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Correlations in microscopic optical model for nucleon elastic scattering off doubly
closed-shell nuclei
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The random phase approximation (RPA) long-range correlations are known to play a significant role in
understanding the depletion of single particle-hole states observed in (e, e′) and (e, e′p) measurements. Here
the RPA theory, implemented using the D1S force is considered for the specific purpose of building correlated
ground states and related one-body density matrix elements. These may be implemented and tested in a fully
microscopic optical model for NA scattering off doubly closed-shell nuclei. A method is presented to correct
for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the
uncorrelated (i.e., Hartree-Fock) and correlated (i.e., RPA) ground states are then challenged in proton scattering
studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations.
Agreement between the parameter free scattering predictions and measurements is good for incident proton
energies ranging from 200 MeV down to approximately 60 MeV and becomes gradually worse in the lower
energy range. Those features point unambiguously to the relevance of the g-matrix method to build microscopic
optical model potentials at medium energies, and emphasize the need to include nucleon-phonon coupling,
that is, a second-order component of the Feshbach type in the potential at lower energies. Illustrations are
given for proton scattering observables measured up to 201 MeV for the 16O, 40Ca, 48Ca, and 208Pb target
nuclei.
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I. INTRODUCTION

Our understanding of the many facets of the nuclear
structure properties has been and still is reliant on the picture of
independent particles moving in a mean potential. This picture
stands at the foundation of the shell model that nowadays
serves routinely as the basis of nuclear structure calculations
and is implicit to the self-consistent mean-field (i.e., Hartree-
Fock) description of nuclear ground states. For independent
particle motion, the occupancy associated to nucleon orbitals
is 1 or 0 depending on whether the single-particle level is
below or above the Fermi energy, respectively.

It is only recently that the quenching of shell-model
occupation probabilities has been disclosed in a dedicated
series of experiments in which incident electrons serve to map
detailed structure properties hard to reach using other probes.
First hints revealing such a quenching came in measurements
of electron scattering from 206Pb and 205Tl, from which the
3s1/2 proton radial wave function was determined. Its shape
is peaked in the central region and close to expectations for a
3s1/2 wave function. Minor adjustment of the 3s-hole strength
provided an improved data prediction [1]. Evidence for partial
occupancy for this orbital was provided later on from a joint
analysis of (e, e′’) and (e, e′p) experiments. The 3s1/2 orbital
was found to be depleted by a (18 ± 9)% amount [2,3]. Today
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the absolute occupation probability of this proton orbital is
evaluated to be 0.76 ± 0.07 [4].

Further detailed information on the single-particle structure
have been recently gained through measurements of the
spectral function S(E, k), where E and k are the removal energy
and momentum, respectively, of a proton in (e, e′p) knockout
experiments. For 208Pb, these measurements performed at high
binding energy and momentum transfer show that mean-field
predictions are lying far below the data, highlighting the need
for consideration of tensor [5,6] as well as short- [7–9] and
long-range correlations beyond the mean field [10–13]. A
wealth of methods and models have been adopted to tackle
this issue. These are the Green’s functions method [14,15],
the variational Monte Carlo method [16,17], the correlated
basis function theory [18], the particle-vibration model [19],
the dispersive optical model extrapolated to the bound-state
region [20–23], and the random phase approximation (RPA)
[24–28]. Among the correlations that have been considered
so far, the long-range ones appear important for curing the
deficiencies associated with the mean-field predictions.

In the present work we investigate the impact that nuclear
long-range correlations have on the interaction of nucleons
incident on doubly closed-shell nuclei, among which includes
208Pb, a nucleus for which many scattering observables have
been measured. In the past, detailed experimental informa-
tion on nuclear structure as gained from electron scattering
measurements played a key role in building effective NN
forces and mass operators for nucleon scattering studies in
the folding model framework [29,30]. Now that a successful
and parameter free NA microscopic optical model (OM) based
on a g-matrix interaction has been established in r space [31],
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it is timely to push the limits of its predictive power using
various microscopic structure information. Several studies
along this line have already been published. For example,
no core shell-model wave functions have been adopted in
successful interpretations of proton scattering measurements
for 12C and light nuclei below and at the neutron drip line
[32–34]. Hartree-Fock predictions based on Skyrme forces
have also been challenged in proton and neutron elastic
scattering studies at medium energy to provide estimates of
neutron skin thickness in 208Pb. Here, the correlated ground
states of stable doubly closed-shell nuclei, built using the finite
range, density-dependent D1S force [35] in the self-consistent
RPA theory [36], are used instead and thoroughly tested.

Our article is organized as follow. The main features of
the fully antisymmetric, microscopic NA optical model are
described in Sec. II. Section III includes a brief presentation
of the HF+RPA theory for establishing our notations and de-
scribes the method used to fix the well-known double counting
problem. RPA predictions are compared to experimental data
for charge and neutron radial shapes of 208Pb in its ground state.
One-body density matrix elements in the correlated ground
state are then provided. Finally, optical model predictions
based on HF and HF+RPA one-body density matrix elements
are compared in Sec. IV to various scattering observables in the
40–201 MeV incident proton energy range for 16O, 40Ca, 48Ca,
and 208Pb and to scattering predictions based on the Skyrme
SkM∗ [37] force. These predictions are of good quality only for
the higher incident energies. The origin of poorer predictions
at the lower energies is discussed in terms of second-order
components of Feshbach type, which are missing in the present
optical model potential.

II. MICROSCOPIC OPTICAL POTENTIAL FROM
THE MELBOURNE g MATRIX

The full details of the Melbourne g matrix optical potential
may be found in Ref. [31], to which we refer the reader. We
present a brief summary of the derivation of the potential,
highlighting those points relevant to the use of RPA densities
in its calculation and the observables obtained therefrom.

In folding models of the optical potential, one starts with a
credible effective NN interaction. In the case of the Melbourne
potential, the effective NN interaction is the g matrix derived
from the Bonn-B NN interaction [38]. The g matrix for infinite
matter is a solution of the Bruckner-Bethe-Goldstone equation
in momentum space, viz.

g(q′, q; K) = V (q′, q) +
∫

V (q′, k′)

× Q(k′, K; kf )

[E(k, K) − E(k′, K)]
g(k′, q; K) dk′, (1)

where Q(k′, K; kf ) is a Pauli operator and medium effects are
included in the energy denominator. Effective g matrices are
obtained in coordinate space for finite nuclei whose Fourier
transforms best map those momentum space solutions. Those
g matrices so obtained contain central, tensor, and two-body
spin-orbit terms. They are also constructed over all two-body
spin and isospin channels, allowing for a self-consistent

specification of proton and neutron scattering, as well as charge
exchange reactions. Those g matrices are then folded with
the ground-state density matrix elements to give the optical
potential for elastic scattering.

The optical potential (OMP) derived therefrom can be cast
in the following form:

U (r, r′; E) = δ(r − r′)
∑
αβ

ραβ

∫
ϕ∗

α(s)gD(r, s; E)ϕβ(s) ds

+
∑
αβ

ραβϕ∗
α(r)gE(r, r′; E)ϕβ(r′)

= UD(r; E)δ(r − r′) + UE(r, r′; E), (2)

where the subscripts D and E designate the direct and exchange
contributions, respectively. The density matrix element ραβ

is defined in terms of the RPA (or HF) ground state |0〉 by
ραβ = 〈0|a+

α aβ |0〉 (see Sec. III). Nuclear structure information
enters the construction of the optical potential in two ways.
The first one is via the density dependence of the g matrix
at the two radii r and r′. The second one is via the one-body
matrix elements ραβ and the specification of the bound-state
single-particle wave functions ϕα and ϕβ . Note that in Eq. (2),
the local and nonlocal radial densities associated to the target
ground state can be recognized, namely

ρ(r) =
∑
αβ

ραβϕ∗
α(r)ϕβ(r) and

(3)
ρ(r, r′) =

∑
αβ

ραβϕ∗
α(r)ϕβ(r′),

respectively. These features clearly show that this kind
of potential cannot be constructed from phenomenological
nuclear densities. Indeed experimental local densities can be
obtained for neutron and charge local radial distributions,
but experimental information on nonlocal densities is not
available.

The main source of nonlocality in the optical potential is
from the exchange term. The direct term resembles a gρ-type
optical potential and by definition is local. The form of the
exchange term necessarily does not follow this construction:
the exchange terms in the folding require that the sum is over
explicit effective NN two-body amplitudes. As such, direct
comparisons are not possible between this form of the optical
potential and those that are local, as constructed from nonlocal
NN amplitudes through local approximations, or as specified
phenomenologically as sums of Woods-Saxon form factors.

To obtain the observables for scattering, the optical po-
tential so obtained is used in the nonlocal integrodifferential
Schrödinger equation, viz.[

h̄2

2µ
∇2 − VC(r) + E

]
�(r) =

∫
U (r, r′)�(r′)dr′, (4)

where VC(r) is the Coulomb potential and the terms because
of the intrinsic spin of the system have been suppressed for
simplicity. The code DWBA98 [39] is used to calculate the
folding potential from the effective NN g matrices and obtain
the relevant scattering observables.
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At low energy, the averaging over the coupling to the
nonelastic channels represented by the g matrix is no longer
valid and the derivation of the optical potential must be done in
terms of explicit channel coupling to open and closed channels.
Such has recently been constructed in terms of the collective
model [40,41].

III. NUCLEAR STRUCTURE

As an introduction to this section, it is important to mention
that our approach is not fully consistent. On the one hand,
we use the g matrix as an interaction between the projectile
and the nucleons in the target, whereas, on the other hand, to
calculate nuclear structure, we consider effective interactions
that have been separately adjusted. As long as we focus on
studying medium energy scattering, one can find justifications
for proceeding in this way. However, at low energy, this
approach would be more questionable and it is likely that
the derivation of an optical potential in the frame of a more
fundamental theory (as in Ref. [42]) should be considered.

A. The mean-field approximation

The simplest description of the nuclear structure is provided
by the self-consistent mean-field theory, that is also called
Hartree-Fock (HF). There, the ground state is a Slater
determinant constructed with individual particle states that are
solutions of the HF equations. In this work, we use the HF
results obtained using two different interactions. One is the
Skyrme SkM∗ [37] interaction, and the other one is the finite-
range, density-dependent D1S interaction [35]. The details
of the HF formalism used with the D1S density-dependent
interaction can be found in [43,44].

To calculate the one-body matrix elements ραβ of Sec. II,
it is convenient to express the HF ground state in second
quantization as

|HF 〉 =
∏
h

a+
h |0〉. (5)

The above product contains only occupied states labeled “h”
(hole states) according to the usual terminology. The creation
operator a+

h associated with the creation of a hole in a HF single
particle state is defined with: ϕh(r) = 〈r|a+

h |0〉, where |0〉
is the single particle vacuum.

By introducing these notations, the matrix elements ραβ

read

ραβ = 〈HF |a+
β aα|HF 〉. (6)

and are diagonal (ρh,h = 1, ρp,p = 0) in the HF approxima-
tion.

B. Description of the ground state beyond
the HF approximation

The density-dependent effective interaction D1S has suc-
cessfully been used in various extensions of the mean-field
theory. Among them, the one of interest for our study is the
microscopic description of collective excitations for closed
shell nuclei as described in Ref. [36]. We recall some essential

features of this approach and make the link with the usual
RPA theory. This will permit us to define the two variants of
correlated ground states that we propose for the description of
the target.

1. Ground-state correlations induced by collective excitations

The approach of Ref. [36] is based on the quadratic form
introduced to study the stability conditions of the HF solutions.
It is obtained by performing a Taylor expansion of the energy
E up to second order in the variation of the density matrix
around the equilibrium HF density (ρ(0)). The quadratic form
in question is expressed in terms of the matrix(

A B

B∗ A∗

)
, (7)

with elements

A(ph),(p′h′) = δpp′δh,h′(εp − εh) +
(

∂2E/∂ρph

∂ρp′h′

)
ρ=ρ(0)

, (8)

and

B(ph),(p′h′) =
(

∂2E

∂ρph∂ρh′p′

)
ρ=ρ(0)

, (9)

where εp and εh are the HF single-particle energies for a
particle state and a hole state, respectively. This matrix is used
to define a set of RPA equations [36,45], namely(

A B

B∗ A∗

) (
X

Y

)
= ω

(
X

−Y

)
, (10)

where ω is a set of eigenvalues corresponding to a set of
eigenvectors with components X and Y. The definition of the
matrix (7) presents the advantage to show that, because of its
explicit dependence on the density, the particle-hole matrix ele-
ments of D1S must contain the so-called rearrangement terms
in addition to the usual ones. Notice also that one retrieves
the usual particle-hole matrix elements when the interaction
does not depend on the density. Once such prescription is
adopted for defining the particle-hole vertices, the approach
developed in Ref. [36] follows closely the standard RPA theory
as described extensively in Ref. [45]. Below we only give the
relevant definitions that introduce the quantities of interest for
this work. We express the formalism in a representation that
accounts for rotational invariance and reflection symmetries
of the nuclear interaction and the mean field as well (see
Appendix A). Creation and annihilation operators are defined
through a Bogolyubov transformation


+
i,(π,J,M) =

∑
p,h

X
π,J
i,(p,h)A

+
(p,h)(π, J,M)

+Y
π,J
i,(p,h)Ā(p,h)(π, J,M),

(11)

̄i,(π,J,M) =

∑
p,h

Y
π,J
i,(p,h)A

+
(p,h)(π, J,M)

+X
π,J
i,(p,h)Ā(p,h)(π, J,M),

which mixes the creation and destruction operators,
A+

(p,h)(π, J,M) and Ā(p,h)(π, J,M) respectively, of indepen-
dent particle-hole pairs with definite angular momentum and
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parity. The amplitudes X and Y are the components of the
solutions of the RPA equations defined in Eq. (10). Because we
work within the quasiboson approximation, the Bogolyubov
transformation is nothing but a canonical transformation
between two sets of bosons. Excitation modes of the nucleus
are then defined through the action of any creation operator

+ onto the quasiboson vacuum |0̃〉 of the destruction operator

. This is expressed as follows:

|i, (π, J,M)〉 = 
+
i,(π,J,M)|0̃〉,

(12)

i,(π,J,M)|0̃〉 = 0 ∀i, π, J,M.

The quasiboson vacuum can be constructed explicitly from the
vacuum |HF 〉 of the A(p,h)(π, J,M) operators. According to
Ref. [45] it reads

|0̃〉 = NeẐ|HF 〉, (13)

with

Ẑ = 1

2

∑
π,J

∑
(ph),(p′h′)

Z
π,J
(ph),(p′h′)[A

+
(p,h)(π, J ) ⊗ A+

(p′,h′)(π, J )]0
0,

and the normalization N defined as

N = 〈HF |0̃〉.
This form shows clearly that the quasiboson vacuum is
a superposition of (2p-2h), 2 (2p-2h). . . n (2p-2h) exci-
tations coupled to zero angular momentum as it should,
because the total spin of the ground state is zero for the
nuclei under consideration. In the present work and for
future applications to inelastic scattering we assume that
the quasiboson vacuum [Eq. (13)] and the excited modes
[Eq. (12)] provide a reasonable description of the ground state
and nuclear excitations of the target.

At this stage it is worth pointing out that there exists another
explicit form of the correlated ground state that has been
derived [25] by summing up the RPA diagram to all orders.
This important work shows that the resulting ground state,
denoted here as |RPA〉, has exactly the same structure as the
quasiboson vacuum, but it reveals also that the quasiboson
counts twice the lowest-order term of the perturbation theory.
How it affects mean values of one body operator is now shown
on the matrix elements of the one-body density operator.

2. One-body density matrix for the RPA ground state

The one-body density matrix calculated in correlated
ground states is no longer diagonal but contains all the elements
of the form ρh,h′ and ρp,p′ . The nondiagonal particle-hole
matrix elements vanish because of the structure of the ground
state. Moreover, on the account of symmetries it can be shown
that the density matrix reduces to diagonal block matrices
labeled by (l, j, τ ) and independent of the projection m of the
angular momentum j, namely

ρ(α),(β) = δlα,lβ δjα,jβ
δτα,τβ

ρ(nα,lα,jα,τα),(nβ ,lα,jα,τα). (14)

Finally, it is often convenient in the formalism to perform the
summation over m in advance and to consider the following

quantities instead

ρ̄(α),(β) =
∑
m

ρ(α),(β) = (2jα + 1)ρ(α),(β). (15)

We next provide expressions for these quantities in the cases
of the quasiboson vacuum and RPA vacuum

ρ̄(α),(β) = 〈0̃|
∑
m

a+
(β)a(α)|0̃〉,

(16)
ρ̄RPA

(α),(β) = 〈RPA|
∑
m

a+
(β)a(α)|RPA〉.

The calculation in the quasiboson vacuum is straightfor-
ward. We give the result only for the particle and hole cases,
respectively, as follows:

ρ̄(α),(β) = δ(α),(β)

∑
i,J,π,h

(2J + 1)Yπ,J
i,(α,h)Y

π,J
i,(β,h)δτh,τα

, (17)

and

ρ̄(α),(β) = δ(α),(β)

[
δnα,nβ

−
∑

i,J,π,h

(2J + 1)Yπ,J
i,(α,h)Y

π,J
i,(β,h)δτh,τα

]
,

with the definition δ(α),(β) = δlα,lβ δjα,jβ
δτα,τβ

.
To calculate the RPA one-body matrix elements one refers

to Ref. [24], where expressions of the occupation probabilities
of single-particle orbitals in the RPA state can be found.
Although such probabilities involve only diagonal matrix
elements of the density, it is not difficult to generalize an
expression for the nondiagonal ones. It turns out that the
one-body matrix elements in the RPA state and those in the
quasiboson vacuum [Eq. (17)] differ only by the lowest-order
contribution in the perturbation theory. The correction terms
are given for particle and hole cases, respectively, as

ρ̄(α),(β) = −1

2
δ(α),(β)

∑
J,π

(2J + 1)

×
∑

p′,h′,h

B
π,J
(α,h),(p′,h′)B

π,J
(β,h),(p′,h′)δτα,τh

[ε(p′,h′) + ε(α,h)][ε(p′,h′) + ε(β,h)]
, (18)

and

ρ̄(α),(β) = −1

2
δ(α),(β)

∑
J,π

(2J + 1)

×
∑

p,p′,h′

B
π,J
(p,α),(p′,h′)B

π,J
(p,β),(p′,h′)δτα,τp

[ε(p′,h′) + ε(p,α)][ε(p′,h′) + ε(p,β)]
,

where the ε(p,h) = εp − εh are the free particle-hole pair ener-
gies and B

π,J
(p,h),(p′,h′) the values defined in Eq. (9) for particle-

hole pairs with good angular momentum J and parity π . With
these notations, the RPA density matrix reads as follows:

ρ̄RPA
(α),(β) = ρ̄(α),(β) + ρ̄(α),(β). (19)

This expression is folded with the Melbourne g matrix [see
Eq. (2)] and the optical potential so obtained is then used to
calculate elastic scattering observables.
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FIG. 1. Values of the quantities θ̄ π,J
α defined in the text. We

present the contributions for 208Pb, α = 1 → 20 first states of each
(π , J) block.

3. Structure of correlated ground states

From inspection of the vacuum structure [Eq. (13)] as
outlined in Appendix B, it is clear that the θα amplitudes
[see Eq. (B3)] provide a direct measure of ground-state
correlations. Taking into account the (2J + 1)-fold degeneracy
of the θαs in each (π, J ) subspace, the ratio

θ̄ π,J
α = (2J + 1)

(2JRef + 1)
θπ,J
α , (20)

is a measure of the relative importance of each subspace, with
JRef taken as the multipolarity of the one that provides the main
contribution to the overall correlations (here, JRef = 3). These
ratios shown in Fig. 1 for 208Pb indicate that some natural and
unnatural parity states of all (π, J ) subspaces, even high-spin
ones, are worthy of consideration for building the correlated
ground state.

As the correlations are smearing out the occupation proba-
bility distribution of proton and neutron single-particle levels
around their respective Fermi energies, the radial ground state
densities get depleted toward the nuclear center. This effect
can be seen in Fig. 2 where measured charge and neutron
distributions are shown together with our HF and HF+RPA
predictions for 208Pb. Calculated root-mean-square (rms) radii
of proton, charge, and neutron distributions as well as neutrons
skins are gathered in Table I for 208Pb as well as for 16O,
40Ca, and 48Ca. A good overall agreement between the RPA
predictions and experimental values is obtained.

IV. ANALYSES OF SCATTERING OBSERVABLES

To test the predictions of the OMP described above, an
incident proton experimental database was built, comprising
differential cross sections σ (θ )/σRuth, analyzing powers Ay(θ )
and spin rotation functions R(θ ) and Q(θ ). References to
these data are provided in Table II only for 208Pb. The
incident energies of present interest are limited to the 40–
201 MeV range where the Melbourne OMP is most successful

FIG. 2. Charge and neutron radial densities of 208Pb. Comparisons
between experimental data [46,47] (dotted curves), correlated (full
curves) and uncorrelated (dashed curves) calculations.

[31]. For all the comparisons between model predictions and
experimental data shown below the continuous and dashed
curves represent the OMP calculations based on one-body
density matrix elements of correlated (RPA) and uncorrelated
ground states (HF), respectively.

A. Incident protons

Proton scattering experiments have provided a wealth of
valuable information on angular distributions for various
observables at many incident energies. For this reason, the
proton database we have formed in Table II serves as the
main playground for detailed OMP analyses. We also show
some illustrations for the three other stable doubly closed-shell
nuclei 16O, 40Ca, and 48Ca.

1. 208Pb

The differential cross sections discussed below are normal-
ized to Rutherford scattering cross sections to magnify differ-
ences existing between our OMP predictions and scattering
data. This comparison is shown in the upper panel of Fig. 3.
Similar comparisons for Ay(θ ) are shown in the lower panel
of Fig. 3.

For the comparison between solid (RPA-based) and dashed
(HF-based) curves for cross sections, it turns out that the
former is systematically lower over most scattering angles.
Compared to OMP predictions based on the Hartree-Fock
ground-state density matrix, those using the RPA one are
all in closer agreement with the spread of cross-section data
except at lower incident energies where the calculated minima
seem too deep. This is a known low-energy shortcoming of
the g-folding model that has been noticed previously [64].
Nevertheless, the agreement between RPA-based calculations
and measured differential cross sections is good, especially
at the higher incident energies, where HF- and RPA-based
calculations differ the most, and considering that no parameter
was adjusted.

Extending the comparison from experimental cross sections
to analyzing powers, it may be seen in the lower part of
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TABLE I. Proton, charge, and neutron rms radii for 16O, 40Ca, 48Ca, and 208Pb. Comparisons
between present HF and HF+RPA predictions, and experimental values . The neutron skin rnp is
defined as rnp = 〈r2

n〉1/2 − 〈r2
p〉1/2. The estimated 〈r2

n〉1/2 and rnp values of Refs. [49,50] are from
systematics.

Nucleus 〈r2
p〉1/2 〈r2

ch〉1/2 〈r2
n〉1/2 rnp

(fm) (fm) (fm) (fm)

Exp 2.730(25) [48]
16O HF 2.669 2.718 2.647 −0.022

HF+RPA 2.658 2.728 2.678 −0.020

−0.040 [50]
Exp 3.482(25) [48] 3.312(2) [49]

−0.065(2) [49]
40Ca HF 3.408 3.470 3.365 −0.043

HF+RPA 3.421 3.483 3.381 −0.040

+0.128 [50]
Exp 3.470(9) [48] 3.436(23) [49]

+0.079(23) [49]
48Ca HF 3.441 3.496 3.588 +0.144

HF+RPA 3.455 3.510 3.590 +0.130

+0.15(2) [50]
Exp 5.503(7) [48] 5.511(11) [49] +0.12(7) [51]

+0.097(14) [49]
208Pb HF 5.432 5.475 5.567 +0.135

HF+RPA 5.467 5.504 5.592 +0.125

Fig. 3 that the correlated ground-state specifications lead to
a excellent overall OMP description of the Ay(θ ) data spread,
especially at medium angles for energies E � 150 MeV.
A similar statement is made for the spin-rotation functions
R(θ ) and Q(θ ) measured at 65 and 201 MeV, respectively.
As can be seen in Fig. 4 the phasing and amplitude of these
measured observables are well accounted for by our OMP
calculations, although these observable predictions do not
seem very sensitive to RPA correlations.

The increasing mismatch between experimental data and
calculations as incident energies decrease is most likely related
to effects that are outside the g matrix derivation. These
effects stem from particle-phonon couplings that give rise to a
second-order component (Feshbach term) in the optical model
potential [65–68]. A full calculation of medium energies OMPs
should include both (and avoid double counting) the g matrix
and the Feshbach components whose relative weights are
expected to change from low to high incident energies. Thus,

TABLE II. σ (θ )/σRuth, Ay(θ ), R(θ ), and Q(θ ) database for proton
scattering off 208Pb.

Energy (MeV) Ref. Energy (MeV) Ref.

40 [52] 104.4,121.2 [53]
45,47.3 [54] 156 [55]
61.4 [56] 160 [57]
65 [58] 182.4 [53]
79.9 [53] 185 [59]
97 [59] 201 [60–63]

the disagreements between our pure g-matrix calculations
and data can be seen as a measurement of the effects of
the neglected collective inelastic channel contributions. Those
effects become sizable below 60 MeV, the region where
collective excitations are expected to take place in nuclei.
Contributions from inelastic channels result in an increase in
the imaginary component of the OMP. To estimate the ampli-
tude of the the imaginary OMP correction needed to account
for the experimental data at 40 MeV, a sensitivity calculation
was performed showing that an upward renormalization of the
imaginary OMP component of the order of 25% is necessary
to account for the back angles data. We can thus conclude that
the changes to the imaginary component of the OMP induced
by the coupling to collective states are very sizable at low
energies and that an optical model containing only g-matrix
components is more suited to describing scattering at energies
greater than 60 MeV.

2. Other doubly magic nuclei

Calculations were also performed for protons incident
on the other stable doubly magic nuclei 16O, 40Ca, and
48Ca. Although these calculations were performed for all
incident energies where experimental data are available,
Fig. 5 only displays comparisons at highest energies, where
the difference between HF- and HF+RPA-based OMPs is the
most striking. Those results are representative of the agreement
obtained over the range from 60 to 201 MeV. For these
doubly magic nuclei, comparison between calculations using
correlated and uncorrelated ground-state density matrices, and
the experimental data, allows us to confirm the conclusions of
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FIG. 3. Differential cross sections σ (θ )/σRuth and analyzing powers Ay(θ ) for protons incident on 208Pb. Comparison between data (symbols)
and OMP predictions based on correlated (solid curves) and uncorrelated (dashed curves) descriptions of the ground state. Cross sections are
offset by factors 10, whereas analyzing powers are shifted by 2.

the 	p + 208Pb scattering study with a larger data sample. Below
60 MeV, our predictions exhibit deficiencies similar to those
encountered for lead.

B. Incident neutrons

Although some neutron scattering data is available [69–71]
at neutron energies higher than 40 MeV, those data sets (with

the notable exceptions of Refs. [70,71]) do not extend far
enough in angles to allow for discrimination between the
nuclear structure models used as a basis for our OMP analyses.
Thus, those data sets can be described in a satisfactory way
above 60 MeV by our OMP using either the HF or RPA
one-body density matrix. Moreover, when comparing incident
proton and incident neutron calculations, no effect specific to
incident neutrons was observed, and as for incident protons, the
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FIG. 4. Spin rotation functions R(θ )
and Q(θ ) at 65 and 201 MeV for protons
incident on 208Pb. Comparisons between
experimental data (symbols) and present
OMP calculations for correlated (solid
curves) and uncorrelated (dashed curves)
ground state descriptions.

RPA-based neutron-nucleus OMP calculations predict cross
sections that are systematically lower at large angles than their
HF counterparts. Nevertheless, the scarcity of high-energy,
large angular range neutron scattering data calls for new
measurements of the quality of those in Refs. [70,71], may
be at higher energy.

We conclude these analyses with making the statement
that the RPA correlations have sizable impacts on the OMP
predictions only at the higher incident energies of present
interest and for center-of-mass scattering angles larger than
typically θ ∼ 30◦. This statement is relevant to 16O, 40Ca,
48Ca, and 208Pb target nuclei. This statement should, however,

FIG. 5. Differential cross sections σ (θ )/σRuth for protons incident
on 16O, 40Ca, and 48Ca. Comparison between experimental data
(symbols) and OMP predictions based on correlated (solid curves) and
uncorrelated (dashed curves) descriptions of the ground state. Cross
sections offset factors and proton incident energies are indicated on
the figure. Data are taken from Ref. [72] for 16O and 40Ca and from
Ref. [73] for48Ca.

be moderated by the fact that the pure g-matrix treatment of
the OMP used here does not take into account the coupling to
collective states that becomes important at low (E < 60 MeV)
projectile energies.

C. Discussion

As discussed in Sec. IV A 1, we have seen evidence that the
g-matrix approach to the OMP is more relevant for the higher
part of our incident energy range, where effects of coupling to
collective states produce negligible corrections to the g-matrix
treatment. For this reason the following discussion focuses
only on the higher energy range (60–200 MeV), where our
physical conclusions will not be affected by the absence of
proper treatment of coupling to collective states.

1. Probing ground-state correlations

In Sec. IVA, we have shown that similarly to electron
scattering, nucleon scattering is sensitive to small details
of the nuclear structure of the target nuclei, such as those
stemming from the presence of long-range correlations in
the target ground state. Moreover, including such correlations
does improve the agreement between calculated and measured
scattering cross sections. Next comes the difficult question
of identifying the features of the correlated density matrix
that nucleon scattering is sensitive to. Looking at Fig. 3 can
provide us with hints to that effect: the differences between
HF- and RPA-based calculations can be seen to be stronger at
large angles, suggesting that such differences appear when
more interior regions of the target are probed. Replotting
the p+208Pb scattering cross sections as functions of the
momentum transfer q (see Fig. 6) confirms that, indeed, for all
energies, differences between HF- and RPA-based calculations
are associated with values of q larger than 1.7 fm−1 and thus
deeper regions of the target. Figure 2 displays the radial charge
density of 208Pb calculated with (solid curve) and without
(dashed curve) RPA correlations in the ground state, showing
the well-known effect of RPA correlations, i.e., depleting
the interior of the density distributions and enlarging the
distributions rms radii. The fact that only q � 1.7 fm−1 cross
sections are impacted by RPA correlations suggests that this
value of the momentum transfer constitutes the threshold above
which the depletion of the probed inner surface regions of the
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FIG. 6. Proton elastic scattering from 208Pb: differential cross
sections σ/σRuth as functions of the momentum transfer q. For more
details, see the legend to Fig. 3.

target becomes sizable. Because of the absorption, the interior
region of the target cannot be probed. However, because the
density matrix used as an input to our microscopic OMP
calculations conveys much more complex nuclear structure
information than does the radial density alone, disentangling
the effects of the RPA correlations on nucleon scattering is
a much more difficult task than analyzing the q dependence
of the radial density. Therefore, unlike the case of electron
scattering, such an analysis can at best provide qualitative
insight into the actual sensitivity of nucleon scattering to the
presence of RPA correlations in the one-body density matrix
of the target.

2. Double counting

Further tests of the sensitivity of our scattering pre-
dictions to changes in matter distributions have been per-
formed by ignoring the ρ double counting correction terms
[see Eqs. (18) and (19)]. Elastic scattering calculation results
performed with (solid curve) and without (dashed curve) these
correction terms are shown in Fig. 7 for 201-MeV protons
incident on 208Pb. First, Fig. 7 shows that including or ignoring
the ρ correction produces nonnegligible changes in the
calculated scattering cross section. Moreover, except for a
local improvement at θ = 54◦ over those using ρ �= 0 (solid
curve), the agreement between data and the OMP calculation
with ρ = 0 is worse all over the range θ � 34◦. Setting ρ

to 0 leads to increasing the rms radii from 〈r2
ch〉1/2 = 5.504 fm

(ρ �= 0, see Table I) to 〈r2
ch〉1/2 = 5.517 fm (ρ = 0), a value

falling apart from the experimental result 〈r2
ch〉1/2 = 5.503(7)

fm (see Table I). The 208Pb neutron and proton radial shapes
calculated assuming ρ = 0 (dotted curves) and ρ �= 0 (full
curves) are shown in the insert of Fig. 7. The above discussion

FIG. 7. Differential cross sections σ (θ )/σRuth for 201 MeV
protons incident on 208Pb. Comparison between experimental data
(symbols) and OMP predictions based on correlated (solid curves),
correlated without double counting corrections (dashed curves), and
Hartree-Fock SkM∗ (dotted curve) descriptions of the ground state.
The insert shows comparison between proton and neutron radial
densities for correlated (solid curves) and correlated without double
counting corrections (dashed curves) descriptions of the ground state.

shows that the ρ double counting correction to the RPA
density matrix should not be ignored in scattering calculations.

3. Skyrme Hartree-Fock model

In recent years, Skyrme Hartree-Fock models have been
considered to assess the neutron rms radius in 208Pb [74].
Furthermore, various Skyrme force parametrizations have
been tested in NA g-folding model calculations to discern
which one provides the best representation of the neutron
density. As a result, it turns out that SkM∗ seems appropriate
when combining analyses of electron and nucleon scattering
data. g-folding model calculations with HF/SkM∗ as input
have again been performed and compared with calculations
based on the present correlated ground-state densities. The
comparison made for (p, p) scattering off 208Pb at 201 MeV
is shown in Fig. 7 where the dotted and solid curves are
for results from the HF/SkM∗ and HF+RPA/D1S based
OMPs, respectively. The dotted and solid curve overlap
each other over most of the angular range, except perhaps
for angles above 50◦. This is not surprising because both
HF/SkM∗ and HF+RPA/D1S structure calculations provide
nearly identical radial matter distributions and neutron skins
for 208Pb. However, this similarity conceals more fundamental
differences: whereas the SkM∗ interaction was designed to
reproduce the measured charge radii of many stable nuclei
within the HF framework only (its parameters take care of
correlations present in nuclear ground states in an effective
way at the mean-field level), the D1S interaction is designed
not to include such correlation effects in its parametrization,
so that correlations can be explicitly taken care of, in a
detailed way, at a level that goes beyond that of the mean-field
approximation.
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V. CONCLUSIONS

We present a comprehensive analysis of ground-state struc-
ture properties of doubly closed-shell nuclei, together with
the impacts they have on the interpretation of nucleon elastic
scattering observables within the Melbourne g-folding model.
Long-range correlations are treated in the self-consistent RPA
theory implemented with the D1S force, and the long-standing
problem relevant to double counting is solved to calculate
local and nonlocal densities. The theoretical framework that
in the past proved successful in the interpretation of electron
scattering measurements is shown to be equally successful
in the analyses of nucleon elastic scattering between 60 and
201 MeV. All the measured differential cross sections, ana-
lyzing powers and spin-rotation functions are well described,
with no adjusted parameter. Turning off RPA correlations
(or not implementing them properly, i.e., without considering
double counting corrections) negatively affects the agreement
between experimental data and calculations, an effect that
becomes more and more sizable as incident energy and
momentum transfer increase. It seems plausible that the
differences observed between predictions are strongly tied
to differences between correlated and uncorrelated matter
densities only in the outer and inner surface regions.

Another important lesson that can be learned from the
present study is related to the validity of a pure g-matrix
approach of the OMP as a function of projectile energies.
Whereas at high energies pure g matrix seems to be satisfactory
as far as reproducing elastic scattering data is considered, at
lower energies (E < 60 MeV), the disagreement between
measured and calculated elastic scattering cross sections
becomes sizeable. We attribute that disagreement to the
components of the OMP that are not included in the g matrix:
the coupling to collective excitations of the target. Indeed a
25% renormalization of the imaginary OMP would be needed
to account for the 40 MeV experimental data at the back angles.
Although a study of the OMP, including both the g matrix and
coupling to collective excitation components (also avoiding
double counting) is outside the scope of the present article, our
work highlights the necessity of such a treatment for projectile
energies around 40 MeV, where none of those two components
dominate. On the other hand, for energies between 60 and
200 MeV, the g-matrix component seems to be dominant, and
conversely, the effect of coupling to collective states can be
neglected (or more precisely mostly reduces to the g-matrix
component which is already included). In this energy range,
the Melbourne g matrix produces a good approximation of the
“true” OMP and can be used as a tool to probe details of the
nuclear structure of the target.

Finally, because in RPA theory the correlated ground
state happens to be the vacuum on which excited states are
built as quasibosons excitations, a framework is at hand for
extending our g-folding model analyses from elastic scattering
to inelastic scattering from low to high excitation energy levels.
Work along this line is in progress.

ACKNOWLEDGMENTS

We acknowledge the usefulness of discussions with S. Peru
on the RPA formalism and codes. We are also deeply indebted

to J. Raynal for his relentless support of his microscopic
DWBA code and for invaluable insights into many obscure
but nevertheless very important points.

APPENDIX A: DEFINITION

The Hartree-Fock solutions in the spherical case take the
form

〈x|(nlj ),m, τ 〉 = Rτ
nl(r)il[χ1/2(σ ) ⊗ Y l(�)]jmχ1/2(τ ). (A1)

The operator a+
(nlj ),m,τ creates a particle in this state and its

hermitian conjugate defines the destruction operator a(nlj ),m,τ .
It is convenient to define destruction operators ā(nlj ),m,τ

through the relation

ā(nlj ),m,τ = (−)j+ma(nlj ),−m,τ . (A2)

Indeed, with this definition, both a+
(nlj ),m,τ and ā(nlj ),m,τ

transform under rotations such as the component m of an
irreducible tensor of rank j. Consequently creation operators of
particle-hole pairs of definite angular momentum are readily
constructed with the usual rules for coupling two tensors:

A+
(p,h)(π, J,M) = [a+

(p),τ ⊗ ā(h),τ ]JM

=
∑

mp,mh

C
jp j J

mpmhM
a+

(p),mp,τ ā(h),mh,τ . (A3)

The parity π of the particle-hole pair that we indicate explicitly
is defined by: π = (−)lp−lh . As we did for the fermions, we
define operators Ā

Ā(p,h)(π, J,M) = (−)J−MA(p,h)(π, J,−M), (A4)

which annihilate particle-hole pairs of angular momentum J
and projection M. As a consequence, by mixing A+ and Ā,
the Bogolyubov transformation defines operators 
+ and 
,
which respectively create and annihilate collective modes of
definite angular momentum and parity. Finally, let us also
recall that we consider only neutron and proton particle-hole
pairs and consequently τp = τh.

APPENDIX B: THE QUASIBOSON VACUUM

The expression of the quasiboson vacuum takes a very
simple form in the so-called canonical representation defined
as follows

B+
α (π, J,M) =

∑
(ph)

D
π,J
α,(ph)A

+
(ph)(π, J,M),

(B1)
B̄α(π, J,M) =

∑
(ph)

D
π,J
α,(ph)Ā(ph)(π, J,M).

The transformation D is an orthogonal transformation that
mixes separately the creation and destruction operators of
the original particle-hole pairs (it is orthogonal because our
Bogolyubov transformation is real). It is defined by solving
the eigenvalues problem∑

(p′h′)

[Ỹ π,J Y π,J ](ph),(p′h′)D
π,J
α,(p′h′) = ρπ,J

α D
π,J
α,(ph),

(B2)
[Ỹ π,J Y π,J ](ph),(p′h′) =

∑
i

Y
π,J
(ph)Y

π,J
(p′h′).
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In this representation, the vacuum reads

|0̃〉 =
∏
π,J

(∏
α

ch θπ,J
α

)(2J+1)

eẐ|HF 〉,

with

Ẑ = 1

2

∑
π,J,α

th θπ,J
α

∑
M

B+
α (π, J,M)B̄α(π, J,M)

= 1

2

∑
π,J,α

th θπ,J
α Ĵ [B+

α (π, J ) ⊗ B̄α(π, J )]0
0. (B3)

The angle θπ,J
α is related to the eigenvalues ρπ,J

α through
the relation:

th θπ,J
α =

√
ρ

π,J
α

1 + ρ
π,J
α

. (B4)

This form shows clearly that the θπ,J
α s provide a direct

measure of the correlations that are induced by the RPA
modes.
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[44] J. Dechargé, M. Girod, D. Gogny, and B. Grammaticos, Nucl.

Phys. A358, 203c (1981).
[45] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, New York, 1980).
[46] B. Frois, J. B. Bellicard, J. M. Cavedon, M. Huet, P. Leconte,

P. Ludeau, A. Nakada, Phan Zuan Ho, and I. Sick, Phys. Rev.
Lett. 38, 152 (1977).

[47] V. E. Starodubsky and N. M. Hintz, Phys. Rev. C 49, 2118
(1994).

[48] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl.
Data Tables 36, 495 (1987).

[49] B. C. Clark, L. J. Kerr, and S. Hama, Phys. Rev. C 67, 054605
(2003).

[50] A. Trzcinska, J. Jastrzebski, P. Lubinsky, F. J. Hartmann,
R. Schmidt, T. von Egidy, and B. Klos, Phys. Rev. Lett. 87,
082501 (2001).

[51] M. Csatlos et al., Nucl. Phys. A719, 304c (2003).
[52] L. N. Blumberg, E. E. G. A. van der Wende, A. Zucker, and

R. H. Bassel, Phys. Rev. 142, 812 (1966).
[53] A. Nadasen, P. Schwandt, P. P. Singh, W. W. Jacobs, A. D.

Bacher, P. T. Debevec, M. D. Kaitchuck, and J. T. Meek, Phys.
Rev. C 23, 1023 (1981).

[54] W. T. H. Oers, H. Haw, N. E. Davison, A. Igemarsson,
B. Stagerstrom, and G. Tibell, Phys. Rev. C 10, 307 (1974).

[55] V. Comparat, R. Frascaria, N. Marty, M. Morlet, and A. Willis,
Nucl. Phys. A221, 403 (1974).

[56] C. B. Fulmer, J. B. Ball, A. Scott, and M. L. Whiten, Phys. Rev.
181, 1565 (1969).

014605-11



DUPUIS, KARATAGLIDIS, BAUGE, DELAROCHE, AND GOGNY PHYSICAL REVIEW C 73, 014605 (2006)

[57] P. G. Ross and N. S. Wall, Phys. Rev. B 140, 1237 (1965).
[58] H. Sakagushi, M. Nakamura, K. Hatakama, A. Goto, T. Noro,

F. Ohtani, H. Sakamoto, H. Ogawa, and S. Kobayashi, Phys.
Rev. C 26, 944 (1982).

[59] P. Schwandt, H. O. Meyer, W. W. Jacobs, A. D. Bacher, S. E.
Vigdor, M. D. Kaitchuck, and T. R. Donoghue, Phys. Rev. C 26,
55 (1982).

[60] D. A. Hutcheon et al., in Polarization Phenomena in Nuclear
Physics, Proceedings of the Fifth International Symposium on
Polarization Phenomena in Nuclear Physics, Santa Fe, AIP Conf.
Proc., No. 69, edited by G. G. Holsen, R. H. Brown, N. Jarnie,
W. W. Mc Naughton, and G. M. Hale (AIP, New York, 1981),
p. 454.

[61] M. Ju, M. S. thesis, Simon Fraser University, 1987.
[62] N. Ottenstein, S. J. Wallace, and J. A. Tjon, Phys. Rev. C 38,

2272 (1988).

[63] L. Lee et al., Phys. Lett. B205, 219 (1988).
[64] P. K. Deb, K. Amos, and S. Karataglidis, Phys. Rev. C 62, 037601

(2000).
[65] H. Feshbach, Ann. Phys. (NY) 5, 357 (1958).
[66] H. Feshbach, Ann. Phys. (NY) 19, 287 (1962).
[67] C. Rao, M. Reeves, and G. Satchler, Nucl. Phys. A207, 182

(1973).
[68] N. Vinh Mau and A. Bouyssy, Nucl. Phys. A257, 189

(1976).
[69] J. H. Osborne et al., Phys. Rev. C 70, 054613 (2004).
[70] J. Klug et al., Phys. Rev. C 67, 031601(R) (2003).
[71] J. Klug et al., Phys. Rev. C 68, 064605 (2003).
[72] H. Seifert et al., Phys. Rev. C 47, 1615 (1993).
[73] A. E. Feldman et al., Phys. Rev. C 49, 2068 (1994).
[74] S. Karataglidis, K. Amos, B. A. Brown, and P. K. Deb, Phys.

Rev. C 65, 044306 (2002).

014605-12


