Ref. [3]: π ′s = 1356,K ′s = 160,

K∗′s = 66, ρ ′s = 149, η = 49, ω = 40, are the multiplicity
yields for the 80 A GeV Pb + Pb collision for the low-
lying well-known mesons. Using Eq. (7), each of these
mesons contributes to CV as follows: CV,π/Nπ = 13.2, CV,K/

NK = 28.8, CV,η/Nη = 32, CV,ω/Nω = 49.5, CV,ρ/Nρ = 48.5,

CV,K∗/NK∗ = 59. Thus mesons make a very large contribution
to the total CV .

G. Resonance gas model

The behavior of the chemical potential used in the previous
section suggests a further investigation in terms of a Hagedorn
resonance gas model. The Hagedorn model involves an
exponentially increasing density of states that reads ρ =
Dτm

−τ exp(βhm), where Dτ is a constant and βh is the
reciprocal of the limiting temperature T0. For a system with
net baryon number (B = NB − NB̄), the constraint imposed

by baryon conservation leads to

(NB − NB̄)/V )(2π/T )3/2

= 2Dτ

(
y/m2

0

)τ−5/2
(∫ ∞

y

(dxe−x/x(τ−3/2))

)
sinh(µB/T )

(15)

with y = (T0 − T )m0/T0T and m0 the lowest mass. For
τ < 5/2, µB will go to zero as (T0 − T )(5/2−τ ), when
T → T0. Thus, in the resonance gas model, the Hagedorn
limiting temperature is identified with the limiting value
of the chemical freeze-out temperature. The Iy,τ ≡∫ ∞
y

(dxe−x/x(τ−3/2)) → �(5/2 − τ ) for y → 0. For τ >

5/2, µB will go to a constant that depends on τ . For τ =
5/2 + η, with η > 0, (y)τ−5/2

∫ ∞
y

dxe−x/x(τ−3/2) = 1/η as
y → 0. When 5/2 < τ < 7/2, the constant 1/η is approached
with ∞ slope. As an example y1/2 Iy,3 = 2(1 − (πy)1/2). For
7/2 < τ , the slope is also finite: y3/2 Iy,4 = (2/3)(1 − 2y),
y2Iy,9/2 = (1/2)(1 − y). When µB → (T0 − T )(5/2−τ ) is sub-
stituted into Eq. (14), a divergence in CV,B/(NB + NB̄)
as 1/(T0 − T )2 results. The (NB + NB̄)/V also diverges as
1/(T0 − T )5/2−τ , and CV,B ∼ 1/(T0 − T )9/2−τ . The NB̄,NB

asymmetry (NB − NB̄)/(NB + NB̄) = tanh(µB/T ), with B =
NB − NB̄ fixed. This behavior of CV,B is the B = 0, µB = 0
result of Ref. [20]. Earlier results at µB �= 0, NB̄ = 0 are in
the second paper of Ref. [18]. A more recent discussion can be
found in Ref. [21]. An ∞ baryon density presents a problem if
baryons are not pointlike. The model is thus limited to densities
and T where composite baryons and mesons do not overlap. At
some density ∼1 hadron/fm3 and T = TQg < T0, a transition
to a quark-gluon phase occurs which truncates behaviors based
on this particular model. A discussion of this feature can be
found in Ref. [21] where the quark-gluon phase is treated in
a statistical model of quark-gluon bags along with the hadron
phase.

How well does Eq. (15) describe the µB of Table I? When
τ = 2, the µB → (T0 − T )(1/2) as T → T0 which is the form of
Ref. [3] which will be used. Setting µB = 375.5 at T = 145.5
and using m0/T0 = 6 ∼ mp/T0 while also holding V constant,
gives µB = 625, 434, 375, 295, and 250 at T = 119.1, 140.3,
145.5, 151.7, and 154.8, respectively. These values for µB
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can be compared to those in Table I which read for 578,
428, 375, 289, 245 for the same T’s, respectively, which
are on the freeze-out surface. The V dependence of µB is
contained in Eq. (15), but details of the freeze-out volume must
be given. If X is constant then (∂µB/∂T )X − (∂µB/∂T )V =
(∂µB/∂V )T (∂V/∂T )X. In spite of this difference, Eq. (15)
gives a good qualitative representation of µB . The Hagedorn
model has higher values of CV,B/(NB + NB̄): 11.4, 30.8, 45.4,
84.4, and 129, for these same T’s.

III. SUMMARY AND CONCLUSIONS

Properties of the specific heat of hadronic matter produced
in very high energy nucleus-nucleus collisions such as those
at RHIC and CERN are studied in this paper. A grand
canonical statistical model is used to develop expressions
for the particle multiplicity distribution and energy caloric
equation of state which is then used to obtain the specific heat.
The constraints associated with baryon number and electric
charge conservation are included to obtain an expression
for the specific heat which contains the particle yields, the
mass spectrum of produced particles, and three coefficients
Rbb, Rqq , and Rbq associated with these constraints. The
specific heat is not simply a sum of independent contributions
arising from each type of particle. Rather CV has additional
terms which significantly alter its value from this independent
particle result. Resonance excitations allow for the possibility
that individual particle yields change with T and redistribute
the conserved charge and baryon number on other particles.
The behavior of CV is studied in some limiting cases to see
how various quantities such as baryonic charge conservation
and the production of antibaryons manifest themselves. Using
properties of the constraint equations, the specific heat and
mass spectrum of excited hadrons are related to properties
of µB and µQ such as their curvature, slope, and value. A
recent parametrization of µB with T as µB = a(T0 − T )1/2

may lead to a very rapid increase in the baryonic component
of the specific heat. In general, if an expression such as µB =
a(T0 − T )β correctly describes the behavior of µB near a
limiting temperature T0, then CV,B/(NB + NB̄) would diverge
as 1/(T0 − T )2. Moreover, the exponent 2 is independent of the
functional form of β used. A resonance gas description of the
behavior of the chemical potential and associated specific heat
is also given. The mass prefactor exponent τ in a Hagedorn
spectrum ρ = DBm−τ exp(βhm) is important in the behavior
of the chemical potential. Specifically, if µB → 0, as T → T0,
then τ � 5/2, with µB → (T − T0)5/2−τ . Thus, the Hagedorn
limiting temperature of a resonance gas model can be identified
with the limiting value of the chemical freeze-out temperature.
Moreover, the behavior of µB may possibly be used to study τ .
The limitations of the Hagedorn result are discussed with
respect to a Q-g phase transition.
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APPENDIX A: DERIVATION OF MAIN EQUATIONS

This appendix contains details of the derivation of some of
the equations used in this paper. To keep the notation simple,
〈 〉 will be omitted and all partial derivatives with respect to T
are at constant V.

The heat capacity given by Eq. (4) is obtained from

CV = (∂E/∂T )V = ∂

∂T

∑
j

Nj

(
mj + 3T

2

)

= 3

2

∑
j

Nj +
∑

j

(
mj + 3T

2

)
∂Nj

∂T
. (A1)

Using Eq. (3), the result for ∂Nj/∂T is

∂Nj

∂T
= Nj

T

(
3

2
+ mj

T
+ bjfB + qjfQ

)
, (A2)

where fB = ∂µB/∂T − µB/T and fQ = ∂µQ/∂T − µQ/T

arise from the partial derivatives of exp((bjµB + qjµQ)/T )
with respect to T. Substituting Eq. (A2) into Eq. (A1)
leads to

CV = 3

2

∑
j

Nj +
∑

j

(
mj + 3T

2

)

× Nj

T

(
3

2
+ mj

T
+ bjfB + qjfQ

)

= 3

2

∑
j

Nj +
∑

j

(
mj

T
+ 3

2

)2

Nj

+
∑

j

(
mj + 3T

2

)
Nj

T
(bjfB + qjfQ)

= 3

2

∑
j

Nj +
∑

j

(
mj

T
+ 3

2

)2

Nj

+
(

MB

T
+ 3

2
B

)
fB +

(
MZ

T
+ 3

2
Z

)
fQ. (A3)

When the results of Eq. (4) are substituted into Eq. (A3) the two
forms of Eq. (5) in Sec. II B arise. Equation (8) of Sec. II D,
which contains only the baryon constraint, is obtained in a
similar manner. The baryonic component to the heat capacity
is

CV,B = 3

2

∑
j

Nj,B +
∑

j

(
mj

T
+ 3

2

)2

Nj,B +
(
MB

T
+ 3

2
B

)
fB

= 3

2

∑
j

Nj,B +
∑

j

(
mj

T
+ 3

2

)2

Nj,B +
(
MB

T
+ 3

2
B

)

×
(

− 1

Rbb

)(
MB

T
+ 3

2
B

)
. (A4)

In the sums over j in the last equation, the Nj,B can either be
a baryon or antibaryon. Both will contribute a plus sign to the
baryonic specific heat. However, the B and MB both involve
the baryonic charge bj which has an opposite sign for baryons
and antibaryons. In obtaining the last result of Eq. (A4), use
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was made of Eq. (4) for a situation with a constraint of baryon
conservation only. Then Eq. (4) reads

3

2
B + MB

T
+ RbbfB = 0. (A5)

The fB of Eq. (A5) can be substituted into Eq. (A4) to eliminate
its presence in that equation. The results of Eq. (A4) leads to
Eq. (9) of Sec. II D (without antibaryons) using

Rbb = B = NB,

MB = 〈mB〉B, (A6)∑
j

(
mj

T
+ 3

2

)2

Nj,B =
(〈

m2
B

〉
T 2

+ 3〈mB〉
T

+ 9

4

)
B.

The results of Eq. (11) of Sec. II E (with antibaryons and
bj = ±1 only) also follow from Eq. (A4) using

Rbb =
∑

j

b2
jNj,B = NB + NB̄,

B =
∑

j

bjNj,B = NB − NB̄,

∑
j

Nj,B = NB + NB̄, (A7)

〈mB〉 = 〈mB̄〉, 〈m2
B〉 = 〈m2

B̄
〉,

MB ≡
∑

j

mjbjNj =〈mB〉(NB − NB̄) = 〈mB〉B.

Specifically

CV,B = 3

2
+

(〈
m2

B

〉
T 2

+ 3
〈mB〉

T
+ 9

4

)
− B2

(NB + NB̄)2

×
( 〈mB〉2

T 2
+ 3

〈mB〉
T

+ 9

4

)

= 3

2
+ (∂mB)2

T 2
+ 4xy

(
3

2
+ 〈mB〉

T

)2

, (A8)

where

B2

(NB + NB̄)2
= 1 − 4

NB

NB + NB̄

NB̄

NB + NB̄

= 1 − 4xy. (A9)

The relationship that connects the mean mass excited to the
chemical potentials follows from Eq. (4). For the case of
baryon conservation only the first result in Eq. (4) with fQ → 0
can be written as(

3

2
+ 〈mB〉

T

)
B + (NB + NB̄)fB = 0. (A10)

Thus
〈mB〉

T
= −3

2
− (NB + NB̄)fB

(NB − NB̄)

= −3

2
− coth

(µB

T

)(
∂µB

∂T
− µB

T

)
. (A11)

The mean square fluctuation (∂mB)2 is obtained from
the constraint condition using ∂2B/∂T 2 = 0 = T {(∂/∂T )
(T ∂B/∂T )} ≡ D2B:

D2B = T
∂

∂T

∑
j

bjNj

(
3

2
+ mj

T
+ bjfB

)

=
∑

j

bjNj

(
−mj

T
+ bjT

∂fB

∂T

)

+
∑

j

bj

(mj

T
+ bjfB

)
T

∂Nj

∂T
. (A12)

Using

T
∂fB

∂T
= T

∂2µB

(∂T )2
− fB,

3

2
B + 〈mB〉

T
B + RbbfB = 0, (A13)

〈mB〉
T

RbbfB = 〈mB〉
T

(
−3

2
B − 〈mB〉

T
B

)
,

the D2B can be rewritten as

D2B = 3

2
B + RbbT

∂2µB

(∂T )2
+ (∂mB)2

T 2
B

−
(

(Rbb)2

B2
− 1

)
B(fB)2 = 0. (A14)

Solving for the mass fluctuation (∂mB)2/T 2 gives

(∂mB)2

T 2
= −3

2
− coth

(µB

T

)
T

∂2µB

(∂T )2

+ csc h2
(µB

T

) (
∂µB

∂T
− µB

T

)2

. (A15)

The result of Eq. (A15) can be simplified to the following
expression:

−3

2
− ∂

∂T

{
coth

(
µB/T )(T 2 ∂(µB/T )

∂T

)}
. (A16)
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