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Fragment isospin distributions and the phase diagram of excited nuclear systems
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Fragment average isospin distributions are investigated within a microcanonical multifragmentation model
in different regions of the phase diagram. The results indicate that in the liquid phase 〈N/Z〉 versus Z is
monotonically increasing, in the phase coexistence region it has a rise-and-fall shape, and in the gas phase
it is constant. Deviations from this behavior may manifest at low fragment multiplicity as a consequence of
mass-charge conservation. Characterization of the “free” and “bound” phase functions of the fragment charge
reconfirms the neutron enrichment of the free phase with respect to the bound one irrespectively of the localization
of the multifragmentation event in the phase diagram.
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I. INTRODUCTION

In recent years isospin-dependent phenomena have received
much consideration because of their ability to reveal infor-
mation on the asymmetry term of the nuclear equation of
state (EOS). Relying on the fact that, in heavy systems in
which the neutron density exceeds the proton density, the
asymmetry term is repulsive for neutrons and attractive for
protons, theoretical models of heavy-ion reactions predicted
different neutron compositions of the liquid and vapor phases
[1–6]. More important for studies on EOSs, the difference
in the chemical compositions of the gas and liquid phases
during a liquid-gas phase transition reflects the magnitude of
the asymmetry term and its density dependence. Thus the
seminal work of Mueller and Serot [1], which was based
on a relativistic mean-field model of nuclear matter with an
arbitrary proton fraction, anticipated that it is energetically
more favorable for unstable asymmetric nuclear matter to
separate into a neutron-rich low-density phase and a neutron-
poor high-density one. Later on, the isospin-dependent
Boltzmann-Uehling-Uhlenbeck transport model [2], different
mean-field approaches [3,4], the antisymmetrized molecular
dynamics model [5], the stochastic mean-field model [6], etc.,
reconfirmed this isospin fractionation phenomenon in both
infinite and finite systems. Moreover, to offer a more realistic
description of the dynamics of charged asymmetric nuclear
matter, Ref. [4] analyzed the effect of the long-range Coulomb
interaction, reaching the conclusion that its effect is to diminish
the isospin fractionation.

To try to identify this process in experimental multifrag-
mentation data, isoscaling techniques based on grandcanonical
assumptions have been applied. The results obtained from
reactions involving different combinations of 112Sn and 124Sn
at 50 MeV/nucleon bombarding energy [7], 112,124Sn + 58,64Ni
central collisions at 35 MeV/nucleon [8], multifragmentation
reactions induced by high-energy protons [9], and 58Ni,
58Fe + 58Ni, and 58Fe at 30, 40, and 47 MeV/nucleon [10]
proved the expected increase of neutron concentration in the
gas phase with respect to the liquid phase.

The aim of this work is to investigate fragment average
isospin distributions within a microcanonical multifragmen-
tation model (MMM) that includes in a realistic way the

most important ingredients of the nuclear multifragmentation
phenomenon and whose phase diagram was studied previously.
The advantages of such a study are obvious. First, taking
into account that decaying nuclei are small isolated systems,
a rigorous statistical treatment requires a microcanonical
framework and not an analytically tractable grandcanonical
approach. Second, with respect to dynamical models, statis-
tical models have the advantage of dealing with precisely
defined fragments. Thus this study is expected to offer a
complementary understanding of the problem.

The paper is organized as follows. Section II presents
the results obtained within the MMM [11] in three distinct
cases: (200, 82) with and without Coulomb interaction and
(50, 23) with Coulomb interaction. Fragment average isospin
distributions are investigated as functions of fragment charge
in each situation. Characteristic shapes of 〈N/Z〉 versus Z
distributions are found in each zone of the phase diagram.
Interesting finite-size effects are identified for low multiplic-
ities. Section III investigates the dependence of the above
distributions as functions of source isospin. To verify whether
the observed signals survive the sequential evaporation stage,
effects of the secondary decays are discussed in Sec. IV.
To establish a link with dynamical model predictions, an
interpretation of the gas and liquid phases with respect to
the cluster size is given in Sec. V. Conclusions are drawn in
Sec. VI.

II. MICROCANONICAL MULTIFRAGMENTATION
MODEL PREDICTIONS

While methods to identify phase transitions in small
nonextensive systems accumulate, more importance is given
to the fact that, by principle, the most correct statistical
approach to be used for exploding nuclei is the microcanonical
one [12,13]. In this paper the MMM version [11] of the
microcanonical multifragmentation model [13–15] is used.

In this model fragments are placed in a spherical container
defining the freeze-out volume. All configurations allowed
by mass, charge, total energy, total momentum, and total
angular-momentum conservation laws and not forbidden by
geometrical constraints (overlapping between fragments or

0556-2813/2006/73(1)/014606(11)/$23.00 014606-1 ©2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.73.014606


AD. R. RADUTA PHYSICAL REVIEW C 73, 014606 (2006)

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

2 4 86 10 12

E (MeV/nucleon)

T
 (

M
eV

)

0
0.025

0.05
0.075

0.1
0.125

0.15
0.175

0.2
0.225

0.25

2 4 86 10 12

E (MeV/nucleon)

P
 (

M
eV

/fm
3 )

0.02

0.04

0.06

0.08

0.1

0.12

0.14

6.5 7 7.5 8 8.5 9

T (MeV)

P
 (

M
eV

/fm
3 )

(c)

(a)

(b)

FIG. 1. (Color online) Phase diagram of a (200, 82) nuclear system without Coulomb and hard-core interactions in (a) temperature-excitation
energy (b) pressure-excitation energy, and (c) pressure-temperature representations. The solid curves correspond to the considered iso-βP

trajectories; the dashed curves indicate the borders of the phase-coexistence region; and the dotted curves indicate the borders of the spinodal
region. The βP values of the iso-βP curves are labeled in units of inverse cubic femtometers.

with container’s walls) are spanned by a Metropolis Monte
Carlo trajectory in the configuration space. The key quantity
of the model is the weight of each configuration, which has
a nonanalytically tractable form and enters the expression of
any physical observable. The breakup fragments relevant for
thermodynamics may be excited highly enough to deexcite
by sequential particle emission. If not explicitly mentioned
otherwise, this paper focuses on the breakup stage of the
reaction, but for the sake of completeness a brief discussion of
effects of secondary decays is included.

Depending on whether fragments are assimilated with
(i) hard nonoverlapping spheres or (ii) normal nuclear density
malleable objects, one may distinguish two freeze-out cases.
Even if, for a given state of the statistically equilibrated
source characterized by the mass, charge, excitation energy and
freeze-out volume, the two cases may lead to different results,
the thermodynamics associated to the model is qualitatively
the same. Freeze-out case (ii) has the important advantage
of allowing the system to reach high densities, being thus
preferable when one aims to investigate the phase diagram.

While realistic by their microcanonical foundation, statis-
tical multifragmentation models may be criticized because
of the too simplistic treatment of the freeze-out volume.
Indeed, it is hard to imagine that fragment production into
a vacuum takes place in a fixed-size spherical box, but rather
in a volume fluctuating from event to event and characterized
by it average value. Statistical models used the fixed-volume

hypothesis in order to diminish, presumably without signifi-
cant consequences, the dimension of the configuration space.
More recent works [16] suggest treating the multifragmenting
nucleus in a modified microcanonical ensemble in which the
volume is allowed to fluctuate and the microcanonical weight
of a configuration W (E,V ) is multiplied by exp(−βPV )
(where β is the inverse temperature and P is a pressure), the
average value of the volume being determined by its Lagrange
multiplier βP .

The fact that in the case of time-dependent open systems the
thermodynamical definition of volume is still an open problem
is illustrated by the different concepts presently employed.
Thus dynamical models define the freeze-out volume by
the spatial extension of the system when fragments cease
to interact with each other otherwise than by the Coulomb
field, implying thus a minimum distance of 2–3 fm between
them. A somehow similar image in the sense that volume
does not act as an external constraint corresponds to the
dynamical models that define the freeze-out volume with
respect to the freeze-out time, a notion that assumes chemical
equilibrium: Fragments can still exchange nucleons, but their
multiplicity has to be time independent. Maybe one of the
most illustrative examples of what freeze-out volume may
mean within dynamical models, in contrast to the statistical
ones, is given by the recent study of Ref. [17]. Here the
authors show that the freeze-out volume depends dramatically
on freeze-out instant and fragment multiplicity. As the message
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FIG. 2. (Top) fragment charge distributions and (bottom) charge
distributions of the largest fragment for the (200, 82) nuclear
system without Coulomb interaction at different excitation energies.
For all considered situations the system in constrained by βP =
3 × 10−3 fm−3. The key legend is as follows: open circles, E =
3 MeV/nucleon; filled circles, E = 4 MeV/nucleon; open squares,
E = 5 MeV/nucleon; open triangles, E = 6 MeV/nucleon; open
diamonds, E = 8 MeV/nucleon; crosses, E = 10 MeV/nucleon,
stars, E = 12 MeV/nucleon.

of this paper relies on the thermodynamical characterization
of the nuclear system, it is stressed here that, in the case of the
MMM, the volume is even more than an unphysical fictitious
container that obliges the preformed fragments not to separate,
but dictates also their partition as the volume enters the
statistical weight of a configuration. Apart the obvious explicit
dependence, the volume acts by means of the thermal kinetic
energy defined as the difference between the total available
energy (input quantity) and all other partial energies (internal
excitation, Coulomb interaction, and fragment formation Q).

The phase diagram associated with the MMM was studied
in Refs. [18,19], and the conclusions must be underlined.
For small systems, like (50, 23), irrespective of whether the
Coulomb interaction is present or not, the system evolves
from the liquid phase present at low excitation energies to
the gas phase corresponding to vaporized matter by crossing
the coexistence zone. For large systems, like (200, 82), which
experience stronger Coulomb fields, the situation becomes
more interesting. When one turns the Coulomb interaction
off, the system exhibits the same behavior as that of a small
system. When the Coulomb field is activated, the critical
temperature and pressure decrease such that, for freeze-out
volumes up to about 100V0, the system may evolve from the
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FIG. 3. (Color online) Fragment average isospin distributions
as functions of fragment charge for the (200, 82) nuclear sys-
tem without Coulomb interaction at different excitation energies.
For all considered situations the system in constrained by βP =
3 × 10−3 fm−3. The horizontal line indicates the source’s isospin,
Is = 1.44. The thick solid curve corresponds to the most probable
isospin value obtained from the liquid-drop formula of the binding
energy, Eq. (2).

liquid phase to gas or supercritical fluid without crossing the
phase-coexistence zone [19].

In the following subsections the MMM predictions of
fragment average isospin distributions at different points of
the nuclear phase diagram are presented, and the fact that
〈N/Z〉 versus Z manifests different behavior in the liquid,
phase-coexistence, and gas regions is stressed. As a general
comment, it is mentioned that the investigation of the phase
space along constant βP paths is arbitrary and the description
of the system within a modified microcanonical ensemble with
fluctuating volume [16] is not essential for the conclusions
of the present study. Thus the same behavior of 〈N/Z〉
versus Z distributions determined by the event localization
inside the phase diagram was obtained for constant-volume
approximation (standard microcanonical approach).

A. (200, 82) without Coulomb interaction

The phase diagram of the nuclear system (200, 82) without
Coulomb and hard-core interactions [freeze-out case (ii)]
is shown in Fig. 1 in the temperature-excitation energy,
pressure-excitation energy, and pressure-temperature planes.
The solid curves represent iso-βP trajectories for different
values of βP ranging from 3 × 10−3 to 2 × 10−2 fm−3, as
indicated in the figure. The borders of the phase-coexistence
region were evaluated by use of a Maxwell construction on
the iso-βP caloric curves and are plotted with dashed curves.
The borders of the spinodal region are defined as the locus
of the inflexion points of T (E)|βP curves and are plotted
with dotted curves. The critical point is characterized by
the following set of values: TC = 9.1 MeV, PC = 1.25 ×
10−1 MeV/fm3, EC = 6.75 MeV/nucleon, and (V/V0)C =
1.33.
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FIG. 4. (Color online) Phase diagram of a (50, 23) nuclear system with Coulomb interaction and free-volume parametrization in
(a) temperature-excitation energy, (b) pressure-excitation energy, and (c) pressure-temperature representations. The solid curves correspond to
the considered iso-βP trajectories; the dashed curves indicate the borders of the phase-coexistence region; and the dotted curves indicate the
borders of the spinodal region. The βP values of the iso-βP curves are labeled in units of inverse cubic femtometers.

The shapes of 〈N/Z〉 versus Z distributions have been
investigated along all iso-βP paths shown in Fig. 1. To
illustrate the conclusions, the phase space is scanned along the
trajectory characterized by βP = 3 × 10−3 fm−3. The states
obtained in this way are similar to the ones obtained in nuclear
multifragmentation reactions. Thus, as the excitation energy
increases from 2 to 12 MeV/nucleon, the temperature range
is around 6 MeV and the average freeze-out volume increases
linearly from 2 V0 to 16 V0.

Once the thermodynamical behavior of the system is
clarified and before the fragment average isospin distributions
are investigated as functions of fragment size, it is useful to
have a clear picture of the fragment size distributions produced
in the considered multifragmentation events. Figure 2 shows
the fragment charge distributions (upper panel) and charge
distributions of the largest fragment in each event (lower
panel).

Even if our main purpose for plotting Y (Z) is only to
illustrate the fragment charge population for each state of the
source, the correct information on event localization in the
phase diagram we may get in this case from the shape of Y (Z)
distributions is remarkable. Thus, as one may note from the
upper panel of Fig. 2, as far as the system consists of liquid +
undersaturated vapor (E = 3.6–1.5 MeV/nucleon) Y (Z) has
a U or a shoulderlike shape, whereas it falls exponentially in
the supersaturated vapor phase (E > 11.5 MeV/nucleon), as
anticipated in the early days of multifragmentation [13–15].
This result is all the more striking as it does not hold for the

case in which the Coulomb interaction is strong, as one may
see in the next subsection.

The decision to investigate how Y (Zmax) distributions look
is motivated by the fact that the largest fragment is expected
to be an order parameter of the phase transition [20] and a
good estimation of the liquid phase [21]. The information
emerging from the lower panel of Fig. 2 is that, when the
excitation energy is increased, the centroid of the Y (Zmax)
distribution shifts toward lower values while its shape evolves
in a complicated manner. Thus, despite the coexistence region,
for E = 4, 5, and 6 MeV/nucleon, Y (Zmax) is single peaked
and symmetric enough to hinder any information on the true
localization of the event in the phase diagram of the system.
For higher excitation energies, E = 8, 10 MeV/nucleon, the
Y (Zmax) distributions become broad and asymmetric such that
one may interpret their shapes as the result of the superposition
of two Gaussian distributions corresponding to each phase
of the system. For this short energy interval the information
extracted from Y (Zmax) distributions is correct. For excitation
energies higher than 11.5 MeV/nucleon, the system consists of
supersaturated vapor, the Y (Z) distribution has an exponential
decrease, the largest residual nucleus has on average fewer
than 10 protons, and the Y (Zmax) distribution is single peaked
and narrow. For this case the information inferred from
Y (Zmax) is again correct. The limited and not always correct
information the largest cluster distribution may provide on
localization of multifragmentation events in the phase diagram
has recently been studied within a lattice gas model [22] and
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FIG. 5. (Top) Fragment charge distributions and (bottom) charge
distributions of the largest fragment for the (50, 23) nuclear
system with Coulomb interaction at different excitation energies.
For all considered situations the system in constrained by βP = 1 ×
10−3 fm−3.

explained as a consequence of mass and charge conservation
in microcanonical and canonical ensembles.

Figure 3 shows the fragment average isospin (〈N/Z〉)
distributions as functions of fragment charge for the above-
considered excitation energies. Setting apart the average
isospin of light charged particles (Z < 5) strongly affected
by structure effects, one may observe that, in the coexistence
region, 〈N/Z〉 versus Z manifests a clear rise-and-fall behavior
and in the supersaturated vapor phase it is constant. Moreover,
in the coexistence region the average isospin of a fragment
belonging to the liquid is monotonically decreasing with its
charge.

The occurrence of the liquid + undersaturated vapor phase
at low values of excitation energy and/or freeze-out volume
prevents fragment production in the intermediate-size domain
(15 < Z < 30), as evidenced in Fig. 2 by the Y (Z) distribution
corresponding to E = 3 MeV/nucleon. Moreover, the small
values of the total fragment multiplicity make the isospin of
clusters whose size is close to the source size sensitive to mass
and charge conservation. For these reasons, it was not possible
to obtain conclusive 〈N/Z〉 versus Z distributions.

The effect of excitation energy on 〈N/Z〉 versus Z distribu-
tions within a given region of the phase diagram is quite trivial.
Thus, when the excitation energy is increased, the number of
emitted neutrons increases such that, for conserving the mass
and charge of the total system, the isospin of the rest of matter
is decreasing, leading to the observed shift of 〈N/Z〉 versus
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FIG. 6. (Color online) Fragment average isospin distributions
as functions of fragment charge for the (50, 23) nuclear system
with Coulomb interaction in the liquid (E = 2.5 MeV/nucleon),
liquid-gas coexistence (E = 5 MeV/nucleon) and gas phase (E =
8 MeV/nucleon) regions. For all considered situations the system in
constrained by βP = 1 × 10−3 fm−3. The horizontal line indicates
the source’s isospin, Is = 1.174. The thick solid curves corresponds
to the most probable isospin value obtained from the liquid-drop
formula of the binding energy, Eq. (2).

Z distributions toward lower values. The decrease of the
turning point where the rising distribution starts to decrease
may be understood if one keeps in mind the diminishing of the
liquid part with the increase in the excitation energy.

B. (50, 23) with Coulomb interaction

To verify whether the obtained results stand valid while
modifying the system size and switching the Coulomb inter-
action on, in the following discussion we investigate another
system, (50, 23) with Coulomb interaction.

The phase diagram obtained with freeze-out case (ii) is
shown in Fig. 4 in the temperature-excitation energy, pressure-
excitation energy, and pressure-temperature planes. As in the
previous case, the solid curves represent iso-βP trajectories
for different values of βP ranging from 3.5 × 10−4 to 2 ×
10−3 fm−3, as indicated in the figure. The borders of the phase
coexistence (dashed curves) and the spinodal (dotted curves)
regions are determined as in Subsec. II. A. The critical point
is characterized by the following set of values: TC = 4.9 MeV,
PC = 7.8 × 10−3 MeV/fm3, EC = 4.6 MeV/nucleon, and
(V/V0)C = 12. The striking difference between the coordi-
nates of this critical point and the one corresponding to the
(200, 82) without the Coulomb interaction case is not only a
finite-size effect, but mainly the consequence of including the
Coulomb interaction. Thus, even for a relatively small system
like the (50, 23) nucleus, the Coulomb field is strong enough
to force the system to occupy a large volume and to diminish
in this way the repulsive effect. If true, a critical volume of
about 12 V0 would imply that real nuclear multifragmentation
reactions for which the freeze-out volume was estimated to be
3–9 V0 take place at supercritical values.
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FIG. 7. (Color online) Phase diagram of (200, 82) nuclear system with Coulomb interaction and free-volume parametrization in (a)
temperature-excitation energy (b) pressure-excitation energy, and (c) pressure-temperature representations. The solid curves correspond to the
considered iso-βP trajectories; the dashed curves indicate the borders of the phase-coexistence region; the dotted curves indicate the borders
of the spinodal region. The βP values of the iso-βP curves are labeled in units of inverse cubic femtometers.

As in the previous case, to illustrate the behavior of
fragment average isospin distributions in the liquid, phase-
coexistence, and gas regions we follow a constant βP =
1 × 10−3 fm−3 path. As one may see in Fig. 4, along the
considered trajectory the system consists of a liquid with
an undersaturated vapor for E � 3.5 MeV/nucleon; for 3.5
MeV/nucleon � E � 6.3 MeV/nucleon, the system undergoes
phase separation into a liquid and its associated saturated
vapor; and for E > 6.3 MeV/nucleon the system is a super-
saturated vapor. For complete thermodynamical information
on the explored states, have it should be mentioned that the
excitation energy increase from 1.5 to 8 MeV/nucleon leads to
a linear increase of the average freeze-out volume from 10 V0 to
50 V0.

Fragment charge distributions and charge distributions of
the largest fragment are plotted in Fig. 5. As in the previous
case, the localization of multifragmentation events in the
phase space is correctly indicated by the shape of the Y (Z)
distributions: Up to 3.5 MeV/nucleon, Y (Z) has a U shape; for
3.5 < E < 6 MeV/nucleon, Y (Z) has a shoulderlike shape;
and for E > 6.5 MeV/nucleon, Y (Z) is falling exponentially.
Regarding the Y (Zmax) distributions, the small size of the
system makes the mass-charge conservation effects stronger
than those observed for the (200, 82) nucleus. Indeed, the
Y (Zmax) distributions corresponding to 2.5 and 8 MeV/nucleon

are truncated and no bimodality or any particular structure that
may suggest superposition of close distributions correspond-
ing to different phases can be identified for 5 MeV/nucleon
excitation energy. The only effect that may suggest in this
last case a particular state of the system is the rather broad
Y (Zmax) distribution. In addition, for E = 2.5 MeV/nucleon,
the competition between evaporationlike decay and multifrag-
mentation induces a hump in the Y (Zmax) distribution that
could be interpreted as bimodality and erroneously associated
with phase coexistence.

Figure 6 shows 〈N/Z〉 versus Z distributions that corre-
spond to the liquid, liquid-gas, and gas phases of the (50,
23) system. For the coexistence region (E = 5 MeV/nucleon)
and for the gas phase (E = 8 MeV/nucleon) the shapes look
like the ones obtained for the (200, 82) nucleus; in the
phase-coexistence region 〈N/Z〉 versus Z has a rise-and-fall
shape; and for the gas phase it is almost constant. A striking
result is the one corresponding to 2.5 MeV/nucleon, which
seems to be compatible with the phase-coexistence region.
The explanation of this apparent paradox lies in the fact that
for such a small system and low excitation energies the total
fragment multiplicity is around 3, meaning that each emitted
light particle will modify drastically the isospin of the residual
nucleus. Thus the observed rise and fall is a consequence of
mass and charge conservation.
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FIG. 8. (Color online) Fragment average isospin distributions as functions of fragment charge for the (200, 82) nuclear system with Coulomb
interaction. Upper-left-hand panel, liquid + undersaturated vapor phase for βP = 1 × 10−4 and 3 × 10−4 fm−3, E = 2, 3 MeV/nucleon;
upper-right-hand panel, supercritical fluid phase along βP = 2 × 10−3 fm−3; lower panel, freeze-out case (i) and different freeze-out volume
approximations as indicated in the figure. The horizontal line indicates the source’s isospin, Is = 1.44. The thick solid curve corresponds to
predictions of Eq. (2).

C. (200, 82) with Coulomb interaction

The system’s expansion into volumes much larger than
those estimated for multifragmentation reactions under the
repulsive effect of the Coulomb field is expected to in-
crease with the system size. This fact is confirmed by the
phase diagram of the (200, 82) excited nucleus plotted in
Fig. 7 in temperature-excitation energy, pressure-excitation
energy, and pressure-temperature representations. The crit-
ical point is characterized by TC = 3.7 MeV, PC = 1.7 ×
10−3 MeV/fm3, EC = 7.75 MeV/nucleon, and (V/V0)C =
130, and phase coexistence occurs for freeze-out volumes of
at least a few hundred V0.

Even if not interesting for nuclear multifragmentation, the
iso-βP trajectories plotted in Fig. 7 offer the possibility of
investigating the liquid phase without the undesired effects of
low fragment multiplicity. The upper-left-hand panel of Fig. 8
depicts the typical monotonic increase of 〈N/Z〉 versus Z dis-
tributions in different states of the liquid + undersaturated va-
por system (βP = 1 × 10−4 fm−3, E = 2 MeV/nucleon, and
βP = 3 × 10−4 fm−3, E = 2, 3 MeV/nucleon). Deviations
from this shape may be due to mass-charge conservation, as
one may see for βP = 1 × 10−4 fm−3 and E = 3 MeV/nucleon
case in which the hump present around Z = 50 is produced by
the dominant fissionlike decay. Thermodynamical states more
similar to those produced in multifragmentation reactions are

obtained along the supercritical βP = 2 × 10−3 fm−3 path
where the freeze-out volume increases linearly from 4 V0 (for
E = 1.5 MeV/nucleon) to 30 V0 (for E = 8 MeV/nucleon).
The corresponding average isospin distributions plotted in the
upper-right-hand panel of Fig. 8 show the same monotonic
increase as that observed for the liquid phase. It is worthwhile
mentioning here that an 〈N/Z〉 increasing with Z was
reported by other microcanonical models [23] and experi-
mental data obtained in deep inelastic collisions of Kr and
Nb [24].

The lower panel of Fig. 8 presents some extra fragment
average isospin distributions corresponding to the same (200,
82) with the Coulomb system under freeze-out case (i)
and different freeze-out volume approximations: (1) con-
stant βP = 6 × 10−3 fm−3 and E = 6 MeV/nucleon (〈V 〉 =
8.08 V0, T = 6.88 MeV), (2) constant V = 6V0 and E =
8 MeV/nucleon (T = 7.68 MeV), and (3) constant V = 8V0

and E = 6 MeV/nucleon (T = 6.90 MeV). The first and
the third cases were chosen so as to be characterized by
almost identical values of the (average) freeze-out volume,
excitation energy, and temperature but differing by the freeze-
out volume approximation: In the first case, the volume
is fluctuating, whereas in the last one it is fixed. The
monotonic increase of 〈N/Z〉 versus Z distributions obtained
in all cases and the almost perfect superposition between the
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FIG. 9. (Top) Fragment charge distributions and (bottom)
charge distributions of the largest fragment for the (200, 82)
nuclear system with Coulomb interaction at different excitation
energies. For all considered situations the system in constrained
by βP = 1 × 10−4 fm−3.

isospin distributions obtained in (1) and (3) illustrate that the
presented results do not depend on the freeze-out volume
approximation.

Regarding the evolution of 〈N/Z〉 versus Z with increasing
excitation energy, the comments done in the previous section
stand valid, namely that when the number of emitted neutrons
is increased, the isospin of the rest of the system decreases,
leading to the observed shift of 〈N/Z〉 versus Z distributions.

New examples on how misleading fragment charge dis-
tribution may be when one is dealing with microcanonical
approaches are provided by the same βP = 1 × 10−4 fm−3

path and are plotted in Fig. 9. Thus, for the lowest considered
excitation energy, 2 MeV/nucleon, the system consists of liquid
and undersaturated vapor, whereas the shoulderlike shape of
the Y (Z) distribution and the asymmetric shape of the Y (Zmax)
distribution would suggest liquid-saturated vapor coexistence.
For 3 and 4 MeV/nucleon, the situation is even more difficult:
The presence of fission as a decay mechanism induces a
W shape of the Y (Z) distributions and a bimodal structure of
the Y (Zmax) distributions that could be erroneously interpreted
as a signature of phase coexistence. When the system enters
the liquid-saturated vapor state, the situation is again tricky:
For 6 MeV/nucleon, the Y (Zmax) distribution is single-peaked.
The high-energy border of the phase-coexistence region
(8 MeV/nucleon) is characterized by a shoulderlike shape of
both the Y (Z) and the Y (Zmax) distributions. In the supersatu-
rated vapor phase, Y (Z) and Y (Zmax) fall exponentially, giving
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FIG. 10. Fragment average isospin distributions corresponding to
three sources characterized by Z = 82 and A = 182, 192, and 200
with excitation energy 6 MeV/nucleon and βP = 2 × 10−3 fm−3. For
all cases Coulomb and hard-core interactions are considered.

for the first time correct information on the localization of the
multifragmentation event in the phase space.

To understand whether the obtained behavior of the frag-
ment average isospin distributions is caused by the specific
fragment partition in different regions of phase space or is a
trivial consequence of the liquid-drop binding energy,

B(A,Z) = av

[
1 − ai

(
1 − 2Z

A

)2
]

A

− as

[
1 − ai

(
1 − 2Z

A

)2
]

A2/3

− acZ
2A−1/3 + aaZ

2/A, (1)

one may calculate the most probable value of a fragment
isospin as a function of its mass (charge) by requiring that
∂B/∂I |A = 0. In the present simulation, av = 15.4941 MeV,
as = 17.9439 MeV, ai = 1.7826, ac = 0.7053 MeV, and aa =
1.1530 MeV [25].

By solving this equation, one obtains for the most probable
isospin,

I (A) = 1 + acA
5/3 − aaA

2ai(avA − asA2/3)
, (2)

a function that is monotonically increasing with fragment size,
irrespective of whether ac = 0 (the Coulomb interaction is
switched off) or not. The corresponding isospin distributions
as a function of Z obtained with Eq. (2) are plotted in
Figs. 3, 6, and 8. Thus the only situation for which we
obtain qualitative agreement between the MMM fragment
average isospin distributions and predictions of the liquid-drop
binding energy corresponds to the liquid + undersaturated
vapor state of the system. However, it is not generally true
that the liquid phase of nuclear matter is characterized by
a monotonic increase of the average isospin as a function
of fragment size because, when the system is in liquid +
saturated vapor coexistence, the largest fragment in each event
that definitely belongs to the liquid part does not show the same
behavior. Thus, taking into account that, in the heavy-fragment
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FIG. 11. Fragment average isospin distributions in the breakup (filled symbols) and asymptotic (open symbols) stages of the reaction. The
left-hand panel corresponds to the case of (200, 82) nucleus, βP = 1 × 10−4 fm−3 with E = 2, 6, and 9 MeV/nucleon; the right-hand panel
corresponds to the case of (50, 23) nucleus, βP = 1 × 10−3 fm−3 with E = 5, 8 MeV/nucleon. In all cases the Coulomb interaction is present.
Freeze-out case (ii) was used.

range of the mass spectrum (where 〈N/Z〉 decreases with
Z) the dominant fragment is the largest one in each event,
we easily anticipate the fall of the average isospin of the
largest cluster with its size. This means that, at least within
the currently used MMM, fragment partition at breakup does
not obey a total symmetry energy minimization principle but
is the consequence of the interplay of all observables entering
the statistical weight of a configuration—the key quantity of
the model.

III. EFFECT OF SOURCE ISOSPIN ON 〈N/Z〉 VERSUS
Z DISTRIBUTIONS

To provide a more complete picture on how sensitive the
average isospin distributions are with respect to the isospin
of the source nucleus, 〈N/Z〉 versus Z distributions were
analyzed in different regions of the phase diagram. Because
the results are similar irrespective of the position of the mul-
tifragmentation event inside the phase diagram, only the

most physically relevant case of a source with Z = 82 with
Coulomb interaction whose mass number was varied from
182 to 200 is presented. Here, freeze-out case (i) was used.
Thus Fig. 10 illustrates 〈N/Z〉 versus Z distributions obtained
for the excitation energy 6 MeV/nucleon and βP = 2 × 10−3

fm−3. The result is intuitive: When the source isospin is
increased, more neutrons are emitted at breakup and all
produced fragments are more neutron rich, leading to a shift
of the 〈N/Z〉 versus Z distributions toward higher values of
N/Z without any noticeable modification of their shape.

IV. EFFECT OF SECONDARY PARTICLE EVAPORATION

Even if all thermodynamical relevant information corre-
sponds to the breakup stage of the reaction, in the following
discussion we analyze the effect of secondary particle emission
from primary excited fragments. The motivation is that this
reaction stage is the one accessible in multifragmentation
experiments. Sequential particle emission is treated by use
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FIG. 12. Left-hand panel, relative neutron enrichment of the “free” phase with respect to the “bound” phase for the (200, 82) nuclear
system with and without the Coulomb interaction when the associated phase spaces are explored following the βP constant paths 2 × 10−3 and
1 × 10−4 fm−3 (with the Coulomb interaction) and 3 × 10−3 fm−3 (without the Coulomb interaction); right panel, Relative neutron enrichment
of the “free” phase with respect to the “bound” phase as a function of the source’s isospin in the case of a system with Z = 82, with Coulomb
interaction at 2 and 6 MeV/nucleon excitation energy and βP = 2 × 10−3 fm−3.
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of the standard Weisskopf evaporation scheme as described in
Ref. [11].

Given that during the evaporation stage neutrons are emitted
with the largest probability, one may expect a more symmetric
matter in the asymptotic stage of the reaction with respect to
the breakup stage. However, the dependence of evaporation
probabilities on both fragment average excitation energy and
isospin makes the evaporation effect difficult to anticipate
quantitatively and raises the question of whether isospin
distributions observed in the breakup stage survive in the
asymptotic stage of the reaction. To answer this question,
Fig. 11 illustrates the results obtained at different points of
the phase diagram in the physical case in which the Coulomb
interaction is present. The liquid + undersaturated vapor phase
is represented by (200, 82) with βP = 1 × 10−4 fm−3 and
E = 2 MeV/nucleon; the liquid + saturated vapor coexistence
is represented by (200, 82), βP = 1 × 10−4 fm−3, and E =
6 MeV/nucleon and (50, 23), βP = 1 × 10−3 fm−3, E =
5 MeV/nucleon; the supersaturated vapor phase is represented
by (200, 82) with βP = 1 × 10−4 fm−3, E = 9 MeV/nucleon
and (50, 23), βP = 1 × 10−3 fm−3, E = 8 MeV/nucleon. The
conclusions are that, for the liquid phase, particle evaporation
induces a lowering of the fragment average isospin without
modifying the linear dependence of 〈N/Z〉 on Z. For the
phase-coexistence region, sequential evaporations act such
that the rise-and-fall shape of 〈N/Z〉 versus Z is diminished
without being washed out. This effect is easy to understand if
one keep in mind that the neutron emission is stronger for the
neutron-rich fragments (maximum of 〈N/Z〉 versus Z) with
respect to the neutron-poor fragments from the extremities
of 〈N/Z〉 versus Z distribution. The breakup fragments that
form the supersaturated vapor phase are almost symmetric,
such that sequential particle emission does not change to a
significant extent their isotopic composition. The asymptotic
stage average isospin values corresponding to light charged
particles (Z < 4) have been omitted from Fig. 11 because
of the presence of some irregularities that can be interpreted
as artefacts of the simplified procedure by which secondary
decays have been implemented [11].

V. DO WE HAVE ISOSPIN FRACTIONATION IN
STATISTICAL MULTIFRAGMENTATION MODELS?

Because isospin fractionation was decided by both dy-
namical models and experimental multifragmentation data
analyzing exclusively the isotopic content of light charged
emitted clusters, it would be interesting to check to what
extent our predictions agree with the reported results. To make
this comparison straightforward, I adopt one of the methods
applied by the dynamical models and classify the fragments
as parts of liquid and gas phases according to their mass.
Thus, in the spirit of Ref. [5], here it is assumed that the
collection of fragments with Z � 4 form the “free” phase
and the rest of fragments form the “bound” phase. I prefer
to call the obtained subsystems “free” instead of “gas” and
“bound” instead of “liquid” because the above-mentioned
classification may be done irrespectively of the localization

of the multifragmentation event in the phase diagram, even
outside the phase-coexistence region. The choice of Z = 4 as
criterion for phase definition is arbitrary, and similar results
have been obtained when Z = 2 has been used.

The left-hand panel of Fig. 12 shows the relative neutron
enrichment of the “free” phase with respect to the “bound”
phase for the (200, 82) nuclear system with (without) Coulomb
interaction along the βP = 2 × 10−3 and 1 × 10−4 fm−3 (3 ×
10−3 fm−3) constant paths. As one may see, for all considered
cases 〈N/Z〉free/〈N/Z〉bound is larger than 1, meaning that
isospin distillation takes place and that its exact values depend
on the observables characterizing the state of the source. It
is mentioned at this point that relative neutron enrichment
of the free phase that decreased with increasing energy
was evidenced also by dynamical models [2], a quantitative
comparison is nevertheless impossible because of different
definitions of phases.

The right-hand panel of Fig.12 shows the dependence of the
relative enrichment of the “free” phase as a function of source
isospin. As expected, the more isospin asymmetric the initial
system, the more neutron rich the corresponding “free” phase
obtained by multifragmentations. Similar linear behavior was
reported by dynamical models [2].

An important remark to be made is that, at least in
the framework of the currently used MMM, the neutron
enrichment of the “free” phase with respect to the “bound”
phase is not necessarily connected with phase coexistence
because it manifests even for the (200, 82) with Coulomb
interaction case in which, for freeze-out volumes smaller than
several tens of V0, the employed model does not enter the
phase-coexistence region (left-panel of Fig. 12).

VI. CONCLUSIONS

Fragment isospin distributions have been investigated
with-in the framework of MMM. The obtained distributions
manifest different shapes in the liquid, liquid-gas, and gas
regions of the phase diagram. For small systems with low
excitation energies, mass and charge conservation constraints
modify the shape of 〈N/Z〉 versus Z distributions from one
that monotonically increases to one that has a maximum.
Distributions of the largest fragment in each event expected
to be a good order parameter of the phase transition and
a reliable estimation of the liquid part do not manifest
bimodality in the whole phase-coexistence zone and confirm
the conclusions of Ref. [22], which state that mass conservation
induces modifications of the Y (Zmax) distributions from the
one obtained in infinite systems. Moreover, for low excitation
energies, Y (Zmax) shows bimodality outside the coexistence
region because of the interplay between evaporation and fission
as decay mechanisms. Isospin fractionation is found to be
compatible with a microcanonical multifragmentation case,
and effects of secondary particle emission and isospin of the
source are investigated. Phase classification according to the
cluster size proves that neutron enrichment of the “free” phase
with respect to the “bound” one depends on the source state.
Finally, neutron enrichment of the “free” phase is not a signal
of phase coexistence since it is observed everywhere in the
phase space.
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