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The (t,3He) reaction at 43 MeV/nucleon on 48Ca and 58Ni: Results and microscopic interpretation
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We have used the 43 MeV/nucleon primary tritium beam of the AGOR facility with an intensity of 4 × 107 pps
and the BBS experimental setup to study the (t,3He) reaction between 0◦ and 5◦ lab angles on 12C, 48Ca, and 58Ni
targets. The standard ray-tracing procedure has allowed us to obtain excitation-energy spectra up to 30 MeV in six
angular bins for each residual nucleus, with an average energy resolution of 350 keV. The reaction mechanism has
been described in distorted-waves Born approximation (DWBA) using the DWBA98 code. In this approximation,
the form factor is treated as a folding of an effective projectile-nucleon interaction with a transition density. The
effective projectile-nucleon interaction has been adjusted to reproduce the 0◦ cross section of the 1+ ground
state of 12B populated in the 12C(t,3He) reaction. We have employed random-phase approximation (RPA) wave
functions of excited states to construct the form factor instead of the normal modes wave functions used earlier.
This new DWBA+RPA analysis is used to compare calculated and experimental cross sections directly and to
discuss the giant resonance excitations in 48K and 58Co nuclei.

DOI: 10.1103/PhysRevC.73.014616 PACS number(s): 24.30.Cz, 25.55.Kr, 27.20.+n, 27.40.+z

I. INTRODUCTION

Except for the giant dipole resonance (GDR), the system-
atics of the isovector giant resonances are basically unknown,
especially for the isovector monopole. This L = 0 resonance
is interesting because of its role in isospin mixing and its
importance in determining the symmetry term of the equation
of state of nuclear matter as well as the isospin terms
of the effective nucleon-nucleon interaction. Although the
isovector (�T = 1) non-charge-exchange (�Tz = 0) giant
dipole resonance (IVGDR) is the oldest and best known
resonance, and systematic information is available for isoscalar
(�T = 0) resonances such as monopole or quadrupole reso-
nances, the clear identification and unambiguous L-assignment
of the 1 or 2h̄ω isovector giant resonances (IVGRs) in
the charge-exchange (�T = 1,�Tz = ±1) sector constitutes
a long-standing experimental problem [1]. In particular in
the excitation energy range where the monopole collective
strength was expected, either L = 0 and/or L = 2 transitions
have been observed [2] depending on the reaction. Moreover,
these resonances are often identified after subtraction of a very
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Academy of Sciences, Debrecen, Hungary.

large continuum background, adjusted to connect smoothly to
the high-excitation-energy part of the spectra. Recently, strong
evidence has been found for the location of the isovector
spin giant monopole resonance (IVSGMR) in 208Pb in an
exclusive (3He,tp) experiment at 410 MeV [3]. Concerning
the L = 0, S = 1 0h̄ω IVGR, the GT resonance, it has only
recently been experimentally shown to almost fully exhaust the
sum rule from the studies of the (p,n) and (n,p) reactions [4].

In the present article we try mainly to answer the two
following questions: Where is the monopole resonance and
what amount of strength can be observed in 48K and 58Co via
the τ+ channel? To compensate for the lack of really selective
probes, we have chosen to use the (t,3He) reaction at 130 MeV.
We were guided by several considerations in the choice of
this experiment. The τ+ channel in such a (n,p)-like reaction
leads to excitation of only one isospin component, T = T0 + 1,
where T0 is the isospin of the ground state of the target
nucleus. This is in contrast to inelastic scattering reactions
or (p,n)-like reactions. Moreover, the T0 + 1 component of
IVGRs is located at a lower excitation energy compared to
its location in the τ0 and τ− channels, leading to a smaller
spreading width. At a bombarding energy of 43 MeV/nucleon,
the Vτ term of the NN interaction is comparable to the Vστ

term [5], but the spin-flip transitions are still dominant over
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FIG. 1. 3He identification on Ni, C targets and an empty frame with the BBS spectrometer at 0◦. All quantities are plotted as a function of
channel number.

the non-spin-flip ones because of the statistical factor (=3)
connected with the �S = 1 channel. Interesting features of
the present study using the (t,3He) reaction are the expected
surface-peaked nature of the reaction and the fact that L = 0
transitions should be enhanced at very forward angles.

After discussing a standard distorted-waves Born approx-
imation (DWBA) analysis of the experimental data, we
present a new microscopic approach based on random-phase
approximation (RPA) calculations.

II. EXPERIMENTAL SETUP

A. Triton beam production

Efforts made in the past 3 years at KVI to develop a primary
tritium beam have been quite successful [6]. Low-intensity
triton beams, produced with the ECR ion source, are injected
and accelerated in the superconducting accelerator AGOR.
The gas, consisting of a mixture of deuterium and tritium
(22 ppm tritium), is stored as uranium hydride, from which it is
liberated by heating and it flows into the plasma source through
a calibrated leak. The gas flow is controlled by varying the
temperature and thereby the pressure. The optimization of the
beam settings is done with 3He1+ ions. The switch to a triton
beam then necessitates the installation of two stripper foils at
the exit of the cyclotron, before the first bending magnet and
between the first and second bending magnets, respectively,
to suppress the spurious incident 3He1+ ions. In the present
experiment, the final triton beam had an incident energy of
130 MeV and an intensity of 4 × 107 pps on target.

B. Detection and identification of 3He ions

Enriched self-supporting targets of 4.7 mg/cm2 thickness
58Ni and 17 mg/cm2 thickness 48Ca were used, together with
a 12C target and also an empty frame to check for impurities
or spurious events. The targets were always positioned in the
plane perpendicular to the incident beam. 12C impurities were
negligible in the targets but a hydrogen contamination gave

rise to spurious peaks in the low-excitation-energy part (up to
6 MeV) during the measurements on the 58Ni target.

The 3He ejectiles were detected in the big-bite magnetic
spectrometer (BBS) [7] equipped with its focal-plane detection
system [8]. A thin plastic scintillator (S3) was inserted between
the vertical drift chambers and the two standard plastic
scintillators. Owing to the factor of two between the magnetic
rigidity of the ejectile and that of the projectile, a very clean
identification of the interesting 3He ions could be achieved,
even with the BBS at 0◦, as illustrated in Fig. 1.

Figure 1 shows two-dimensional plots of the energy loss in
S3 versus focal plane position X for 58Ni, 12C, and an empty
target and versus cyclotron RF-S3 time of flight in the case of
58Ni. Both plots are used to select the 3He ejectiles.

The BBS backtracking procedure allows us to extract the
differential cross sections in narrow angular ranges. We have
chosen an angular binning of 0.7◦ width rings (around 0◦) or
ring sections (around 5◦) in the (θt , φt ) target plane, leading
to six measurements around 0.35◦, 1.05◦, 1.55◦, 4.3◦, 5◦, and
5.6◦ in the laboratory. These angles are often referred to by
the numbers 1 to 6, respectively, in the text. Typical residual
spectra of the total 0◦ measurements are presented in Fig. 2.
The spectra obtained with 48Ca and 58Ni targets suggest an
overlap of many structures above 5 and 9 MeV excitation
energy, respectively.

III. DWBA ANALYSIS AND REACTION MECHANISM
CONSIDERATIONS

Although the distorted-waves impulse approximation
(DWIA) can be used to describe the reaction mechanism at
higher incident energy, we have to take into account distortion
effects by using a DWBA analysis with the DWBA98 code [9].

A. DWBA98 code common inputs

In the framework of the prior form of the DWBA, the
transition matrix element can be written as follows:

Tf i = 〈χ+
f |F ( �R; E)|χ−

i 〉, (1)
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FIG. 2. 12B, 48K, and 58Co excitation energy spectra obtained in the (t,3He) reaction at Et = 130 MeV.

where the form factor F ( �R; E) is the folding of the transition
density with an effective projectile-nucleon (N-proj) interac-
tion:

F ( �R; E) =
∫

d3rV
(N-proj)

eff (�r − �R)δ	(�r; E), (2)

and where χ−
i and χ+

f are the incoming and outgoing distorted
waves.

The quantity δ	 represents the change in density associated
with the excitation of a state at energy E in the target.
Alternatively, if we introduce a transition density for the
projectile as well, we can write the form factor as the double
folding of an effective nucleon-nucleon interaction with the
two transition densities.

1. Optical-potential choices and distorted-wave functions

In the same way as was commonly done for the (3He,t)
reaction, the 3He optical potentials were chosen from those
fitting the elastic scattering at 130 MeV measured in previous
experiments over a large angular range, and a 15% reduction
of the real and imaginary depths of the 3He optical potential
was applied to construct the tritium channel optical potentials.
This procedure of a 0.85 scaling factor between the t and the
3He optical potentials has been found to fit the data reasonably
well [10] and avoids the proliferation of free parameters and
has been applied for every nucleus.

In the present experiment the measured angular range
is too narrow to allow a more relevant statement on the
determination of the optical potential parameters and we
have compared parameters already determined in previous
experiments especially dedicated to this aspect.

In the case of 58Ni, the choice of an optical potential with
an imaginary surface term has been preferred to a volume one
among those given in Ref. [11] because of the better fit of

the angular distribution of the GT 1+ group of levels around
Ex = 1.8 MeV. For this nucleus, the comparison between
two optical potentials with such an imaginary surface term,
the optical potential given in Ref. [11] and the energy-mass-
dependent (EMD) potential [12], gives values of 1.03, 0.91,
and 0.88 for the ratio between their 0◦ cross sections for 0+, 1+,
and 2− states, respectively, and a value of 0.90 at 3.5◦ where
this last 2− cross section is maximum. We thus estimate that
the optical potential sensitivity is ≈10% in this case. These
calculations were made with a size parameter value h̄ω =
41 A−1/3 MeV. The same size parameter has been used for
every nucleus and for the normal mode wave functions (defined
in Sec. III B1) in this article.

In the case of 48Ca, the energy-mass-dependent (EMD)
potential [12] and a potential deduced from 40Ca elastic
scattering studies [13], with a small isospin correction for 48Ca,
give similar results for the 2− ground state in our angular range.
We have adopted the first one for its imaginary surface term.

In the case of 12C, which has been used for the calibration
of the effective interaction (see Sec. III A3), we have taken
the optical potential obtained in the analysis of 119 MeV 3He
elastic scattering data [12].

The 3He optical potentials finally retained for the analysis
are given in Table I.

2. Effective t-N interaction

In the DWBA98 code, a phenomenological effective interac-
tion can be used. Here, we do not introduce a transition density
for the projectile but an effective interaction that is expressed
as a sum over Yukawa terms as in the (p,n) case.

Veff(r) = [VτY (r/Rτ ) + VστY (r/Rστ )(�σ1 · �σ2)

+VLSτY (r/RLSτ ) �L · �S
+VT τ r

2Y (r/RT τ )S12](�τ1 · �τ2). (3)

TABLE I. 3He optical-model parameters used in this work.

Nucleus V0 (MeV) WD (MeV) rV (fm) rWD (fm) aV (fm) aWD (fm) rC (fm) Ref.

12C 106.48 15.64 1.032 1.133 0.808 0.787 1.30 [12]
48Ca 97.80 21.50 1.210 1.170 0.760 0.816 1.30 [12]
58Ni 100.00 20.20 1.211 1.180 0.805 0.817 1.30 [11]
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The same effective interaction has been commonly used
in the analysis of the (3He,t) reaction at different incident
energies and of the (t,3He) reaction at higher incident energy
[14]. In this approximation the folding with the interactions
of the exchanged nucleon and the spectator nucleons in the
projectile is not explicitly introduced but is taken into account
only phenomenologically within the values of the different
terms. In the same way, the LS term is assumed to be small and
is also ignored. The determination of this LS term would need
experiments with polarized beams, which have not yet been
done, but it would be interesting to have better knowledge of
it. Here we have used only the Vτ , Vστ , and VT τ terms in our
approximation.

The ranges of the different terms are chosen near to the
OPEP values [15] as usual, and only their depths were adjusted
in the present analysis.

The Vτ term is the best known and its energy dependence
has been determined by comparing experimental cross sections
to theoretical predictions in (3He,t) reactions at different
energies [16]. We have interpolated it at our energy to a value
of 5 MeV to take into account this well-established energy
dependence. It is important to remark that this term varies
rapidly at low energy. The Vστ and VT τ terms are much less
well established.

3. Calibration of the effective interaction on the 1+ ground
state of 12B

We present in Table II two different parameter sets that
have been used in our analysis. As shown in Fig. 3 the first
one reproduces the angular distribution of the 1+ G.S. level of
12B rather well with a renormalization by a factor of 1.3 at 0◦.
The wave function used here for this level is from the Cohen
and Kurath model [17]. One should note that an increase of
30% of the imaginary term in the optical potentials reduces
the calculated cross section at 0◦ by 12% and at 8◦ by 18%.

The second set is deduced from a previous systematic
analysis in the 22–30 MeV/nucleon range [18] with the Vτ

term fixed to 5 MeV at our energy. It does not reproduce
the differential cross section shape for the 1+ G.S. level of
12B cross section quite as well but overestimates its 0◦ cross
section rather less (by 10%).

The shell-model wave function of the 1+ state calculated
by Kawabata [19], including not only p but also s-d shells,
gives no significant difference on the shape but increases the
absolute cross section by 20% and may thus slightly affect
the choice of the effective interaction terms. This 1+ state is,
moreover, not only sensitive to Vστ but also to VT τ . One would
thus need other states such as stretched states with a high spin
and a well-known wave function to constrain VT τ better. We
could not isolate such a state in the present data.

TABLE II. Effective t-N interaction sets for the (t,3He) reaction
at 130 MeV.

Effective Vτ (MeV) Vστ (MeV) VT τ (MeV)
interaction

Set I 5.00 −4.10 −6.00
Set II 5.00 −3.00 −6.50
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FIG. 3. 12B 1+ ground-state angular distribution; w.f. CK stands
for the Cohen and Kurath wave function; and (a) denotes a modified
imaginary part of the optical potentials (see text).

We prefer the first set because it is in better agreement with
the fact that in this region of incident energy per nucleon,
the Vστ and Vτ terms are of comparable strength in the
NN interaction. We can deduce from these comparisons that
the sensitivity to the effective interaction is ≈10% in the case
of this 1+ state.

B. Nuclear structure input

1. Standard normal modes wave functions

In the standard analysis, the excited final states can be built
from the most possible coherent superposition of 1p1h states.
These collective wave functions in the so-called normal modes
(NM) are obtained by applying an operator O

µ

LJM (resembling
an electromagnetic operator in the spin-space part but carrying
a t± isospin part) to the harmonic oscillator wave functions
describing the initial state. This was done using the NORMOD

code developed by Van der Werf [20]. The initial state |0〉 is
described with the filling of the successive shells and the upper
empty shells can be chosen as a basis for the 1p1h states in the
appropriate way to select the desired �Nh̄ω transitions (see,
for example, Ref. [21] for a detailed description).

One has to distinguish between non-spin-flip and spin-flip
transitions. The operators O

µ

LJM are

O
µ

(L=J )JM =
∑

i

rJ
i YJM (r̂i)tµ(i) (4)

and

O
µ

LJM =
∑

i

rL
i [YL(r̂i) ⊗ σi]JMtµ(i). (5)

In the case of spin-flip transition, L can be J or J ± 1. In the
harmonic oscillator basis, the excited states are

|LJM〉 =
∑
ph

ZLJM
ph [a†

pah]LJM |0〉, (6)

where

ZLJM
ph =〈ph; LJM|Oµ

LJM |0〉
/√∑

ph

|〈ph; LJM|Oµ

LJM |0〉|2.

(7)
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It is obvious that such a normal-mode wave function
exhausts the corresponding non-energy-weighted sum rule.
Associating this with observed experimental strength makes
sense provided that all this strength is located within a small
energy region. An extension of the NM method for the search
of collective strength over a wide excitation energy range has
been commonly used via multipole decomposition analysis
(MDA). The experimental spectra are divided in energy
bins (typically 1 MeV wide) where the difference between
the experimental cross section and the weighted sum of
multipole cross sections calculated using NM wave functions
is minimized (see Sec. IV A). In this procedure the form factor
is kept constant over the whole energy range and the excitation
energy dependence relies only on the Q-value change in the
exit channel. This means that in such analysis the correlation
between excitation energy and nuclear structure is omitted by
definition. Moreover, this is a fitting procedure that introduces
its own artifacts depending on the number of experimental
measurements and on the number of multipoles included in the
fit. The nuclear spectrum associated with a given multipolarity
is composed of both collective and noncollective excitations.
Therefore, in the experimental analysis it may be a dangerous
assumption to use a collective transition density or form factor
at each energy E from zero to the maximum energy available
in the measurement.

This issue has been discussed in a number of cases: for
instance, in the case of the isoscalar giant monopole resonance
(ISGMR) a possible overestimation of the energy-weighted
sum rules and shifts of centroid energies because of the
collective-model-based DWBA reaction description has been
reported previously [22]. It has also been pointed out recently
that in the case of the isoscalar giant dipole resonance
(ISGDR), although essentially all theoretical models predict
that at low energy noncollective strength exists, the experi-
mental analysis is based on the use of constant form factors at
different energies (see, e.g., Ref. [23] and references therein).

2. Microscopic RPA wave functions

We do not have yet a sufficient database to judge the effect
of the approximation based on using energy-independent,
collective transition densities in the DWBA calculation. We
have tried in our work to study this problem by complementing
the NM analysis with another calculation in which the transi-
tion densities at each energy come from a microscopic RPA
calculation. We feel motivated also by the fact that a recent
similar RPA calculation for 208Pb, coupled to a Glauber-type
model for the reaction cross sections, has given enlightening
results in connection with our present problem (the IVGMR)
but in the case of a different reaction, namely (13C,13N) [24].
We believe that the coupling of fully microscopic structure and
reaction models should be pursued more extensively.

Charge-exchange RPA is a well-known method, and many
studies have been carried out within this framework, starting
with the work of Auerbach and Klein [25]. We recall here the
main characteristics of this type of calculation and we report
some details for the present one, which are given along the lines
of Ref. [26]. The calculation is self-consistent in the sense that
the residual proton-neutron particle-hole interaction is derived

from the Skyrme force used to build the ground state. We have
chosen the Skyrme parametrization SGII [27].

In our method, we first solve the Hartree-Fock (HF)
equations in the coordinate space and we obtain the mean
field. Radial integrals are computed up to a maximum radial
distance of 18 fm, using a mesh of 0.1 fm. The unoccupied
states, including those at positive energies, are obtained
by diagonalizing the mean field in a harmonic oscillator
basis (with h̄ω = 41 A−1/3 MeV), that is, the continuum
is discretized. A basis of proton particle-neutron hole plus
neutron particle-proton hole configurations is built using all
occupied states, as well as the lowest five unoccupied states
with increasing values of the radial quantum number n, for
each value of (l,j ). The RPA matrix equations are solved
in this basis, which has been checked to be large enough
to ensure that the appropriate sum rules [25] are satisfied.
The procedure has already been explained in Ref. [26]. Only
the spin-orbit residual two-body force is omitted from the
full residual interaction. Because we are mainly interested in
the giant resonance region, we neglect the pairing interaction
which is expected to have less effect far from the Fermi energy.
However, for this reason, our results for the GT strength distri-
bution at low energy should be taken with caution. The nucleus
58Ni is calculated using the filling approximation (that is, four
neutrons are in the p3/2 subshell with occupation factors 1/2).

Solving the RPA gives the energies En of the excited states
|n〉, as well as their wave functions in terms of the X

(n)
ph and

Y
(n)
ph particle-hole (ph) amplitudes. The corresponding radial

transition densities δ	 are given by the following:

δ	(L)
n (r) =

∑
ph

(
X

(n)
ph − Y

(n)
ph

)〈p||AJLM ||h〉Rp(r)Rh(r), (8)

where R(r) is the radial part of the single-particle wave
function and AJLM is either YJM or [YL ⊗ σ ]JM .

These transition densities are related to the strength of each
state Sn associated with the multipole operators (4) and (5) by
the following:

Sn = |An|2 =
∣∣∣∣
∫

dr rL+2δ	(L)
n (r)

∣∣∣∣
2

. (9)

The wave functions of the RPA states |n〉 are transformed
to comply with the DWBA98 code conventions and input into
the reaction calculation. In our procedure, we have chosen to
average the RPA states lying within a given 1 MeV bin. The
averaging is done by using the transition amplitude An. This
means that the cross section associated with a given energy
bin is obtained by using a DWBA calculation that employs a
wave function characterized by the amplitudes

Xph = 1

N
∑

n

AnX
(n)
ph,

where the normalization factor is N = √∑
n A2

n, the sum
is over the states lying within the bin, and the form of the
Y amplitudes is obtained in the same way. The X and Y
amplitudes smaller (in absolute value) than 10−3 are neglected.
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FIG. 4. 0+ angular distribution in the IVGMR region calculated
for the 58Ni(t,3He)58Co reaction. Because of the different normaliza-
tion of the form factor, the comparison between NM and RPA is made
to illustrate their difference in shapes.

C. Comparison of the angular distributions calculated with the
NM and the RPA methods

The strong correlation between the excitation energy and
the collectivity of the final states is absent in the NM
standard analysis. This correlation affects the form factors and
consequently the shape and the amplitude of the calculated
cross-section angular distributions. The first very interesting,
and indeed expected, feature of RPA angular distributions
for collective states is that they have a shape comparable
to that of the NM ones, as in the example shown in Fig. 4.
This agreement validates the coherence between the phase
conventions adopted in NM and RPA in addition to previous
tests made on simpler cases with the DWBA98 code.

NM and RPA angular distributions may have different
shapes, for example, for the 1+ states simply because of the
mixing in the RPA final state between the L = 0 and L = 2
transitions. In fact, these two contributions are not separable
in the RPA where only Jπ is a good quantum number.

The important fact is that for less collective states RPA
calculations give a very different shape than the NM form
factor even if both L and J are the same. This difference is
because of the wave function of the state. The results of the
sample calculations are shown in Fig. 5.

By definition, the normal mode form factors overestimate
cross sections for noncollective states. These less collective
states are observed at a lower excitation energy than the
collective ones.

IV. STANDARD NM-MDA AND DWBA+RPA ANALYSIS
RESULTS IN THE CASE OF 58NI

A. Standard NM-MDA and indirect comparison with RPA
strength calculations

We present first the standard analysis for 58Ni to further
compare it with our new analysis including RPA.
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FIG. 5. 0+ angular distribution for a noncollective excitation
calculated for the 58Ni(t,3He)58Co reaction. The comparison between
NM and the noncollective RPA excitations is made to illustrate the
difference in their angular distributions.

After having calculated the angular distributions with the
NM wave functions, the NM-MDA analysis requires the
minimization of the function

χ2 =
∑

i

{[
σexp(θi) −

∑
L

αLσL
th (θi)

] /
�σexp(θi)

}2

,

where σL
th are the DWBA-calculated differential cross sections

with NM wave functions, with the constraint that the αL

coefficients that have to be determined are positive, and taking
into account the statistical experimental errors. Here, the
index I runs over the scattering angles and the minimization
procedure is made separately for the same excitation energy bin
at each of these angles. We stress here that the decomposition
over L rather than over J is constrained by the limited number
of experimental angle measurements and the necessity for
the fit to converge. This is usually justified because angular
distributions for different J have more or less the same
shape for a given L. This is in general rather true with a
macroscopic form factor but not always, and it introduces
another uncertainty.

We have made such an MDA analysis in the case of the 58Ni
target. The spectra were subdivided into 1-MeV-wide bins in
the region between 7 and 30 MeV excitation energy and the
angular distributions were fitted using combinations of two,
three, or four different L. The minimization bin per bin has
the advantage over Gaussian or Lorentzian decompositions
of not making any a priori hypothesis on the final shape
of the excitation energy distributions. The L = 1 and L = 2
contributions were summed over spin-flip and non-spin-flip
transitions for all final Jπ states, calculated or interpolated
at the correct excitation energy, to reduce the number of
contributions. In practice, it was impossible to ignore the
L = 2 contribution in the minimization procedure and the
largest uncertainty in the results concerns the non-spin-flip
L = 0 contribution because of the fact that its integrated
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FIG. 6. Typical angular distributions calculated for different
L transitions with normal mode wave functions for 58Co excited states.

calculated cross section is very small compared to the spin-flip
L = 0 one.

We present in Fig. 6 typical angular distributions for
different L transitions that illustrate in the case of normal mode
wave functions the selectivity of the (t,3He) reaction.

Figure 7 shows the results of the fits at each angle in the case
of 58Ni with four combinations where spin-flip and non-spin-
flip transitions were distinguished for L = 0, but where sums
were used for L = 1 and L = 2. In the 7- to 25-MeV excitation
energy region, the cross sections are rather well reproduced.
We have obtained large chi-square values at low excitation
energy because of a hydrogen impurity and large chi-square
values above Ex = 25 MeV because of experimental cuts for
angles 3 and 4. At other angles the chi-squares of the fits are
small. We recall here that up to Ex = 7 MeV only the GT
levels are essentially expected as previously measured in other
experiments and that we have not reanalyzed this region in
detail except the 1+ levels group around Ex = 1.8 MeV for
making the optical potential choice.

We want to stress here the fact that the globally good
convergence of the fit is not a proof that all the deduced αL are
physically meaningful.

In a second step, the resulting αL distributions are compared
with RPA-calculated strength distributions and the sum over
all excitation energy bins should provide the fraction of non-
energy-weighted sum rule (NEWSR). Therefore, the fraction
of NEWSR should have a value of 1 if the strength is
totally exhausted in the considered excitation energy range.
RPA calculations show that little strength is expected above
Ex = 30 MeV in 58Co.

Figure 8 shows the resulting (L = 0, S = 1) and L = 1
αL distributions compared to 1+ and 1− RPA strength dis-
tributions, respectively. The (L = 0, S = 1) strength is found
fragmented and the detailed comparison between MDA and
RPA is not easy. Because of its very small relative contribution
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FIG. 8. Comparison between the NM-MDA results (hatched
histograms) and the RPA strength calculations (curves) in 58Ni.
For L = 0 the thick curve represents the (L = 0, S = 1) transitions
above 7 MeV (GT transitions excluded). For L = 1, the thick curve
represents the 1−, including both IVGDR+IVSGDR contributions
(see text). The small black histogram shows the χ 2 of the MDA fits
that are large for excitation energies under 6 MeV and above 25 MeV.

in particular at larger angles, the (L = 0, S = 0) deduced
strength distribution was the most doubtful because its low
contribution in the fit induces an overestimation of its weight
in the fit and this has not been presented here. The L = 1
strength distribution seems to agree rather well with the 1−
RPA strength. This is all that can be extracted from the
present MDA analysis. The microscopic analysis presented
in the next section suggests that the MDA deduced peak at
Ex = 19 MeV in the L = 1 spectrum may correspond to a
0− state. Otherwise, RPA calculations show a 2− strength
maximum around Ex = 14 MeV and no L =1 strength above
Ex = 22 MeV (see Fig. 10).

Table III gives the sum between 7 and 30 MeV for L = 0 to
L = 2 contributions for 58Co with the two effective interaction
sets. If all the corresponding strength was found there, this
sum should be equal to unity. We note that because the L = 2
contribution by default takes into account every higher L, or
any possible other mechanism such as quasifree scattering
whose angular distribution should be essentially flat in the
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FIG. 9. Comparison between experiment (histogram with statis-
tical error bars) and RPA+DWBA cross-sections (curves) for the
58Ni(t,3He)58Co reaction at 0.5◦. The curves correspond to sums of
J π states calculated with set I effective interaction. The dotted curve
includes the 2−, 3−, and 4− final states omitted in the full curve.

studied angular range, it is then not surprising that the L = 2
sum exceeds unity.

Because of the uncertainty on its extraction linked to
the small calculated cross sections, we do not discuss the
(L = 0, S = 0) strength. But the conclusion at this stage of the
analysis is that we seem to observe an important quenching of
the strength for L = 1 (S = 0 + S = 1) and also a quenching
for (L = 0, S = 1) compared to the NM strength that is the
most collective.

Of course, the relative lower quenching with set II of the
effective interaction for (L = 0, S = 1) is directly linked to the
very small value of Vστ , which is somewhat in contradiction
with the fact that in the NN interaction we know that at this
energy per nucleon Vτ and Vστ should have comparable values.
There is missing strength in both cases. This preliminary
conclusion is in accordance with our previous remark that NM
wave functions overestimate the collectivity of certain states.

B. Global direct comparisons of DWBA+RPA and
experimental differential cross sections

A smoothing was made over all the states of equal Jπ ,
individually calculated with the DWBA98 code, by a convolution
with a Lorentzian of 1 MeV width to construct a theoretical
spectrum that could be more easily compared at each angle
with the experimental one.

The experimental and calculated spectra are compared for
the 58Co nucleus at 0.5◦ in Fig. 9.

TABLE III. Deduced sums for L = 0 to L = 2 strengths for the 58Co nucleus.

Effective Vτ Vστ VT τ Sum over [7–30 MeV]

interaction set (MeV) (MeV) (MeV) (L = 0, S = 1) L = 1 L = 2

I 5.00 −4.10 −6.00 0.362 0.209 1.202
II 5.00 −3.00 −6.50 0.565 0.240 1.170
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FIG. 10. Different RPA J π contributions to the cross section at
0.5◦ with set I effective interaction for the 58Ni(t,3He)58Co reaction.

We stress that the spectra are compared on an absolute
differential cross-section scale without any renormalization
factor. Of course, as we expect, we can see that the present
RPA calculations predict less spreading than is experimentally
observed and this is because of the neglect of escape and
spreading (coupling with 2p−2h) widths. At low excitation
energy, the discrepancy between the experimental and cal-
culated spectra is because of the neglect of pairing in RPA
calculations. Previous experiments have already revealed GT
strength over 4 MeV excitation energy. At higher excitation
energy this comparison shows that we do not need to
invoke extra sequential mechanisms or quasifree scattering
to reproduce the globally observed cross sections, but that we
have to add higher-order multipolarities in the framework of
the direct charge-exchange mechanism.

The spectra calculated for different Jπ are presented in
Fig. 10, grouped as a function of their alternating parities and
of their J values that mainly reflect the dominant L transitions
(L = 0, 1, 2, or 3). We can further stress from examining Fig. 9
that it is necessary to add L = 3 contributions (2−, 3−, 4−

states) to reproduce the experimental spectra better, but only
above Ex = 25 MeV.

C. Comparison of energy-integrated cross sections

Although standard NM-MDA results in an apparent
strong quenching of the strength, because NM calculations
overestimate the collectivity of the form factor with both
phenomenological effective interactions presently used, the
global comparison with the DWBA+RPA calculated spectra
indicates that the experimental energy-integrated cross section
seems to agree with the calculated one, as shown in Table IV.
In this table, we have directly compared for each angle
the integrated (summed over 1 MeV bins) experimental
and calculated DWBA+RPA cross sections over 7–30 MeV
(thus excluding the GT resonance region) for 58Co. The
calculated DWBA+RPA cross sections include all Jπ states
corresponding to spin-flip and non-spin-flip transitions for L =
0, 1, 2, and 3. This table also provides the ratio between the
experimental and calculated value. It shows that within ±20%
the integrated cross section is reproduced for 58Co without
invoking any mechanism other than direct charge-exchange.

D. Evidence for the monopole resonance

Because L = 0 angular distributions are peaked at very
forward angles, in contrast to L = 1 that have a minimum
there, and because any higher multipolarity or more complex
mechanism than direct charge-exchange should have flatter
angular distributions in the measured angular range, it is
interesting to compare the difference between spectra at angle 1
and angle 4 (see Fig. 6). This difference spectrum should
enhance L = 0 structures. Figure 11 shows the experimental
and calculated difference spectra, where in the calculated
spectra the two curves concern 0+ (full curve) and 1+ (dotted
curve) states only. We stress that they are expressed in absolute
values in mb/(sr MeV). We can conclude that the global
agreement for L = 0 is striking. Unfortunately, experimental
difference spectra cannot be extracted from excitation energies
above 25 MeV because of an experimental cut for the angle 4
spectrum.

The same subtraction can be done to try to locate the L = 1
concentrations. In this case, the better choice is to subtract the
angle 1 spectrum from that of angle 3 (see Fig. 6) and to look
at the positive part of this difference. This is shown in Fig. 12,
where the comparison is made with 1− calculation in the case
of the set I effective interaction. The agreement in position,
around 11.5 MeV, is rather good despite the fact that we are at

TABLE IV. Ratios of integrated cross sections at every measured angle for 58Ni target nucleus.

Integrated cross section Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 Angle 6

Experimental (mb/sr) 53. ± 1.4 52. ± 0.8 45. ± 0.6 44. ± 1.4 48. ± 1.4 43. ± 1.4
RPA set I (mb/sr) 43. 45. 47. 52. 49. 45.
Ratio 1.23 1.15 0.96 0.85 0.98 0.96
RPA set II (mb/sr) 51. 53. 55. 56. 52. 45.
Ratio 1.04 0.98 0.82 0.79 0.92 0.96
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a low incident energy, which is not the best suited for exciting
these states dominated by L = 1 transitions. The agreement
obtained with the set II effective interaction is comparable.

V. RESULTS OF THE DWBA+RPA ANALYSIS IN THE
CASE OF 48K NUCLEUS

For this nucleus, we present only the results from the new
DWBA+RPA analysis. Experimental and calculated spectra
are compared in Fig. 13. The filling of the 1f7/2 shell in the
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TABLE V. Ratios of integrated cross sections at every measured angle for the 48Ca target nucleus.

Integrated cross section Angle 1 Angle 2 Angle 3 Angle 4 Angle 5 Angle 6

Experimental (mb/sr) 20. ± 0.4 19. ± 0.3 18. ± 0.2 18. ± 0.3 18. ± 0.3 15. ± 0.3
RPA set I (mb/sr) 18. 19. 20. 19. 17. 15.
Ratio 1.11 1.00 0.9 0.95 1.06 1.00
RPA set II (mb/sr) 18. 18. 19. 19. 17. 16.
Ratio 1.11 1.06 0.95 0.95 1.06 0.94

48Ca target prevents the excitation of GT strength and higher
multipole excitations are at a lower excitation energy compared
to the case of 58Ni. Adding L = 4 strength would probably fill
the calculated spectra above 25 MeV. The different calculated
multipolarities are presented in Fig. 14 and we can observe
that L = 0 and L = 2 energy distributions are again largely
spread out over the excitation energy range.

Table V also shows that here again, within ±10%, the
integrated cross section between excitation energies between
0 and 25 MeV is reproduced for 48K without any mechanism
other than direct charge exchange.

The difference spectra shown in Fig. 15 compare less
favorably than in the 58Co case (see Fig. 11) in the low-
excitation region (some shift appears between 7 and 9 MeV
for the main structure) but experimental and calculated spectra
agree in the region around 20 MeV, where we would expect the
monopole resonance. We stress that in this excitation energy
region angular distributions calculated with NM or RPA form
factors are again very similar, pointing to the collective nature
of these structures.
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VI. CONCLUSIONS

We have presented a microscopic analysis of the (t,3He)
reaction measured on 48Ca and 58Ni targets. The calculated
spectra, including all final Jπ RPA states, reproduce the
measured cross sections globally very well at every angle.
The integrated cross sections between 0 and 30 MeV are
in very good agreement. In the case of L = 0 transitions
on a 58Ni target the main structures are comparable. If we
characterize a collective state by the fact that NM and RPA
give the same angular distribution shape, we can even deduce
from the present new analysis where the main collective and
noncollective structures are. In the case of the presently studied
medium-weight nuclei there is certainly not a single collec-
tive state, but a pronounced fragmentation of all multipole
strengths. The subtraction of spectra for appropriate angle
pairs helps in locating the energy distributions in the cases
of L = 0 and L = 1 transitions and the agreement between
theory and experiment is good. This method is, of course, not
adapted for higher L because their angular distributions are
flat in the region investigated in the present experiment. These
higher L contributions, particularly L = 3, are necessary to
reproduce the cross sections at a high excitation energy.

These conclusions should be confirmed on heavier nuclei
such as 90Zr and 208Pb, because RPA calculations are even
better suited to describing the nuclear structure of such
nuclei. An improvement of the mechanism description could
come from the use of a more realistic effective projectile-N
interaction, taking into account LS and eventually higher-
order terms, but also the convolution in the projectile of
the exchanged nucleon with the spectator nucleons. Such an
improvement would in particular need a detailed study of the
free p(t,3He)n reaction at our incident energy. In other words,
a double folding of the transition densities in the target and in
the projectile with the NN interaction has to be implemented.

Coming back to the long-standing question concerning the
monopole strength distribution, we can draw two conclusions
from the present analysis. First, in these two nuclei, the
strengths of different multipolarities are strongly overlapping.
Second, the L = 0 strength is fragmented into two main
regions. The most collective one, located in excitation energies
around 24 to 27 MeV, can be identified as the monopole
resonance and a less collective contribution located around
15 MeV in 58Co. The collective resonance is around 20 MeV
in 48K, whereas lower excitation energy contributions are
less distinguishable. In conclusion of this analysis, we can
understand the reason why it was so difficult to identify the
monopole strength in this mass region in previous experiments
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because it does not dominate the spectra except at 0◦. This
is true even in the case of the present (t,3He) at rather
low incident energy that nevertheless seemed to be better
suited than others for this purpose. The method that we have
employed here, using DWBA+RPA calculations and a direct
comparison between calculated and measured spectra, is much
more relevant for disentangling the different multipolarities in
such nuclei than previous fitting procedures.
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