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The relativistic microscopic optical potential (RMOP) is studied within the framework of the Dirac-Brueckner-
Hartree-Fock (DBHF) approach. A new decomposition of the Dirac structure of nuclear self-energy in the DBHF
is extended to asymmetric nuclear matter calculations. A nucleon effective interaction is introduced to reproduce
the results of the G matrix. The real part of nucleon self-energy in asymmetric nuclear matter is calculated
with the G matrix in the Hartree-Fock approach, while the imaginary part is obtained from the polarization
diagram. Nuclear optical potentials in finite nuclei are derived from the self-energies in asymmetric matter
through a local-density approximation. The differential cross sections and the analyzing powers in p + 40Ca and
p + 208Pb elastic scattering at Ep � 200 MeV are studied with these RMOPs. A satisfactory agreement with the
experimental data is found. This is achieved without readjusting phenomenologically the RMOP derived from
the DBHF plus polarization diagram.
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I. INTRODUCTION

The optical-model potential is an essential tool in nuclear
reaction studies. In the past 30 years there has been great inter-
est in the relativistic description of nuclear problems because
of the success in reproducing the spin-rotation functions of
proton elastic scattering [1] within the relativistic framework.
In the relativistic approach, the spin-orbit coupling is directly
related to the central (scalar and vector) potentials while in the
nonrelativistic approach it is usually adjusted independently.
Recently, the relativistic mean-field (RMF) approach has been
of great success in describing not only the ground-state
properties of stable nuclei, but also those of exotic nuclei.
There have also been various applications to investigating
nucleon-nucleus scattering. It is well known that the relativistic
impulse approximation works successfully in the medium- and
high-energy regions [2]. At low energies the medium effects
become important; therefore the relativistic optical potential
for nucleon-nucleus elastic scattering is usually adopted. By
fitting the experimental results, Arnold et al. [3] and Hama
et al. [4] obtained a reasonable global Dirac optical potential
with a set of phenomenological parameters for proton-nucleus
elastic scattering. It has given reasonable results for elastic
scattering off stable nuclei. However, the predictive power
of the phenomenological optical potentials is not guaranteed,
and therefore extending them to reactions without experi-
mental data, especially to those reactions involving unstable
nuclei, remains questionable. It is necessary to investigate
the optical potential microscopically in a more fundamental
theory. Studies of the relativistic microscopic optical potential
(RMOP) in the past few years were based on several models,
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such as the RMF [5,6], the relativistic Hartree-Fock (RHF)
[7], and the Dirac-Brueckner-Hartree-Fock (DBHF) [8–10]
approaches. The nucleon self-energies were calculated in
symmetric nuclear matter, and the isospin dependence was
usually neglected. A reasonable description of the differential
cross sections, analyzing powers and spin-rotation functions
of proton scattering off stable nuclei has been achieved in an
energy range of 50–500 MeV without readjusting parameters
[7,9,10].

With the development of experiments on newly constructed
radioactive beam facilities, new physical phenomena, such
as the neutron and proton halos, have been observed in the
past 20 years [11,12]. The density distributions of protons
and neutrons in halo and exotic nuclei are very different from
normal nuclei. Therefore the isospin dependence of the RMOP
becomes important. However, up to now the knowledge about
the isospin dependence of the RMOP from experiments is very
scarce. The purpose of this paper is to investigate the isospin
dependence of the RMOP within the framework of the DBHF
approach.

Recently, Schiller and Müther [13] and Ulrych and Müther
[14] proposed a new decomposition of the Dirac structure
of nucleon self-energies in the DBHF. The DBHF G matrix
is separated into a bare nucleon-nucleon (NN) interaction V
and a correlation term �G. A one-boson exchange potential
(OBEP) is usually employed for the bare NN interaction.
The coupling constants and meson masses in the OBEP are
determined by fitting the phase shifts of the NN scattering
and ground-state properties of the deuteron. A projection
method is applied to the correlation term �G, which is
parametrized by four pseudomesons. Therefore the effective
NN interaction G in symmetric and asymmetric nuclear matter
can be characterized in the RHF approach by the exchanges
of those four pseudomesons, in addition to the OBEP. Ma
and Liu [15] used this scheme to study the properties
of asymmetric nuclear matter and finite nuclei within the
RMF framework. Reasonable results were thus achieved.
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For scattering problems, the energy dependence of the RMOP
is important and it is necessary to work in the RHF approach.
This is the method we use in this work.

The optical potential of a nucleon in the nuclear medium is
identified with the nucleon self-energy [16]. The same scheme
was used to investigate the proton and neutron RMOP in
asymmetric nuclear matter [17]. One evaluates the real part
of the RMOP in the DBHF approximation by adopting the
decomposition of G = V + �G. In this work, we extend this
approach to investigate the imaginary part of the G matrix,
which is calculated as the G-matrix polarization diagram. To
avoid ambiguity at low densities and to simplify the calculation
of the imaginary part of the RMOP, we adopt an effective
phenomenological G matrix that contains four mesons with
density-dependent coupling constants. The parameters of the
effective interaction are constrained by the real part of the
G matrix of Schiller and Müther that reproduces in the RHF
approximation the nucleon self-energies of the G matrix in
symmetric and asymmetric nuclear matter. The imaginary part
of the effective G matrix is predicted from the polarization
diagram. The optical potential in finite nuclei is obtained by
means of the local-density approximation (LDA), in which
the space distribution of the RMOP is directly connected
with the density and asymmetry parameters of the nuclear
self-energies in the asymmetric nuclear matter. The proton-
nucleus scattering with the RMOP is studied, and the isospin
dependence of the RMOP is emphasized.

This paper is set up as follows. In Sec. II, we sketch the new
decomposition of the Dirac structure of the DBHF G matrix,
and we derive the RMOP in nuclear matter. The nucleon
effective interaction Geff is introduced in Sec. III. Then, the
RMOP in asymmetric nuclear matter is discussed. The RMOP
in finite nuclei and a systematic analysis of proton-nucleus
scattering with this RMOP are presented in Sec. IV. Finally, a
brief summary is given in Sec. V.

II. NUCLEON SELF-ENERGY IN ASYMMETRIC
NUCLEAR MATTER

Starting from a bare interaction V fitted to NN scattering
phase shifts and deuteron properties, we take the nucleon
in-medium short-range correlations into account in the DBHF
by summing up all ladder diagrams. We adopt the new
decomposition of the DBHF G matrix recently proposed by
Schiller and Müther [13]. In this approach, the G matrix can
be split into two parts:

G = V + �G. (1)

Usually, the bare NN interaction V in the DBHF is taken
as an OBEP, as in Bonn potentials that contain six mesons
with the following spin, parity, and isospin (Jπ , T ): two
scalar mesons, σ (0+,0) and δ(0+,1), two vector mesons,
ω(1−,0) and ρ(1−,1), and two pseudovector mesons, η(0−,0)
and π (0−,1). The correlation term �G is parametrized by
four pseudomesons (σ ′, δ′, ω′, ρ ′). These pseudomesons have
infinite masses but finite ratios of coupling constants to the
corresponding masses. The couplings have a weak density
dependence. Infinite masses depict zero-range interactions. In

this way, the ambiguities in the usual projection method can be
removed and a satisfactory description of asymmetric nuclear
matter and finite nuclei can be achieved [13,14]. Then the
nucleon self-energies can be calculated in the RHF with this
parametrized G matrix. In this work the bare NN interaction
V is taken as Bonn-B and the corresponding parameters for
the pseudomesons describing the correlation term �G can be
found in Ref. [13].

Because of the translational invariance of homogeneous
systems, the DBHF nucleon self-energies in asymmetric
nuclear matter have the general form

�t (k, kF , β) = �t
s(k, kF , β) − γ0�

t
0(k, kF , β)

+ fγ · k�t
v(k, kF , β), (2)

where t stands for proton or neutron and �t
s,�

t
0, and �t

v are the
scalar component, timelike, and spacelike parts of the vector
component of the self-energy, respectively. They are functions
of the nucleon momentum, density, and asymmetry parameter
β = (ρn − ρp)/ρ, where ρn, ρp, and ρ are neutron, proton,
and matter densities, respectively.

The nucleon self-energy in nuclear matter can be calculated
in RHF with the V and �G of Eq. (1). In asymmetric
nuclear matter, the Fermi momenta of protons and neutrons
are different. Therefore proton and neutrons have to be
distinguished. Here, we adopt simplified notation in which
the proton and neutron indices are omitted unless they are
necessary. The nucleon self-energy is expressed as

�(k, kF , β) =
∑

α

∫
d4q

(2π )4

{
�a

α�ab
α (0)Tr

[
i�b

αG(q)
]

− i�a
α�ab

α (q)�b
αG(k − q)

}
, (3)

where the first and second terms correspond to direct (Hartree)
and exchange (Fock) terms, respectively. The index α refers to
mesons, a and b are isospin components,G is the single-particle
Green’s function, and �ab

α are meson propagators. The vertices
�a

α correspond to ig for scalar mesons, −gγ µ for vector
mesons, and − f

m
γ 5γ µqµ for pseudovector mesons. They are

multiplied by the isospin operator τa for isovector mesons.
The nucleon propagator G can be divided into two parts, the
Feynman part GF and the density-dependent part GD . The GF

part produces a divergent vacuum tadpole contribution to the
nucleon self-energy. It is neglected in DBHF calculations. The
density-dependent part GD is expressed as

GD(k) = Tt [γ
µk∗

µ + M∗(k)]
iπ

E∗ δ(k0 − ε)θ (kF − |k|), (4)

where

M∗(k) = M + �s(k),

E∗(k) =
√

k∗2 + M∗2(k), (5)

k∗
µ(k) = {k0 + �0(k), k[1 + �v(k)]},

and Tt is the isospin operator:

Tt = 1
2 (1 ± τ3), (6)

where the plus (minus) sign corresponds to protons (neutrons).
Let us first work out the isospin part of the self-energies.

In the direct terms, the contributions of isoscalar and isovector
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mesons are, respectively,

I Tr(TiI ) = I,
(7)

τa Tr(Tiτb)δab = ±τ3.

In the exchange terms the corresponding contributions are

ITiI = 1
2 (1 ± τ3),

(8)
τaTiτbδab = 1

2 (3 ∓ τ3).

In Eqs. (7) and (8), the upper (lower) sign corresponds to
protons (neutrons).

The momentum of a nucleon of energy ε = E + M in the
nuclear medium can be calculated by iteration:

ε = [ε∗ − �0(k)]k0=ε

=
√

k2[1 + �v(k)]2 + [M + �s(k)] − �0(k). (9)

Therefore the momentum dependence of the nucleon self-
energy at a given density is related to the energy dependence
of the RMOP.

It has been shown [17] that the direct term in Eq. (3)
is a dominant part of the nucleon self-energy. This part is
momentum independent and therefore energy independent.
The energy and momentum dependences come only from the
exchange part. Furthermore, the contribution of the correlation
term �G to the nucleon self-energies characterized by pseu-
domeson exchanges is also energy independent because of the
zero-range nature of these pseudomesons.

The imaginary part of the optical potential is obtained
by the G-matrix polarization diagram, which is shown in
Fig. 1. The exchange contribution is ignored here; it is
discussed in more detail in Ref. [18]. The contribution of the
G-matrix polarization diagram to the nucleon self-energy can
be calculated as follows:

�pol(k) =
∑
αβ

∫
d4q

(2π )4

((
�a

α�ab
α (q)

∫
d4p

(2π )4

× Tr
{
�b

α[iG(p)]�c
β[iG(p + q)]

}
× �cd

β (q)[iG(k − q)]�d
β

))
. (10)

By Wick rotation, the imaginary part W of �pol can be derived
and its Lorentz components can be projected by taking traces

FIG. 1. The G-matrix polarization diagram.

as follows:

Ws(k) = 1

4
Tr W (k),

W0(k) = 1

4
Tr γ 0W (k), (11)

Wv(k) = 1

4k2
Tr �k · �γW (k).

The isospin part in the polarization diagram is more com-
plicated. There are two particles (i, j ) and one hole (k) in
the intermediate states and exchanging two effective mesons.
One can distinguish three cases: (a) exchanging two isoscalar
mesons, (b) one isoscalar and one isovector meson, (c) two
isovector mesons. Their contributions to the isospin part are
as follows, respectively:

ITiI Tr(TkITj I ) = Ti, (12a)

τaTiI Tr(TkτaTj I )

=
{

Ti, i, and j have same isospins
−Ti, i and j have opposite isospins , (12b)

τaTiτb Tr(TkτaTj τb)

=
{

1
2 (3 ∓ τ3), j and k have same isospins

2, j and k have opposite isospins
. (12c)

III. NUCLEON EFFECTIVE INTERACTION

In principle the imaginary part of Eq. (10) could be
calculated with the G matrix. It was found earlier that the
pion exchange in the bare NN interaction V makes a large
contribution to the imaginary part of the polarization diagram
[7]. The reason for this unphysically large contribution may be
due to high-order correlations in the pion exchange. We also
find that this large contribution to the imaginary part of the
polarization diagram cannot be eliminated by the correlation
term �G. To avoid this problem we introduce an effective
nucleon interaction Geff that reproduces the real part of nucleon
self-energies and properties of the symmetric and asymmetric
nuclear matter as given by G = V + �G.

The effective nucleon interaction consists of four scalar and
vector pseudomesons with isoscalar and isovector characters,
corresponding to σ, ω, δ, and ρ mesons. The masses of these
effective mesons are fixed and the coupling constants are
adjusted in the RHF to reproduce the DBHF results in the
scheme of G = V + �G, namely, the neutron and proton
self-energies as well as the binding energy at each density
in the symmetric and asymmetric nuclear matter. To extend
to low densities, an extrapolation is employed. The coupling
constants are density dependent and are given by the following
expressions [19,20]:

gi(ρ) = gi(ρ0)fi(x),
(13)

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
.

where x = ρ/ρ0, and i = (σ, ω, δ, ρ), ρ and ρ0 are the
matter density and the saturation density of nuclear matter,
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TABLE I. Parameters of the nucleon effective interaction Geff.

Parameter σ ω δ ρ

Mass (MeV) 550 782.6 938 769
gi(ρ0) 5.851 7.329 0.860 0.514
ai 1.8059 1.8197 0.9273 11.473
bi 0.1046 0.1019 0.4620 −0.2394
ci 0.4123 0.4128 0.4084 0.5415
di 0.8992 0.8985 0.9035 0.7846

respectively, and ai, bi, ci, di are parameters determined
by the fitting procedure with the following constraining
conditions:

fi(1) = 1,
d2fi(x)

dx2

∣∣∣∣
x=0

= 0. (14)

These constraints ensure that the coupling constants at the sat-
uration density are unchanged and have reasonable behaviors
near zero density. The parameters are listed in Table I, and
the density dependence of the coupling constants is plotted in
Fig. 2. Curves are depicted by Eqs. (13), and symbols represent
the fits of DBHF results. The energies per nucleon at various
values of the asymmetry parameter are shown in Fig. 3, in
which the curves are calculated in RHF with Geff and symbols
are obtained in the DBHF.

With this nucleon effective interaction we calculate the
nucleon self-energies at E > 0:

�t = Ũ t + iW t , (15)

where Ũ t and Wt are calculated in Eqs. (3) and (10),
respectively.

The optical potential of a nucleon in the nuclear medium is
its self-energy [16]. For finite nuclei it is obtained by means

FIG. 2. The density dependence of the coupling constants in Geff.
The curves correspond to Eqs. (13), and the symbols show the values
needed to reproduce the DBHF results with G = V + �G.

FIG. 3. Energy per nucleon as a function of the nucleon density
in symmetric and asymmetric nuclear matter. Curves are RHF results
with Geff; symbols represent DBHF results corresponding to G =
V + �G.

of the LDA, in which the space dependence of the RMOP is
directly connected with the density and asymmetry parameter
in asymmetric nuclear matter:

�LDA(r, E) = �NM[k, ρ(r), β], (16)

where �LDA is the optical potential for a finite nucleus with
incident nucleon energy E, and �NM is the optical potential in
nuclear matter at density ρ and asymmetry parameter β.

The Dirac equation of a nucleon with incident energy E in
the nuclear medium has the form[�α · �p + γ0

(
M + Ut

s

) + Ut
0

]
ψt (�r) = εψt (�r), (17)

where

Ut
s = �t

s − �t
vM

1 + �t
v

, U t
0 = −�t

0 + E�t
v

1 + �t
v

, (18)

with ε = E + M, and Ut
s and Ut

0 are the scalar and vector
potential, respectively.

The scalar and vector potentials in asymmetric nuclear
matter at kF = 1.36 fm−1 are calculated with the nucleon
effective interaction. The real and imaginary parts of the scalar
potential Us and vector potential U0 of protons and neutrons as
functions of the asymmetry parameter β are shown in Figs. 4
and 5. For symmetric nuclear matter, it is found that Re Us

is about −330 MeV at the Fermi surface and −280 MeV
at E = 400 MeV. The scalar mass M∗/M = 1 + Re Us/M

varies from 0.65 at the Fermi surface to 0.70 at E = 400 MeV.
The vector potential Re U0 decreases from 260 to 200 MeV.
These results are consistent with those obtained in Ref. [8].
It can be seen in Fig. 4 that, at low energies, the real parts of
both scalar and vector potentials for protons become weaker
as β increases. Interestingly, their energy dependence in
asymmetric nuclear matter becomes weaker than in symmetric
nuclear matter. Therefore, at a certain energy, the strengths of
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(a) (b)

(d)(c)

FIG. 4. Real parts of scalar and vector potentials at kF =
1.36 fm−1 for various values of β: (a) proton scalar potential Re Up

s ;
(b) neutron scalar potential Re Un

s ; (c) and (d) are the corresponding
quantities for the vector potential.

(a)

(c)

(b)

(d)

FIG. 5. Same as Fig. 4, but for imaginary parts of the scalar and
vector potentials.

(a)

(c) (d)

(b)

FIG. 6. The depths of the real part of Schrödinger equivalent
potentials as functions of incident energy: (a) protons, at fixed kF and
various β; (b) same as (a), but for neutrons; (c) protons, at fixed β

and various kF ; (d) same as (c), but for neutrons.

Re U
p
s and Re U

p

0 become stronger than those in symmetric
nuclear matter. The situation for neutrons is the opposite. In
asymmetric matter the magnitudes of the scalar and vector
potentials for neutrons at low energies are larger than in
symmetric matter, and their energy dependence becomes
stronger as β increases. There are crossing points, as one can
see in Fig. 4.

On the other hand, imaginary parts of both scalar and
vector potentials become stronger as the energy increases,
although their strengths are somewhat smaller than those
of the real parts at low energies, as shown in Fig. 6. The
energy dependence of neutron potentials becomes stronger in
neutron-rich matter, while that of proton potentials becomes
weaker. These properties are consistent with the findings of
phenomenological potentials.

When the lower component of the Dirac spinor in Eq. (17)
is eliminated, a Schrödinger-type equation is obtained for the
upper component:

[
− ∇2

2E
+ V t

eff(r) + V t
s.o.(r)⇀σ · ⇀

L + V t
Darwin(r)

]
ϕ(r)

= ε2 − M2

2E
ϕ(r), (19)
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FIG. 7. The shapes of Schrödinger equiv-
alent potentials in p + 40Ca at 20 MeV (solid
curves), 65 MeV (dashed curves), and 200 MeV
(dotted curves).

where V t
eff, V

t
s.o. and V t

Darwin are the central, spin-orbit, and
Darwin potentials, respectively:

V t
eff = M

E
Ut

s + Ut
0 + 1

2E

[
Ut2

s − (
Ut

0 − Vc

)2]
,

V t
s.o. = − 1

2ErDt (r)

dDt (r)

dr
, (20)

V t
Darwin = 3

8EDt (r)

[
dDt (r)

dr

]2

− 1

2ErDt

dDt

dr
− 1

4EDt (r)

d2Dt (r)

d2r
,

where Dt (r) = M + ε + Ut
s (r) − Ut

0(r) − Vc(r) and Vc is the
Coulomb potential (only for protons).

One can see from Eqs. (20) that the central potential Veff is
obtained by a large cancellation between the scalar and vector
potential, which is roughly equal to Us + U0 at low energy and
1
2Us + U0 at energies around 1 GeV. Therefore its sign changes
from negative to positive with the increase of incident energies.
The energy dependence of the Schrödinger equivalent central
potentials Re V

p

eff and Re V n
eff at kF = 1.36 fm−1 for various

values of β are shown in Figs. 6(a) and 6(b), respectively. They
are attractive at low energies and become repulsive around
100–300 MeV, depending on β. The strength of the proton
central potential Re V

p

eff and its energy dependence become
stronger as β increases at low energies, whereas the situation
for the neutron potential Re V n

eff is opposite.
The density dependence of proton and neutron central

potentials, Re V
p

eff and Re V n
eff in asymmetric nuclear matter

with β = 0.3 is shown in Figs. 6(c) and 6(d), respectively.
In general, the neutron potential is weaker than that of the
proton. The central potentials at densities smaller than normal
density ρ0 become more attractive around 100–300 MeV,
where a “wine-bottle bottom” potential for finite nuclei will
appear [7].

IV. ELASTIC PROTON-NUCLEUS SCATTERING

To analyze the proton-nucleus scattering reactions, the
density distributions of finite nuclei should be first determined.

In this work, the density distribution of finite nuclei are
calculated in the RMF theory with the parameter set NL3 [21]
because it well describes finite nuclei properties.

We investigate elastic proton scattering off spherical nuclei,
such as p + 40Ca and p + 208Pb. The shapes of Schrödinger
equivalent potentials at various incident energies are shown
in Fig. 7. The depth of the real part of the central potential
decreases as the energy increases. At intermediate energies
around Ep � 150 MeV, an attractive pocket at the nuclear
surface is found. The so-called wine-bottle bottom shape
appears, which comes from the delicate balance between Us

and U0. Unlike the strength of the real part, the strength of
the imaginary part of the central potential increases as the
energy increases. The surface-peaked shape at low energies
becomes more of a volume type at higher energies. The
important feature of the RMOP is that the spin-orbit potential
arises naturally from the coherent sum of the contributions

TABLE II. σ (θ ) and Ay(θ ) databases for proton elastic scattering.

Target Ref. Energy (MeV) Ref. Energy (MeV)

40Ca [22] 14.5,18.6,19.6,21 [30] 65
[23] 16 [31] 75,152
[24] 21,48,49 [32] 80.2,160,181

[25,26] 26.3,30.3 [33] 135.1
[27] 35.5,45.5 [34] 156
[28] 40 [35] 200,201
[29] 61.4

208Pb [36] 11,12,13 [29] 62.4
[23] 16 [30] 65
[37] 21,24.1,35,45, [33] 79.9,100.4,

47.3,155,185 121.2,182.4
[25] 26.3 [32] 79.9,98,185

[26,38] 30.3 [34] 156
[28] 40 [40] 160
[39] 49.4 [41] 201
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FIG. 8. Elastic scattering differential cross sections and analyzing powers in p + 40Ca at Ep < 200 MeV. Note that the differential cross
sections are offset by powers of 10 and the analyzing powers are shifted by increments of 2 (for Ep < 80 MeV) and 3 (for Ep > 80 MeV).

from the scalar and vector potentials. The real part of the
spin-orbit potential is attractive, with its strength decreasing
as the energy increases, whereas its imaginary part is mostly
positive and increasing with the energy. These features of the
microscopic optical potentials are very similar to what is found

in the phenomenological optical potentials. We calculate the
differential cross sections, analyzing powers and spin-rotation
functions of p + 40Ca and p + 208Pb at various values of
Ep < 200 MeV and compare with the experimental data. The
references of the experimental data are listed in Table II.
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FIG. 9. Elastic scattering differential cross sections and analyzing powers in p + 208Pb at Ep < 200 MeV. Note that the differential cross
sections are offset by powers of 10 (for Ep < 100 MeV) and 100 (for Ep > 100 MeV), while the analyzing powers are shifted by increments
of 2 (for Ep < 50 MeV) and 3 (for Ep > 50 MeV), respectively.

In Figs. 8 and 9, we show the comparison of the theoretical
results (solid curves) with the experimental data of σ (θ )
and Ay(θ ) for p + 40Ca and p + 208Pb, respectively. The
spin-rotation functions are plotted in Fig. 10. It is found that
the calculated cross sections as well as spin observables are
in rather good agreement with the experimental data at low
energies. As the energy increases, the theoretical differential
cross sections are overestimated at large angles in comparison
with the experimental data, but they keep the same diffraction

patterns. It seems that the Schrödinger equivalent potentials
obtained in our calculations are a little too strong. It should
be stressed that the RMOP is calculated microscopically
with the nucleon effective interaction without readjusting
parameters to fit the scattering data. The nucleon effective
interaction is directly extracted from the DBHF G matrix.
Since our calculations are parameter free in the scattering
analysis, the quality of agreement with the experimental data is
remarkable.
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FIG. 10. The spin-rotation functions in p + 40Ca and p + 208Pb at Ep = 65 MeV and Ep = 200 MeV.

In the phenomenological optical potential, the Lane poten-
tial was introduced to depict the difference between proton and
neutron optical potentials [42]. The optical potential is divided
into isoscalar and isovector components:

V = V0 + t · T
A

V1, (21)

where A is the nuclear mass, and t and T are isospin operators
of the incident particle and target, respectively. The Lane
potential V1 is usually parametrized with a Woods-Saxon
shape. We calculate the RMOP of protons and neutrons in 208Pb
at E = 65 MeV and extract the corresponding Lane potential
shown in Fig. 11. The phenomenological Lane potential
is taken as V1 = 50 MeV, with Woods-Saxon parameters
r0 = 1.17 fm and a = 0.75 fm. It is shown for comparison in
Fig. 11. The agreement indicates that the RMOP obtained from
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FIG. 11. The Lane potential of p + 208Pb at 65 MeV. The solid
curve is calculated in the RMOP, and the dashed curve is a
phenomenological one.

the G matrix can reasonably describe the isospin dependence
of the optical potential.

V. SUMMARY

In this work, we investigated the relativistic microscopic
optical potential and its isospin dependence in asymmetric
nuclear matter within the framework of the DBHF approach.
The new decomposition of the Dirac structure of the G matrix,
G = V + �G, is adopted, where V is the Bonn-B potential
and �G is characterized by four pseudomesons with infinite
masses and finite ratios of the coupling constants to the
masses. The nucleon self-energy is calculated with this
G matrix in the RHF approach. The imaginary part of the
nucleon self-energy with E > 0 is obtained by the G-matrix
polarization diagram. The self-energy of unbound nucleon
in nuclear matter is investigated. To simplify the calculation
and avoid the contribution of higher-order correlations from
the pion exchange in the imaginary part of the nucleon
self-energy we introduce a nucleon effective interaction. The
nucleon effective interaction could reproduce the nucleon
self-energy as well as nuclear matter properties. The optical
potential of a nucleon in the nuclear medium is identified
with the nucleon self-energy. The energy and asymmetric
parameter dependences of the relativistic optical potentials for
proton and neutron are discussed. The resulting Schrödinger
equivalent potentials have reasonable behaviors of the energy
dependence. The asymmetric parameter dependence of the
RMOP and Schrödinger equivalent potentials is emphasized.

The nucleon-nucleus optical potentials in finite nuclei are
related to the self-energy in nuclear matter by means of
the LDA, in which the target density is determined by the

014614-9



JIAN RONG, ZHONG-YU MA, AND NGUYEN VAN GIAI PHYSICAL REVIEW C 73, 014614 (2006)

RMF with the parameters NL3. With the optical potentials
determined, we calculated differential cross sections and spin
observables of p + 40Ca and p + 208Pb at Ep < 200 MeV.
The agreement with the experimental data is reasonable. It
should be emphasized that the RMOP obtained from the DBHF
G matrix without free parameters could well describe proton
elastic scattering. It is quite encouraging that the microscopic
method could well describe the proton scattering from various
target nuclei in a quite large energy region, E < 200 MeV.
The further application of this RMOP to exotic nuclei is in
progress.
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