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Entropy and caloric curve for mononuclei considering both surface diffuseness and
self-similar expansion degrees of freedom
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The caloric curve for mononuclear configurations is studied with a model that allows for both increased
surface diffusness and self-similar expansion. The evolution of the effective mass with density and excitation is
included in a schematic fashion. The entropies, extracted in a local-density approximation, confirm that nuclei
posess a soft mode that is predominately a surface expansion. We also find that the mononuclear caloric curve
(temperature versus excitation energy) exhibits a plateau. Thus a plateau should be the expectation with or
without a multifragmentationlike phase transition. This conclusion is relevant only for reactions that populate the
mononuclear region of phase space.

DOI: 10.1103/PhysRevC.73.014609 PACS number(s): 25.70.Gh, 25.70.Pq

I. INTRODUCTION

In recent work it was shown that the mononuclear caloric
curve (temperature T versus excitation energy per particle ε)
exhibits a pseudo plateau that is due to the combined influence
of expansion and in-medium effects [1,2]. This recalibration
of the caloric-curve expectation, from the standard Fermi gas
dependence (T ∝ √

U , where U is the noncollective thermal
energy) to one more reminiscent of a system undergoing a
first-order phase transition, is a direct consequence of the
finiteness of real nuclei. This paper presents details not in
our letter [2] and removes one of the significant shortcomings
of our previous work by considering expansion outside the
self-similar family of shapes. Specifically, we now consider
both a surface-expansion degree of freedom (b) as well as an
overall self-similar expansion degree of freedom (c).

Two-dimensional entropy maps S(b, c) are calculated as
functions of excitation energy including the effects of both the
momentum- and frequency-dependent effective-mass terms
(mk and mω, respectively). There are two principal results.
First, a ridge in the entropy maps indicates that excited nuclei
have a soft expansion mode that is predominately a surface
expansion. This mode would take large surface volumes of a
nucleus into density regions where infinite matter is unstable
with respect to clusterization. Our second finding is that the
mononuclear caloric curve (constructed from the auxiliary
statistical temperature) exhibits a dependence even flatter than
we found with one expansion degree of freedom. Therefore
one should expect the mononuclear caloric curve to exhibit
not simply a pseudo plateau but a real one. This plateau is
established at rather modest excitation energies (by 2 MeV per
particle) well before where one usually considers the liquid-gas
phase transition to occur. The mostly surface expansion,
causing the flattening of the caloric curve, can be thought of a
precursor to a liquid-gas phase transition. This interpretation
is consistent with mesoscopic molecular transitions.

This work then presents a new benchmark for the mononu-
clear expectations in the region of excitation per particle below
5 MeV. It must be stressed that the physical relevance of the
results presented in this work depends on the intial population

of the mononuclear region of phase space. In particular this
implies an absence of collective initial conditions.

II. MODEL DESCRIPTION

A. Overview

The object of this work is to present a model for the
evolution of the entropy of a mononucleus with excitation
energy that takes into account, in a plausible fashion, the
effects of both expansion and the inevitable loss of collectivity.
We are also motivated by a desire to avoid canonical thermal
treatments that explicitly invoke a finite volume and a gas
phase [3–5]. As our approach does not put nuclei in a box,
absolute equilibrium (or absolute thermodynamic consistency)
cannot be achieved. This complementary approach forces one
to imagine nuclei as metastable objects for which there is some
time scale of physical relevance. This time window decreases
with excitation energy. Consider the nucleus studied in this
work: 197Au. It is unstable with respect to both fission and
α-particle decay at any excitation energy. In kinetic-decay
treatments of fission (into any asymmetry [6]), one needs both
the entropy within the mononuclear region of phase space
and the entropy of the critical configuration leading to fission.
This work provides a simple scheme for calculating the former
that includes what we believe are the most important physical
inputs for the highest energies for which the compound nucleus
is a plausible concept.

In this work, the temperature is not a thermodynamic
control variable but an auxiliary parameter dictated by the rate
of change of the many-body density of states. Specifically, it is
the inverse of the rate of change of the maximum entropy [in
our (b, c) space] sM ≡ max[s(b, c)], with excitation energy ε

that defines the temperature

T = 1

/(
∂sM

∂ε

)
. (1)

It is the change of these statistical temperatures with excitation
energy that defines our mononuclear caloric curve T (ε).
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As the values of sM are the maximum values for mononuclei,
we can fulfill our objective of providing a recalibration for the
expectation for the mononuclear caloric curve. (One can view
the subscript on the entropy as indicating both “maximal” and
“mononuclear.”)

To return to a point made above, the equilibrium mononu-
clear condition (b, c), while locally stable, is unstable with
respect to α-particle emission and fission at all excitation
energies and multifragmentation at high energies. The kinetics
of exploring this nonmononuclear portion of phase space (i.e.,
of fragment, formation) is not dealt with here. Clearly the
above-mentioned time window of physical relevance for the
mononuclear extremum is dependent on kinetics that in turn
must exhibit substantial sensitivity to the initial conditions,
over which experiments have some (albeit limited) control.
For example, it is likely that in heavy-ion experiments, the
many-body phase space never looks like a single (equilibrated)
mononucleus, while in light-ion experiments, a mononucleus
“initial condition” is plausible. The kinetics is also complicated
by the age-old problem of fragment (pre)formation in the
low-density surface region [7]. This preformation issue is
related to, but more complicated than, the cluster contribution
to the free energy of infinite uniform matter [8,9]. Cluster
formation in nuclei is analogous to the finite-time clusters of
water molecules in macroscopic liquid and small drops [10].
The “reality” of these clusters depends on the time scale of the
experimental probe.

B. Family of shapes

The density profiles ρτ (r) of the two isospin partners (τ =
n, p) are taken to be of the same functional form, scaled in
proportion to their overall fraction. The native (ε = 0 MeV)
radial profiles are of the “standard” type with a Gaussian
derivative:

ρn(r, b) = ρo

2

{
1 − erf

[
r − Co(b)√

2b

]}
. (2)

The central radius Co is defined in terms of the effective sharp
radius Ro = roA

1/3 (with ro = 1.16 fm) and the ground-state
surface width b = 1.0 fm by use of expansion derived by
Süssmann [11] and Hasse and Myers [12]. [Corrections up to
(b/Ro)4 were included to ensure volume conservation to high
accuracy.] The expansion of nuclei with excitation is limited
to the (b, c) spherically symmetric family

ρ(r, b, c) = c3ρn(cr, b). (3)

For any given excitation energy, one finds the expansion
parameters b and c by maximizing the entropy in the (b, c)
space after deducing, the thermal energy U by subtracting
the collective energy (needed for expansion) from the total
excitation energy:

U/A = u = ε − εE. (4)

Execution of this logic not only finds the metastable
mononuclear expansion, but also ensures that the surface
pressure is zero. This procedure is therefore logically different
from the physically unreal but true equilibrium condition that

FIG. 1. (Color online) Binding energy per particle for infinite
matter from [14] as a function of reduced density for asymmetries
δ = 0.0, 0.2, 0.4, and 0.6 (bottom to top).

one finds by placing a drop in a box and having a surrounding
vapor supply a pressure. In the present work, rather than two
distinct phases there is a single nonuniform Fermi drop. The
problematic identification of phases is skirted.

C. Expansion energy

The collective energy involved in expansion is taken from
a simple energy-density formalism modeled after Lombard’s
original work [13] but making use of a the equation of
state (EOS) offered by the Thomas-Fermi (TF) model of
Myers and Świątecki [14]. The energy per particle of cold
uniform matter eb(ρ, δ) is reproduced in Fig. 1 as a func-
tion of reduced density (ρ̄ ≡ ρ/ρo) for several asymmetries
{δ ≡ [(ρN − ρZ)/(ρN + ρZ)]}. The equilibrium density and
compressibility of symmetric nuclear matter for this EOS are
ρo = 0.16144 fm−3 and Ko = 234 MeV, respectively.

The binding energy (− εED) of a drop in the minimalist
energy-density formalism used here is the sum of three terms,
corresponding to (i) the binding energy of the drop, neglecting
gradient corrections, what we call a “matter drop,” (ii) the
gradient correction term, originally introduced by van der
Waals, and (iii) the Coulomb integral dealing with the fact
that nuclei are one-component plasmas:

εED(b, c)A = εmd(b, c) + εgr(b, c) + εcoul(b, c). (5)

The terms in Eq. (5) are

εmd(b, c) =
∫ ∞

0
eb(ρ, δ)ρ(b, c, r)dr, (6)

εgr(b, c) = h̄2bgt

8m

∫ ∞

0
|∇ρ(b, c, r)|2dr, (7)

εcoul(b, c) = −
∫ ∞

0

(
4

3
πr3ρz

)
1

r
(4πr2ρzdr). (8)

The only adjustable parameter is the coefficient of the gradient
term bgt . The analytic Coulomb integral, assuming ρZ =
ρ(Z/A) (plus the small exchange correction) were taken from
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FIG. 2. (Color online) Binding energy per particle for the energy-
density formalism used in this work [εED(1, 1), solid curve]. Also
shown are the DROPLET model binding energy per particle (dashed
curve) and the percentage of difference between the DROPLET model
and εED (dotted curve) binding energies. The latter are referenced to
the right-hand-side axis.

[12]. With a value of bgt = 14.00, this simple energy-density
formalism reproduces the binding energy of the DROPLET
model [15] to within 1% (∼80 keV per particle) from 10 <

A < 240 or 0.4% if the region is limited to 50 < A < 240; see
Fig. 2. Another way to view this comparison is that this simple
energy functional prescription reproduces the DROPLET
model binding energies to within 1% for the leptodermous
expansion parameter between (1/7) > (b/Ro) > (1/2.5). In
the subsequent figures, we present our results out to about
(b/Ro) ∼ (1/2). It is the growth of the surface with excitation
that limits this work to excitation energies of less than 5 MeV
per particle.

Our object in introducing the simple energy-density formal-
ism is to estimate the collective energy required for expanding
to any member of the (b, c) shape family. The expansion energy
[from one point in (b, c) space to another] is just the difference
in binding energies. These values εE (per nucleon), taking the
reference at (1,1) {εE = −[εED(b, c) − εED(1, 1)]}, are shown
in Fig. 3 as functions of the self-similar expansion degree
of freedom c for 197Au. εE(b = 1, c) has the characteristic

FIG. 3. (Color online) Expansion energy (per particle) as a
function of the self-similar expansion degree of freedom c for the
energy-density formalism used in this work (solid curve), the scaling
model of Myers and Świątecki [17] (dashed curve) and the form used
in EES [16] (dotted curve).

FIG. 4. (Color online) The expansion energy εE used in this work
as a function of the both increased surface diffuseness (b) and self-
similar expansion degree of freedom (c). The contours are at 1-MeV
increments, starting from 0, intersecting (b, c) = (0,0), and increasing
from that point to the upper-left-hand corner.

inverted bell shape modeled by the simple functional form
used in Friedman’s EES code [16] [εF

E = εF
c (1 − ρ̄)2, with the

constant εF
c ∼ 8 MeV] and is in close quantitative agreement

(throughout the full range of c) with the ground-state binding-
energy scaling logic of Myers and Świątecki [17] (after
correction for the Coulomb energy).

Figure 4 displays εE(b, c) (again for A = 197) in the
physically relevant (b, c) region. Here one notes the relative
softness (in terms of expansion energy) of increasing the
surface diffuseness compared with the self-similar expansion.
The latter requires reduction of the central density. This relative
softness is well known and can be found in the Hartree-Fock
results [18], also see citations in [19].

The lack of higher-order terms common in state-of-the-
art energy-density models, used for example in Skyrme
functionals [20,21], is not as important for the nonstructural,
high-energy considerations of this work in which gradients
will be reduced with excitation. On the other hand, both the
low density and the functional form for the density profile
are important issues for two different reasons. The former is
physical and based on the knowledge that below ρ̄ ∼ 1/2 to
1/3, uniform matter is unstable with respect to clusterization
[8,9]. This difficult, and perhaps intractable, physical issue
we must remain cognizant of. The second issue relates to the
numerical accuracy of our approach for calculating the entropy.
This second issue is discussed at the end of the next section.

The question of the temperature dependence of the co-
efficient of the gradient term (bgt) has been the focus of
considerable discussion in molecular physics for a hundred
years. Molecular studies indicate that any T dependence is
very weak. From one point of view this is not surprising as
with increasing T the relative importance of this term decreases
as the surface invariably becomes more diffuse—smaller |∇ρ̄|.
(This term reduces the binding energy by only ∼10% for
the heavy nucleus considered here at T = 0. The relative
contribution must decrease as the surface becomes more
diffuse.) However, the lack of a strong T dependence in
molecular work has been justified by the following a heuristic
argument [22,23]. For a planar system the dependence of bgt
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on the surface tension γ , isothermal compressibility κT , and
miscibility gap �ρ is formally

bgt ∝ γ 2κT

(�ρ)4

T →Tc=
[(

1 − T
Tc

)1.29]2[(
1 − T

Tc

)−1.25]
[(

1 − T
Tc

)0.34]4 ,

(9)

∼
(

1 − T

Tc

)0.03

.

The second equality gives the scaling dependence of each term,
as the critical temperature Tc is approached, for classical fluids.
Collecting the critical exponents, one finds that (at least for
classical fluids) the temperature dependence of bgt is expected
to be exceedingly slight. The need for curvature corrections
has also been investigated in the case of classical fluids [24]
and found (with a suitable choice of the “surface of tension”)
to be negligable. In light of the above, the fact that no clear
argument exists for whether bgt should increase or decrease
with T (recall that decreasing bgt would make gradients less
costly), and the decreasing relative importance of the term with
increasing T, we have taken bgt as independent of T.

D. Entropy

The dominant term in the expression for the entropy of
a quantum drop of degenerate Fermi liquid can be written
as [25]

S = 2
√

aU = 2
√

aA(ε − εE), (10)

where a is the level-density parameter and the total and
expansion energies per nucleon are ε and εE, respectively.

In the local-density approximation (LDA), the level density
depends on the nuclear profile, the local Fermi momentum
kFτ , and the effective mass mτ (for each isospin partner τ )
[26,27]:

a = π2

4

∑
τ

∫
ρτ (r)[

h̄2k2
Fτ (r)/2m∗

τ

]dr. (11)

This approximation is built on a TF logic in which the potential
is removed from the problem by assuming that the relation ρ =
(1/3π2)k3 can be used to calculate the local Fermi momentum.

We adopt the factorization of the effective mass into
momentum- and frequency-dependent terms as suggested by
Mahaux et al. [28] and Mahaux and Sartor [29], but we neglect
isospin splitting. We parametrize these terms by using the
phenomenological form suggested by Prakash et al. [27] and
used by De et al. [30]:

m∗

m
= (mk)[mω] = (1 − αρ̄(r, c))[1 − β(T )ρ̄ ′(r, c)], (12)

with

α = 0.3, β(T ) = 0.4A1/3 exp[−(T A1/3/21)2]. (13)

The effective-mass factor is suppressed in the bulk, peaks at
the surface [31], and degrades to 1 with decreasing density
or increasing thermal energy. The radial dependence of the
effective mass is shown in Fig. 5. Panel a displays how the
effective mass is influenced by local density and gradient and

(a)

(b)

FIG. 5. (Color online) (a) Effective mass profiles for (b, c) =
(1, 1) (solid curve), self-similar expansion (1,0.85) (dashed curve),
and increased surface diffuseness (2,1) (dotted curve). (b) Effective-
mass profiles for (b, c = (1, 1)) and T = 0.5 (solid curve), 2 (dashed
curve) and 4 MeV (dotted curve).

the effect of heating is shown in panel b. The primary difference
between how the two expansion modes affect the effective
mass is that the self-similar expansion (c) reduces the bulk
density and therefore mk/m returns to 1 (from the matter value
of 0.7) in the central region while the surface degree of freedom
(b) maintains the mk/m suppression in the bulk (at least for
the A = 197 case considered here). One should focus on the
difference in mk/m in the interior for the expansion degrees of
freedom, because with heating, the surface enhancement from
the mω term is destroyed independent of the radial profile.

The T dependence in mω/m requires knowing the caloric
curve [T (ε)]. We solve this problem iteratively. A single
iteration suffices to ensure that the T is uniquely determined
by ε and satisfies the stationary condition. (The reason a single
iteration suffices is that above T = 2 the [mω] term is returned
to 1 and the collective response captured by the frequency
dependence of the effective mass is played out.)

The two many-body effects, to a large extent, offset one
another in near-ground-state nuclei, yielding a ≈ A/8 for un-
expanded 197Au. However the destruction of the cooperativity
encoded in these two effective-mass terms does not occur
on identical energy scales. While the detailed density and
excitation-energy dependences of these terms are unknown,
the results shown below illustrate how the gross effects
captured by these terms couple with expansion to dictate the
form of the caloric curve.

As this work is built on the LDA, the accuracy of this
approximation is a central issue. Fortunately, Shlomo has
compared calculations of the level-density parameter a by
using LDA, TF, TF with h̄2 corrections (SC), and Green’s
function techniques [32]. First he finds that the SC logic
provides an excellent approximation to the (exact) quantum-
mechanical Green’s function results. Even TF calculations
do an excellent job as long as the potential is smooth and
finite. The LDA, on the other hand, overpredicts a. This
overprediction is rather small for heavy nuclei (large A1/3) and
becomes progressively worse with decreasing A1/3. The ratio
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FIG. 6. (Color online) Ratio of level-density constants
aLDA−F/aSC−F (dotted curve) from [32] and aLDA−F/aLDA−S (solid
curve).

of the level density parameter, calculated with a Fermi function
profile, using the LDA approximation to that calculated with
the SC calculation R = aLDA−F/aSC−F (from [32]) is shown
in Fig. 6 as a dotted curve. The overprediction of the LDA is
due to an overemphasis of the low-density surface material.
This problem is amplified when the LDA is used (as Shlomo
did) with the relatively long-tailed Fermi profile. Our choice of
the “standard profile” is inspired by the analysis of Tõke and
Świątecki [33], in which the standard profile was chosen to
minimize this problem. Figure 6 also shows the level-density
parameter ratio from the long-tailed Fermi function profile to
the shorter-tailed standard profile, aLDA−F/aLDA−S, both in the
LDA approximation. Use of the standard profile as opposed
to a Fermi function profile removes half of the discrepancy
found by Shlomo. The remaining discrepancy suggests that, to
a small degree, low-density material in a LDA calculation, even
with the standard profile used here, still excessively contributes
to a and thus S.

III. RESULTS

The relative entropies per nucleon, s(b, c)/s(1, 1) are
shown in Fig. 7 for several energies. The shift in the (b, c)

(a)

(c) (d)

(b)

FIG. 7. (Color online) The relative entropies per nucleon
s(b, c)/s(1, 1) map as functions of expansion (c = abscissa) and
surface diffuseness (b = ordinate) for excitation energies of ε =
2, 3, 4, and 5 MeV A are shown in panels a, b, c, and d, respectively.
The contours are in steps of 10%. The (unitless) absolute values of
the entropy of the references states at (1,1), for each of these energies
are 0.907, 1.134, 1.356, and 1.59, respectively.

location of the maximum entropy with excitation energy is
primarily in the b coordinate direction. This primary trend is
consistent with mean-field parametrizations of the temperature
dependences of the radius and surface diffuseness [18,19].

Aside from the increasing surface diffuseness with excita-
tion energy, these maps illustrate that the proper thermody-
namic variable for the isolated system is a soft normal mode
with both b and c characters. The positive correlation between
the parameters that define the entropy ridge can be interpreted
as an enhancement in the density of states when the central
density is maintained at near-saturation values. Moreover, the
flatness of this entropy ridge is striking. Fluctuations to very
large b, with coupled increasing c, are inevitable. This is
suggestive of canonical prescriptions that create a gas phase
at elevated T. However, the connection is due to the inherent
instability of the metastable system toward surface expansion
(rather than bulk fragmentation.) This inference is related
to our choice of degrees of freedom, an issue to which we
return in the next section. Such a surface effect is reminis-
cent of well-known surface melting in mesoscopic classical
systems [34].

The density profiles for the equilibrium (b, c) positions are
shown in Fig. 8(a) for ε = 2, 3, 4, and 5 MeV. Aside from the
dramatic increase in surface width with increasing excitation
energy, a small increase in the central density is also observed.
The shapes along the entropy ridge are shown in Fig. 8(b)
for ε = 3 MeV. The great variation of shapes along this ridge
(from those with an extremely dense core with a long tail to
simply expanded shapes) is impressive. It is possible that the
length of the ridge in the direction of large b and c is excessive
because of the LDA approximation.

Finally, we turn to the caloric curve. We calculate T (ε) by
capturing the maximal entropies at a function of excitation
energy and employing Eq. (1). These results, along with
those for a simple Fermi gas and those if only a self-similar
expansion is considered, are shown in Fig. 9. With each added
expansion degree of freedom, the caloric curve becomes flatter.
This provides considerable insight into the interpretation

(a)

(b)

FIG. 8. (Color online) (a) Density profiles that maximizes the
entropy for excitation energies of ε = 2, 3, 4, and 5 MeV A.
(b) Density profiles along the entropy ridge for ε = 3 MeV A. The
solid curves represents the entropy peak while the dotted and dashed
curve are extremes of the entropy ridge.
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FIG. 9. (Color online) Caloric curve (for 197Au) for a Fermi gas
with fixed density and a level-density parameter a = A/10 (dotted
curve), self-similar expansion (dashed curve), and both self-similar
and surface expansion degrees of freedom (solid curve).

of caloric curves for mesoscopic systems. Such systems,
as opposed to uniform infinite systems, inherently posses
degrees of freedom that evolve naturally to yield a plateau.
The addition of the collective surface degree of freedom is
apparently sufficient to provide a representation similar to
that expected in the thermodynamic limit. (This is in fact
the object of thermodynamics: A few well-chosen collective
variables suffice to define system observables.) However, from
the metastable perspective of the present work, it is phase
equilibrium and coexistence that are the auxiliary concepts.
Both perspectives, metastable mononucleus with an implied
time window of relevance and true phase equilibrium with
unphysical boundary conditions, are of considerable heuristic
value.

The general shape of the caloric curve, when two dimen-
sions are considered, is qualitatively similar to those extracted
from experimental data [35,36]. The value of the temperature
plateau Tp is slightly lower than that found by Natowitz
et al. [37], who also conclude that Tp decreases with increasing
mass. The model presented in this work predicts essentially the
same plateau temperature Tp for a mass 90 system as it does
for a mass 197 system. While this might be considered at
variance with the trend of the results of Natowitz et al., we do
not believe the experimental data present a compelling case
for a significant dependence on mass if the data for the very
lightest nuclei are excluded.

FIG. 10. (Color online) Barrier-reduction factors k(b, c). The
contours are at 5% increments from 1.1 to 0.80 in the lower-right-hand
and upper-left-hand corners, respectively.

FIG. 11. (Color online) Barrier-reduction factors as functions of
excitation energy per nucleon for the equilibrium shapes (circles) and
those extracted from ISiS data [42] (squares with error bars.)

The equilibrium shapes can also be used to estimate the
reduction in the barrier energy with excitation. The total
potential and barriers B, potential extremum, were extracted
from the sum of the single folded (point test particle) nuclear
VN and Coulomb VC potential terms:

VT (R) = VN (R) + VC(R),

=
∫

ρ̄(r1)V12(|R − r1|)dr1

+
∫

ρz(r1)(
e

|R − r1| )dr1. (14)

The depth on the nuclear interaction V12 was taken from [38],
and the range was taken to be of exponential form with a
characteristic range of 0.63 fm. This range parametrization
and value, when folded with the (b, c) = (1,1) profile, yield a
barrier height and distance in agreement with the optical-model
potentials of Becchetti and Greenless [39,40] as well as of
Varner et al. [41]. The reduction factors, k = B(b, c)/B(1, 1),
calculated in the relevant region of the shape parameter
space, are shown in Fig. 10 while the barrier-reduction
factors for the shapes along the (maximal) entropy ridge
keq = B(b, c)eq/B(1, 1), extracted as functions of excitation
energy, are shown in Fig. 11. The two-dimensional map shows
that the reduction factors change transverse to the entropy ridge
and are about constant along it. The barrier-reduction factors
start at 1 at low energies, drop to between 0.90 and 0.85, and
cannot, in this model, be less than 0.85 (as such values are
“northeast” of the entropy ridge at even the highest energy.)

Also plotted (as squares) in Fig. 11 are the barrier-reduction
factors extracted from an analysis of the fragment energy
spectra in 3He +197Au bombardments [42]. The latter results,
from the Indiana Silicon Sphere (ISiS), show larger reduction
factors (as low as 0.7) than predicted from the equilibrium
(b, c) configurations.

IV. CONCLUSIONS

The primary conclusion of this work is that a plateau in
the caloric curve should be expected for a finite mononuclear
system. The basic concepts of expansion and effective-mass
evolution used in this this work are similar to those presented
by Natowitz et al. [43]. This work also shares much in common
with that of Chen et al. [44]. However, the problem is attacked
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from a different perspective, and the packaging of the basic
inputs in a computational scheme is different, yielding a more
satisfactory heuristic presentation.

The near-constant statistical temperature is due to the
energy spent on expansion and the destruction of collective
effects. While this conclusion was found in our previous
publication, this work not only demonstrates that the con-
clusion is robust with respect to explicit consideration of
surface expansion, but both supports previous work, indicating
the importance of the surface, and clarifies the nature of
the surface-expansion mode. We find that adding degrees
of freedom (dealing with the shape) allows the mesoscopic
transition to appear more and more as a phase transition of
a macroscopic system. We are not aware of whether this
point has been made before. The importance of the surface
is not at all surprising and can find its parallel in condensed
matter physics, in which the study of the melting of either
nanomaterials or isolated crystals becomes a study of surface
melting [34].

While this work makes use of several simplifying as-
sumptions, it is the LDA for the entropy that is most
suspect. In particular, to what extent does the well-known
excessive contribution from low-density material compromise
our findings? While we have minimized this problem by our
choice of density profile, further numerical work related to this
point would be most useful. From another perspective, one can
view the excessive contribution from low density in the LDA as
offsetting the neglect, in this work, of the clustered contribution
to the density of states. Again, additional work might be able
to shed light on these, to some extent, offsetting issues.

The relevance of this work to both the concept of a limiting
compound nucleus temperature [45,46] and the so-called
liquid-gas phase transition [47] is profound. In addition to
the plateau in the caloric curve, the observed saturation of
the Giant Dipole Resonance yield [48] forces the question of
when, in excitation energy, the metastability of compound
nuclei gives way to instability and invalidates the concept
of a Compound Nucleus [49]. The present work arrives at
the same conclusion, (i.e., a limiting temperature of about
5 MeV) by a rather straightforward deduction of the caloric
curve for metastable mononuclei rather than the disappearance
of a solution to Gibbs’ coexistence conditions. The latter
represents a true equilibrium thermodynamic reality for a
hypothetical (gedanken) system. Our result for a metastable
mononuclei indicates that, within the time of relevance, a
mononucleus has a limiting temperature, independent of phase
coexistence arguments.

As far as the liquid-gas phase transition is concerned, one
can certainly view the mean density reduction seen in the
present model as a precursor to a phase transition (e.g., as
surface melting is for the solid-liquid transition in molecular
systems). However, this work highlights the subtleties of
transferring phase-transition logic to the mesoscopic scale.
In particular, this work suggests that the equilibrium path
to fragmentation is by means of fragment production from
low-density exterior material. New external material would
again be formed at low density that would, in turn, be unstable
to clusterization. While the distinction between surface and
bulk is rather tenuous in medium and light nuclei, the case
study of a heavy nucleus in the present work illustrates that a
likely kinetic route to the deconstruction of a highly excited
heavy nucleus (in the absence of collective expansion—see
below) is through surface rather than bulk effects.

However, it must be appreciated that this work implicates
the surface rather than more complex collective shape and
density variations because the former is considered while the
latter are not. The reverse is true in the work by Colonna
et al. [50], in which multipole density fluctuations built on
self-similar (scaling) expansions (i.e., our c parameter) are
considered. However, it is likely that the importance of any
particular mode has more to do with initial conditions than
with inherent growth instabilty times [51]. One can turn this
argument around. For example, one could argue that any
experimental evidence for bulk disintegration or disassembly
of a heavy nucleus implicates dynamical conditions seeding
self-similar-type expansions. Collective radial flow would be
such a condition. This work lends support to this contention
in that the barrier energies are in fact lower than one calcu-
lates from metastability logic. That is, while the metastable
thermodyanmic approach of the present work indicates that
the expansion (and instability) is mostly surfacelike, the
low fragment energies suggest real-world realizations with
a more self-similar character. Nevertheless, this work serves
to recalibrate expectations for the caloric curve for metastable
mononuclei and illustrates the importance of the surface in the
absence of dynamical initial conditions.
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