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Systematics of the α-decay to rotational states
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We analyze α decays to rotational states in even-even nuclei by using the stationary coupled channels approach.
Collective excitations are described by the rigid rotator model. The α-nucleus interaction is given by a double
folding procedure using M3Y plus Coulomb nucleon-nucleon forces. We use a harmonic oscillator repulsive
potential with one independent parameter, to simulate the Pauli principle. The decaying state is identified
with the first resonance inside the resulting pocketlike potential. The energy of the resonant state is adjusted
to the experimental Q value by using the depth of the repulsion. We obtained a good agreement with existing
experimental data concerning total half-lives and decay widths to J = 2+ states by changing the factor multiplying
the nucleon-nucleon interaction according to the rule va = 0.668 − 0.004 (A − 208). Concerning the decay
widths to J = 4+ states we obtained a good agreement for Z = 90 neutron chain and a satisfactory description
for Z = 92, 96, and 98, chains. It is possible to improve the agreement concerning transitions to J = 4+ states
by considering a constant quenching strength va = 0.6 and by changing the width of the Gaussian describing the
α-cluster density according to the rule b = 1.744 − 0.032 (A − 208). We found out that the computed widths to
excited states are correlated with the corresponding deformation parameters. We conclude that the α-decay fine
structure is a sensitive tool to probe fundamental aspects of the effective nuclear interaction and its dependence
on the α clustering.
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I. INTRODUCTION

The importance of the Coulomb interaction for the α-decay
width is well known [1]. It defines the probability for a
preformed α particle to penetrate quantum-mechanically the
electrostatic barrier. The relative values of half-lives can
be satisfactorily described within this simple picture. To
describe absolute half-lives it is also necessary to consider the
α-particle spectroscopic factor, or preformation probability,
multiplying the barrier penetrability. This factor was intro-
duced within the R-matrix theory in Refs. [2–4]. It is defined
by the square of the overlap between the internal wave function
and the product of the daughter and α-particle wave functions.

The first systematic analysis of α-decay widths in even
and odd-mass actinide nuclei was performed in Ref. [5], by
using the pairing approach for the preformation probability
and spherical penetration factors. Very recently we performed
a systematic analysis of all measured decays between ground
states by using a similar paring interaction but including
single particle configurations in continuum and a deformed
penetration factor. We evidenced the important role played by
the preexisting α clustering [6] in addition to the shell-model
preformation.

For transitions between ground states the preformation
factor is a coherent superposition of many single-particle
configurations, including states in continuum and therefore the
decay width is not very sensitive to the nuclear structure details.
The situation becomes quite different for transitions to excited
states, because only those single-particle states that are around
the Fermi surfaces are involved. Therefore decay widths to
excited states are very sensitive to the structure of the wave
function in the daughter nucleus. To separate the exponential
dependence between the decay width and Q value one extracts

the barrier penetration by introducing the so-called hindrance
factors (HF) [7]. They define the ratio between preformation
probabilities of two nuclear states.

The first attempts to compute HFs in vibrational nuclei
within the quasiparticle random-phase approximation (QRPA)
were performed in Refs. [8–10]. Later on, in Ref. [11] an
explanation was given for the connection between the HF
of the first excited 0+ state and the neutron number for Pb
isotopes. In the last decade the α-decay spectroscopy was used
to investigate the 0+ and 2+ excited states in the Pb [12–19]
and U region [20]. We analyzed some of the experimental
results concerning the fine structure of 2+ states by using the
QRPA formalism in Refs. [21–23].

The first computations of the α-decay widths in rotational
nuclei by using the coupled channels method were performed
in Ref. [24]. In Ref. [25] HFs were estimated in rotational
nuclei by using the Fröman approach [26] for the barrier
penetration and a simple phenomenological ansatz for the
preformation factor. The α-core potential was estimated by
using the double folding procedure in Refs. [27,28] and more
recently in Ref. [29]. In all these works it was concluded that
the strength of the nucleon-nucleon force should be quenched
(i.e., the Coulomb barrier should increase) to describe the
right relation between the half-life and Q value. This kind of
potential was used to estimate ground-state-to-ground-state
half-lives within the spherical approach in Ref. [30]. In
Ref. [31] the densities in the double-folded α-core potential
were computed within the relativistic mean-field theory.

In several recent articles [32–34] we analyzed the double
fine structure of emitted fragments in the cold fission of
252Cf within the coupled channels formalism. The fissioning
state was identified with a resonance in the interfragment
potential, computed using the already-mentioned double
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folding procedure. For the external part of the potential we
used the two-body M3Y plus Coulomb interaction. The energy
was adjusted to reproduce the experimental Q value by using
an internal repulsive core. We found out that the yields to
excited states in both fragments are very sensitive to nuclear
structure details such as the mean-field deformation and
density diffusivity. Unfortunately there are only few available
experimental data to be analyzed in this field [35].

However, there are a lot of high-precision data on α-decay
fine structure to rotational levels, see, e.g., Ref. [36]. The aim
of this article is to apply the coupled channels technique,
used to describe double fine structure in cold fission, in the
simpler case of α decay. In this way we can test to what extent
the microscopically computed interfragment potential is able
to describe not only the total decay width but also the very
complex picture of decay widths to rotational levels.

The article is organized according to the following plan: In
Sec. II we shortly remind the main ingredients of the stationary
coupled channels formalism describing α-decay fine structure
to rotational states. In Sec. III we analyze the influence of
the attractive and repulsive parts of the potential on the decay
widths. In Sec. IV we give a systematics on measured α-decay
widths. In the last section we draw conclusions.

II. THEORETICAL BACKGROUND

In this section we summarize the main theoretical details
necessary to compute the decay width within the coupled
channels formalism. The main ingredients were already
introduced in Ref. [34] to investigate the double fine structure
in cold fission. We supposed that both fragments were left
in rotational states. In our case the theoretical description
becomes simpler, because only the heavy fragment can be
excited.

A. Coupled channels formalism

Let us consider an α-decay process

P → D(J ) + α, (1)

where J denotes the spin of the rotational state of an even-
even nucleus, i.e., J = 0, 2, 4, 6, . . . We describe the α-core
dynamics as in Ref. [34], by using the stationary Schrödinger
equation

H�(R,�D) = E�(R,�D), (2)

where R = (R,�) denotes the distance between the centers of
two fragments and E = Qα . The orientation of the daughter
major axis in the laboratory system is given by Euler angles
�D = (ϕD, θD, 0). Because of the fact that all measured
decay widths are by many orders of magnitude smaller than
the corresponding Q values the stationarity is a very good
assumption and an α-decaying state is identified with a narrow
resonant solution, containing only outgoing components.

The Hamiltonian describing the α decay in the laboratory
system of coordinates is written as follows

H = − h̄2

2µ
∇2

R + HD(�D) + V (R,�D), (3)

where µ is the reduced mass of the dinuclear system and HD

describes the rotation of the core. We estimate the interaction
between nuclei in terms of the double folding between the
nuclear densities [37,38], i.e.,

V (R,�D) =
∫

drD

∫
drαρD(rD)ρα(rα)v(R + rD − rα),

(4)

where v denotes the nucleon-nucleon force. This procedure
was widely used to compute the potential between heavy ions
by using for their densities a Woods-Saxon shape. In our
case the density of the daughter nucleus is given by such a
distribution, whereas that of the α particle by a Gaussian with
standard parameters [29].

The resulting potential can be divided into a spherical (V0)
and a deformed component (Vd ) as follows:

V (R,�D) = V0(R) + Vd (R,�D). (5)

By expanding the nuclear densities in multipoles one obtains
the deformed part of the interaction

Vd (R,�D) =
∑
λ>0

Vλ(R)Yλ(�,�D). (6)

Here the angular part of the wave function has the following
ansatz:

Yλ(�,�D) = [Yλ(�) ⊗ Yλ(�D)]0. (7)

Therefore the rotation of the core is compensated by the
rotation of the α particle in the opposite direction. The relation
in Eq. (6), with the angular part [Eq. (7)], is nothing else
than a multipole-multipole expansion, where the multipole
formfactors Vλ(R) are given in terms of density distributions
[38]. Some authors postulate the radial formfactors in a
phenomenological way. In our computations we use the M3Y
nucleon-nucleon [39] plus Coulomb force. For details see
Ref. [38].

To this potential we also add a simple repulsive core,
depending on one independent parameter. The role of this
potential is similar to that in Refs. [32–34], where we investi-
gated cold fission. Namely it simulates the Pauli principle and
adjusts the energy of the system to the experimental Q value.
We show that the total half-life and the partial decay widths
do not depend on the shape of this repulsive potential.

If the rotational states of the core belong to the ground band
(with the intrinsic angular momentum projection K = 0) the
wave function is given by a similar superposition, i.e.,

�(R,�D) = 1

R

∑
J

fJ (R)YJ (�,�D). (8)

The wave functions describing the ground band rotations
satisfy the following eigenvalue equations

HDYJM (�D) = EJ YJM (�D), (9)

i.e., they are the normalized Wigner functions with K = 0.
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By using the orthonormality of angular functions entering
the superposition in Eq. (8) one obtains in a standard way the
coupled system of differential equations for radial components

d2fJ (R)

dρ2
J

=
∑
J ′

AJJ ′ (R)fJ ′ (R), (10)

where the coupling matrix is given by the following:

AJJ ′ (R) =
[
J (J + 1)

ρ2
J

+ V0(R)

E − EJ

− 1

]
δJJ ′

+ 1

E − EJ

〈YJ |Vd (R)|YJ ′ 〉. (11)

Here we introduce the following short-hand notations:

ρJ = κJ R, κJ =
√

2µ(E − EJ )

h̄2 . (12)

The matrix element 〈YJ |Vd (R)|YJ ′ 〉 entering Eq. (11) is given
by standard manipulations of angular-momentum algebra. The
result is given in terms of the Clebsch-Gordan coefficient as
follows:

〈YJ |Vd (R)|YJ ′ 〉 =
∑
λ>0

Vλ(R)

√
2J + 1

4π (2J ′ + 1)

× [〈J, 0; λ, 0|J ′, 0〉]2. (13)

Let us mention that at large distances, where the field becomes
spherical and Coulombian the system of equations has a simple
form [

− d2

dρ2
J

+ J (J + 1)

ρ2
J

+ χJ

ρJ

− 1

]
fJ (χJ , ρJ ) = 0, (14)

in terms of the so-called Coulomb parameter in the channel J,
defined as twice the Sommerfeld parameter

χJ ≡ 2
ZαZDe2

h̄vJ

. (15)

The system of Eq. (10) acquires this form practically beyond
R = Rc + 4 fm, where Rc = 1.2(A1/3

D + A
1/3
α ), because the

higher multipoles of the potential λ �= 0 are centered around
the nuclear surface R0 = 1.2A

1/3
D ± 4 fm, as can be seen in

Fig. 1.

B. Resonant states

We briefly review the procedure to integrate numerically
this system of equations and to find resonant states. We
first define N independent column-vector functions, satisfying
inside the repulsive core at R = R0, where V0(R0) 	Qα , the
following boundary conditions

RJI (R0) = δJI εJ , (16)

where εJ are arbitrary small numbers. The index J labels the
component, whereas I the solution. If the repulsion is soft
then one considers R0 = 
R, εJ = (
R)J+1, where 
R is
the initial integration step.

We also determine N independent outgoing Coulomb
column-vector functions satisfying at large distances the
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FIG. 1. The radial components of the renormalized α-nucleus
potential (30) for λ = 0 (dots), λ = 2 (dashes), and λ = 4 (dot-dashes).
The solid pocketlike curves (1) and (2) are the monopole parts of
the interaction (31), giving the same Q value. Their parameters are
(1) c = 90.117 (MeV fm−2),Qα + v0 = 10.272 (MeV) and (2) c =
30.296 (MeV fm−2), Qα + v0 = −3.816 (MeV). The horizontal line
denotes the Q value. The decay process is 232Pu → 228U + α.

system (14), i.e.,

H(+)
JI (R) ≡ GJI (R) + iFJI (R)

R→∞−→ δJIH
(+)
J (χJ , ρJ )

≡ δJI [GJ (χJ , ρJ ) + iFJ (χJ , ρJ )] , (17)

where GJ (χJ , ρJ ), FJ (χJ , ρJ ) are the irregular and regular
spherical Coulomb wave functions, respectively, depending on
two independent variables in the channel J. These functions
are found by a backward numerical integration.

Each component of the solution is built as a superposition
of these N-independent fundamental solutions. We impose the
matching boundary decay conditions at the radius R1 inside
the barrier, i.e., to have outgoing waves in all channels

fJ (R1) =
∑

I

RJI (R1)MI =
∑

I

H(+)
JI (R1)NI , (18)

and a similar condition for derivatives. The coefficients NI are
nothing else than the scattering amplitudes. These conditions
give the following secular equation:

det

[ R(R1) H(+)(R1)

dR(R1)/dR dH(+)(R1)/dR

]

≈ det

[ R(R1) G(R1)

dR(R1)/dR dG(R1)/dR

]
= 0. (19)

The first condition is exact and it is fulfilled for complex
energies, determining the resonant (Gamow) states. In our
case they practically coincide with the real scattering resonant
states, because the imaginary parts of energies are much
smaller than the corresponding real parts. This corresponds

014315-3



D. S. DELION, S. PELTONEN, AND J. SUHONEN PHYSICAL REVIEW C 73, 014315 (2006)

to vanishing regular Coulomb functions FJ inside the barrier.
Therefore the above approximation, given by the second
equality, is very good. The roots of the system [Eq. (19)] do
not depend on the matching radius R1 because both internal
and external solutions satisfy the same Schrödinger equation.

The coefficients MI,NI are fully determined from the
normalization of the wave function in the internal region∑

J

∫ R2

R0

|fJ (R)|2dR = 1, (20)

where R2 is the external turning point. Beyond this radius
the wave function has practically vanishing values. This is
connected with the fact that all known half-lives in α emission
are much larger that the characteristic nuclear time Tmin ≈
10−6 s 	 TN ≈ 10−22 s. Thus, any α-decaying state practically
hehaves like a bound state, having an exponential decrease
versus radius inside the barrier.

One can derive a very useful relation for the scattering
amplitude in terms of the wave-function components. By
inverting Eq. (18) for some radius R = R1 and then dividing
and multiplying the result by H

(+)
I (ρI ) one obtains

NI = 1

H
(+)
I (ρI )

∑
J

KIJ (R)fJ (R), (21)

where ρI = κIR. The propagator operator is defined in such a
way that it becomes the unity matrix for a spherical Coulomb
field, i.e.,

KIJ (R) ≡ H
(+)
I (ρI )[H(+)(R)]−1

IJ = δIJ + 
KIJ (R), (22)

where 
KIJ (R) →R→∞ 0. Of course the scattering amplitude
[Eq. (21)] does not depend on R.

The total decay width is a sum over partial channel
widths. It can be derived from the continuity equation in a
straightforward way and the result is the following:

� =
∑

J

�J =
∑

J

h̄vJ lim
R→∞

|fJ (R)|2 =
∑

J

h̄vJ |NJ |2, (23)

where vJ is the center-of-mass velocity at infinity in the
channel J, i.e.,

vJ = h̄κJ

µ
. (24)

We stress on the fact that the wave-function components can
be directly recovered by using the experimental information,
namely the partial decay widths in Eq. (18)

fJ (R) =
∑

I

H(+)
JI (R)

√
�I

h̄vI

, (25)

because the matrix H(+), defined by Eq. (17), is fully
determined by the potential. Of course the wave function
depends on the details of the used interaction. This is the
main reason why we prefer to characterize the fine structure
by the quantities

IJ ≡ log10
�0

�J

, (26)

instead of the hindrance factors, defined as HF (J ) = |f0/fJ |2,
and that are model dependent.

III. INFLUENCE OF POTENTIAL PARAMETERS
ON THE FINE STRUCTURE

First, let us analyze the sentivity of the α-decay fine struc-
ture on different parameters entering the potential [Eq. (4)].
We describe the density of the daughter nucleus by an axially
deformed Woods-Saxon shape, i.e.,

ρD,τ (rD) = ρ
(0)
D,τ

1 + e[rD−R0,τ (�D)]/a
, (27)

where the radius of the nuclear surface is given by the
following:

R0,τ (�D) = R0,τ [1 + β2Y20(�D) + β4Y40(�D)] , (28)

and the central densities are normalized by the total number
of protons (τ = π ) and neutrons (τ = ν) separately. The
α-particle density is given by a Gaussian distribution as
follows:

ρα(rα) = 4

b3π3/2
e−(rα/b)2

. (29)

Concerning the α-nucleus interaction we multiplied the double
folding integral [Eq. (6)] by a strength parameter va , to achieve
the well-known relation between the half-life and Q value. This
relation is mainly given by the ratio between the Q value and
the height of the repulsive barrier and we show later that one
should consider a quenching factor, i.e., va < 1. The necessity
to use such a factor multiplying the double folded α-daughter
potential was already stressed in Refs. [27,28]. It is connected
with the fact that the parameters of the used M3Y interaction
were fitted from scattering experiments involving heavy ions
[37,39]. Thus, the renormalized multipoles of the interaction
are given by the following:

V λ(R) = vaVλ(R). (30)

They are plotted in Fig. 1. By dots we indicated the monopole
component λ = 0, by dashes λ = 2 and by dot-dashes λ = 4
components, respectively. The horizontal solid line indicates
the Q value of the process, which in our case is 232Pu →
228U + α. To obtain the experimental value of the half-life
we used for the quenching factor va = 0.62. We also used the
standard value of the diffusivity a = 0.5 fm, the α-particle size
parameter b = 1.19 fm [29] and the deformations β2, β4 given
by the systematics of Ref. [40].

This interaction is able to describe the α-daughter system
for large distances R > Rm. To describe the internal two-body
dynamics we used a repulsive core, taking care on the fact
that an α-particle exists only on the nuclear surface. Indeed,
microscopic computations, see, e.g., Fig. 2(a) of Ref. [6],
suggest that the α-particle wave function is peaked in the
region of the nuclear surface and it has a Gaussian-like shape.
Moreover, the monopole component represents more than
90% of the total amount. Such a wave function corresponds
to a shifted harmonic oscillator potential, which we have to
consider in the internal region R � Rm, i.e.,

V 0(R) = vaV0(R), R > Rm

= c(R − R0)2 − v0, R � Rm. (31)
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FIG. 2. (a) The radial components of the α-nucleus wave function
inside the pocketlike potential for J = 0 (solid line), J = 2 (dashes),
and J = 4 (dot-dashes). (b) The radial dependence of the diagonal
α-nucleus matrix elements plus the centrifugal barrier [Eq. (33)]
for J = 0 (solid line), J = 2 (dashes), and J = 4 (dot-dashes). In
Fig. 1 the repulsive core is labeled (1). The decay process is 232Pu →
228U + α.

This interaction is given in Fig. 1 by two pocketlike curves.
The curves labeled (1) and (2) give the same Q value. Their
parameters are as follows: (a) c = 90.117 (MeV fm−2),Qα +
v0 = 10.272 (MeV) and (b) c = 30.296 (MeV fm−2),Qα +
v0 = −3.816 (MeV).

We considered the quantity Qα + v0 because it is the
excitation energy inside the pocketlike interaction. From this
figure it is clear that if one considers a deformed part for
repulsive multipoles with λ �= 0 the effect can be renormalized
by the monopole repulsion in the internal region R < R0 =
1.2A

1/3
D .

We stress the fact that only three parameters, namely va, v0,
and c, are independent, because the radii R0 and Rm are
determined by using the matching conditions

vaV0(Rm) = c(Rm − R0)2 − v0
(32)

va

dV0(Rm)

dR
= 2c(Rm − R0).

These conditions allows us to write down a single equation
determining the matching radius for some given combination
of va, v0, c. The parameters of the repulsive cores (1) and (2)
in Fig. 1 were chosen to give the best fit simultaneously for
Qα,�J , J = 0, 2, 4.

This procedure to estimate the repulsive core is different
from that of our previous references [22,33,34], where we used
the same double folding procedure for a δ-like interaction.
The advantage of the method used in this article is that we
completely decouple the internal repulsion from the external
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FIG. 3. (a) The dependence of the
quantity v0 + Qα on the parameter
c of the repulsive core defined by
Eq. (31) (solid line). By dashes is given
the quadratic fit. The fit parameters are
given. (b) The dependence of the h.o.
parameter for the monopole α-particle
wave function defined by Eq. (34) ver-
sus the same parameter c (solid line).
The parameters of the quadratic fit
(dashes) are given. The decay process
is 232Pu → 228U + α.
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part and thus we are able to control the repulsive and
atractive parameters independently, at variance with the δ-like
force.

In Fig. 2(a) we plotted the radial components of the wave
function for J = 0 (solid line), J = 2 (dashes), and J = 4
(dot-dashes), corresponding to the pocketlike repulsion (1)
in Fig. 1. In Fig. 2(b) we give the radial dependencies
of the diagonal terms [with the same symbols as in (a)],
corresponding to the α-daughter potential plus the centrifugal
barrier, i.e.,

UJ (R) = 〈YJ |V (R)|YJ 〉 + h̄2J (J + 1)

2µR2

= 1√
4π

∑
λ

V λ(R) [〈J, 0; λ, 0|J, 0〉]2 + h̄2J (J + 1)

2µR2
.

(33)

Thus, in the spherical case, where the components with
λ > 0 vanish, the decay widths to excited states are entirely
determined by the corresponding centrifugal barriers.

An interesting observation is conected with the shape of
the pocketlike potentials (1) and (2) in Fig. 1. The repulsive
strength c and the quantity Qα + v0 are strongly related and
therefore the repulsive core is charactized by one independent
parameter. Indeed, by increasing c one should simultaneously
increase the excitation energy Qα + v0, to obtain the same
Q value and therefore the total half-life. This dependence is
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FIG. 4. The dependence of the ratios IJ , defined by Eq. (26) for
J = 2 (dashed line) and J = 4 (dot-dashed line) upon the repulsive
strength parameter c, when the parameter v0 + Qα simultaneously
changes according to the curve in Fig. 3(a). The dependence between
the logarithm of the total half-life versus c is plotted with dots. On the
left side we give the corresponding experimental values. The decay
process is 232Pu → 228U + α.

shown in Fig. 3(a). The parameters of the already mentioned
curves (1) and (2) belong to this line.

In Fig. 3(b), we also plotted the width β of the monopole
radial wave function component, shown in Fig. 2(a), as a
function of the repulsive strength c. The width is obtained
by fitting this component with a Gaussian, i.e.,

f0(R)

R
≈ A0e

−β(R−R0)2/2. (34)

Moreover, our computations showed that the total half-
life and the fine structure, defined by (26), is weakly affected
by simultaneously changing the parameters of the repulsive
potential for this decay process. This is shown in Fig. 4.

The importance of the quenching strength va is shown in
Fig. 5. We plotted here with a solid line the Q value, with
dots log10 T , with a dashed line I2, and with a dot-dashed line
I4, as a function of va , by considering fixed the parameters of
the repulsive potential, i.e., Qα + v0 = 10.272, c = 90.117.
One sees a strong dependence of the first two quantities
and a weaker variation for I4, whereas I2 is practically a
constant. We stress that at the value va ≈ 0.62 one obtains
simultaneously the best fit with the experimental data (shown
by short horizontal lines) for all considered quantities.

Once this parameter is fixed, we can adjust the Q values
for different decays by using one parameter, namely the
repulsive depth v0, because for a given quenching strength va

the repulsive strength c has a definite value. As mentioned
above, we consider as an independent parameter the sum
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FIG. 5. The Q value (solid line), the logarithm of the total half-life
(dots), I2 (dashes) and I4 (dot-dashes) versus the attraction strength
va . The other potential parameters are c = 90.117 (MeV fm−2),Qα +
v0 = 10.272 (MeV). The corresponding experimental values are
shown by short horizontal lines. The decay process is 232Pu →
228U + α.
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TABLE I. Experimental data for α decays from rotational nuclei: deformations, excitation energies, logarithm of the relative intensities,
logarithm of the total half-life and Q value. The calculated data correspond to a variable quenching parameter va (labeled with a superscript a),
or to a variable size parameter of the α-cluster density (labeled with a superscript b).

n Z A β2 β4 E2 E4 I2 I a
2 I b

2 I4 I a
4 I b

4 log10 T log10 Ta log10 Tb Qα

(keV) (keV) (s) (s) (s) (MeV)

1 90 226 0.173 0.111 72.200 226.430 0.324 4 0.602 0.594 2.25 5 2.415 2.426 6.26 5 6.323 6.281 5.993
2 90 228 0.182 0.112 57.759 186.823 0.335 4 0.556 0.538 2.36 3 2.364 2.419 9.336 3 9.321 9.423 5.414
3 90 230 0.198 0.115 53.200 174.100 0.400 2 0.565 0.536 2.55 3 2.519 2.610 12.889 2 12.871 12.815 4.859
4 90 232 0.207 0.108 49.369 162.120 0.46 8 0.572 0.534 2.45 3 2.530 2.663 14.869 1 14.870 14.935 4.572
5 90 234 0.215 0.102 49.550 163.000 0.58 6 0.622 0.572 3.01 7 2.673 2.835 17.149 1 17.299 17.354 4.270

6 92 230 0.199 0.115 51.720 169.500 0.3 3 0.429 0.399 2.2 3 2.072 2.157 5.723 5 5.645 5.566 6.310
7 92 232 0.207 0.117 47.572 156.570 0.355 7 0.429 0.388 2.6 3 2.125 2.247 7.955 2 7.912 7.782 5.867
8 92 234 0.215 0.110 43.498 143.351 0.389 2 0.427 0.378 2.83 3 2.099 2.259 9.442 1 9.274 9.298 5.593
9 92 236 0.215 0.102 45.242 149.476 0.429 2 0.480 0.418 2.932 7 2.182 2.373 11.329 1 11.357 11.304 5.256

10 92 238 0.215 0.093 44.910 148.410 0.513 4 0.519 0.446 3.40 2 2.215 2.435 13.073 3 13.020 13.101 4.984

11 94 236 0.215 0.110 44.630 147.450 0.39113 0.387 0.328 3.1 3 1.939 2.137 6.37 2 5.981 6.030 6.397
12 94 238 0.215 0.102 44.080 145.960 0.456 2 0.409 0.339 3.33 3 1.926 2.155 7.148 1 6.972 6.985 6.216
13 94 240 0.223 0.087 42.824 141.690 0.51 3 0.438 0.356 3.54 3 1.922 2.170 8.757 3 8.533 8.540 5.902
14 94 242 0.224 0.071 44.540 147.300 0.67 3 0.509 0.412 3.3 5 1.988 2.251 11.177 4 10.969 11.011 5.475
15 94 244 0.224 0.071 46.000 156.900 0.657 6 0.552 0.444 3.03 7 2.098 2.391 13.041 8 12.930 12.964 5.162

16 96 242 0.224 0.079 42.130 138.000 0.59 3 0.399 0.305 2.72 6 1.706 1.974 5.109 7 4.941 4.796 6.862
17 96 244 0.234 0.073 42.965 142.348 0.61 3 0.431 0.330 2.3 3 1.785 2.088 7.460 4 7.164 7.163 6.361
18 96 246 0.234 0.057 42.852 142.010 0.752 7 0.476 0.359 2.5 3 1.760 2.070 8.616 3 8.295 8.363 6.128
19 96 248 0.234 0.040 42.380 143.800 0.729 9 0.514 0.375 2.55 8 1.680 1.983 7.935 2 7.923 7.770 6.217

20 98 248 0.235 0.040 41.530 137.810 0.748 7 0.457 0.320 1.94 2 1.504 1.807 4.961 1 4.585 4.343 7.153
21 98 250 0.245 0.026 42.722 141.885 0.77710 0.475 0.327 2.02 4 1.454 1.768 4.067 1 3.842 3.698 7.307

Qα + v0, because it gives the energy of the first excitation
in the pocketlike potential.

IV. SYSTEMATICS OF THE FINE STRUCTURE

We analyzed α decays for 20 rotational nuclei with known
ratios I2 and I4, and one where I4 was only given as a limit. The
experimental data, namely the excitation energies, total half-
lives and Q values, are taken from the compilation [36]. We
also compared fine structure intensities for J = 2+, J = 4+
states and total half-lives, with respective uncertainties, with
the ENSDF database. Only one of the half-lives, namely 240Pu,
slightly differs from the value of Ref. [36]. The deformation
parameters were taken from the systematics in Ref. [40]. These
data for daughter nuclei are given in Table I.

Concerning the experimental errors, given by italic char-
acters in Table I, we make the following observations. The
errors for the 4+ intensity were not given for the decays to
230U, 232U, 236Pu, and 246Cm. In these cases we considered
relative uncertainty of 4+ intensity to be 50%, as in 244Cm
measurement. For 242Pu 4+ the intensity was not given. We
estimated the intensity limit and the uncertainty is taken to be
100%. The uncertainty of 230U half-life was taken arbitrarily
10%, as in Ref. [36]. The uncertainty for α-decay intensity
to 2+ state in 230U was not given, so that we considered the
relative uncertainty to be 50%.

In Fig. 6(a) we plotted by squares the experimental
Q values versus the number of the decay process, given in
the first column of Table I. In the lower part [Fig. 6(b)] we
give the logarithm of experimental half-lives by squares. In
Fig. 7(a) shows the quadrupole (squares) and hexadecapole
deformations (triangles), whereas in Fig. 7(b) the experimental
values of the ratios I2 and I4 (squares).

The results of our computations are given in Figs. 6 and
7 by open circles and in Table I. It turns out that, to satisfy
the relation between the half-life and Q value, the quenching
strength should slowly decrease from va ≈ 0.6 for A = 226 to
va ≈ 0.5 for A = 250. Thus, we introduced a linear decrease
using the relation va = 0.668 − 0.004 (A − 208). In table the
results are labeled with a. The value of the repulsive strength
was taken c = 100 MeV fm−2. As mentioned, we adjusted the
energy of the first resonant state in the pocketlike potential by
using the repulsive depth v0, which is plotted in Fig. 6(a) with
open circles.

The variation of this parameter can be correlated with
the Q values in the same figure and it has an important
consequence. It is known that the width of the Gaussian, fitting
the microscopic preformation amplitude of the α particle,
has practically no variation along any isotope chain [6].
However, according to Figs. 6(a) and 3(b) the width of
the wave function within the present approach has a strong
variation with the Q value. This feature is an evidence
for the α-clustering phenomenon on the nuclear surface, in

014315-7



D. S. DELION, S. PELTONEN, AND J. SUHONEN PHYSICAL REVIEW C 73, 014315 (2006)

-4

-2

0

2

4

6

8

10

0 5 10 15 20

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15 20

(a)

(b)

FIG. 6. (a) Q value (squares) and the depth of the repulsive
potential v0 (open circles) versus the decay number given by the
first column in Table I. The attractive quenching parameter is given
by the rule va = 0.668 − 0.004 (A − 208). (b) Logarithm of exper-
imental half-lives (squares) and the corresponding computed values
(open circles). In table the corresponding data are labeled with a
superscript a.

addition to the α preformation predicted by the standard shell
model.

From Fig. 6(b) one sees that the computed half-lives
(open circles) practically reproduce the experimental values. In
Fig. 7(b) we show via open circles the results for I2 and I4. One
sees that we obtained good agreement with experimental data
for I2. Concerning I4, very good agreement was achieved only
for the Z = 90 isotope chain. For the last Z = 96 and Z = 98
chains the agreement is within a half-order of magnitude,
whereas the central peak, around the Z = 94 chain, is not
reproduced. The difference between experiment and theory in
this region is about 1.5 orders of magnitude.

The following observation is interesting. The main trend of
the experimental and computed I2 values in Fig. 7(b) is clearly
correlated with the quadrupole deformation in Fig. 7(a). The
same is true, but mainly for the computed I4 values, which are
correlated with β4 in Fig. 7(a). This correlation between IJ and
βJ can be understood from Eq. (33), expressing the barriers
and therefore the penetrabilities for each partial wave, as a
sum of all multipole terms. Thus, the existence of the central
peak for experimental I4 data corresponding to the neutron
chain Z = 94 seems to be out of the correlation between the
fine structure and deformation parameters. At this moment we
have no explanation for this experimental feature.

The correlation between decay widths and deformation
parameters seems to be an universal property of emission
processes. This feature was already evidenced for α decays
between ground states in Ref. [6]. However, the protons are
emitted with given angular momenta from some proton-rich
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FIG. 7. (a) Deformation parameters β2 (squares) and β4 (trian-
gles) versus the decay number given by the first column in Table I.
(b) Experimental ratios I2, I4 defined by Eq. (26) (squares) and
the corresponding computed values (open circles). The attractive
quenching parameter is given by the rule va = 0.668 − 0.004 (A −
208). In Table I the corresponding data are labeled with a
superscript a.

nuclei. Recently we found an almost 100% correlation between
the quadrupole deformation and half-lives, corrected by the
centrifugal barrier, in all measured proton emitters [41].

We have also checked higher resonances in the pocketlike
potential, but, because the orthogonality with respect to the first
state, they give a totally different picture of the fine structure,
compared with experimental data.

The variation of the quenching parameter va by increasing
the mass number corresponds to the change of the Coulomb
barrier because of the nuclear part. Indeed the pure Coulomb
barrier, according to Eq. (14) and χ ∼ Z/

√
Qα , would give

the following dependence of the total half-life

log10 T = c1
Z√
Qα

+ c2. (35)

In reality the Viola-Seaborg empirical rule postulates a more
complex dependence [42]

log10 T = a1Z + a2√
Qα

+ a3Z + a4. (36)

Thus, the influence of the internal nuclear part is expressed
by the additional term a2/

√
Qα + a3Z. In connection with

this observation we have checked that a similar rule for
the quenching factor depending on the charge number, i.e.,
va = 0.7 − 0.125 (Z − 82), gives very close results, which
practically cannot be distinguished from theoretical results
in Fig. 6(b), in comparison with the dependence on the mass
number. Anyway, we should stress the fact that our description
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FIG. 8. (a) Logarithm of experimental half-lives (squares) and
the corresponding computed values (open circles). The α-particle size
parameter [Eq. (29)] is given by the rule b = 1.744 − 0.032(A − 208)
and the quenching parameter is va = 0.6. (b) Experimental ratios
I2, I4 (squares) and the corresponding computed values (open circles).
In Table I the corresponding data are labeled with a superscript b.

depends on only two parameters instead of four parameters in
Eq. (36).

This effect can be also explained by considering an
alternative picture, namely by changing the diffusivity pa-
rameter b of the α particle in Eq. (29) according to the rule
b = 1.744 − 0.032 (A − 208), for a constant value va = 0.6.
Microscopic estimates show that the change of the daughter
nuclear difusivity should be very small. In this way the
width of the α cluster in the surface region should decrease
by increasing the mass number of the daughter nucleus to
reproduce the total half-lives, as can be seen in Fig. 8(a) (open
circles). The results are labeled in Table I by the index (b).
In Fig. 8(b) the fine structure IJ is shown with open circles
by considering the above change of the cluster size parameter.
One sees that the values for I4 are slightly improved with
respect to those in Fig. 7(b).

As mentioned, one has a dependence of the cluster width
on the Q value. Therefore there is a possible additional
change of the cluster size in the region of the nuclear surface
because of the dependence of the Coulomb barrier on the
mass (or charge) number. A definite answer to the question:
the effective nucleon-nucleon interaction or the size of the
α-particle changes in the nuclear surface region, still remains
open, because both approaches give qualitatively the same
results. Anyway, this problem concerns fundamental aspects
of the effective nuclear interaction and its dependence on
the α clustering and thus gives the possibility to express the
empirical parameters of the Viola-Seaborg rule in terms of
microscopic parameters.

Our simple model is able to explain quantitatively the fine
structure to J = 2+ states, namely that the decay widths to
J = 2+ states are by 0.5 orders of magnitude smaller than the
ones for transitions between ground states. At the same time
it is able to explain the fact that most of the decay widths to
J = 4+ states are by 2.5 orders of magnitude smaller with
respect to the widths between ground states.

V. CONCLUSIONS

We used in this article a simple model to explain the
α-decay fine structure in rotational nuclei. We considered
the coupled channels formalism to estimate decay widths
and the double folding procedure to compute the interaction
between the daughter plus α-particle. The daughter nucleus
has as eigenstates the standard K = 0 Wigner functions. We
considered as an effective particle-particle nuclear interaction
the superposition of three Yukawa terms (M3Y), able to
describe scattering data. The Q value of the system is
reproduced by adjusting the depth of a parabolic repulsive
core, simulating the Pauli principle. The decaying state was
indentified with the first resonance in the resulting pocketlike
potential.

It turned out that this simple rotational model is able to
explain very well total half-lives and decay widths to the first
2+ states, as soon as the basic M3Y interaction is quenched
by a factor va whose value decreases with increasing mass
number. Consequently the Coulomb barrier should increase.
This effect can be also reproduced by keeping a constant
value va = 0.6 and by changing the size of the α-cluster
density as a function of the mass number. It is interesting
to mention that the obtained results do not depend on the
parameters of the repulsive potential. Does the effective
nucleon-nucleon interaction or the size of the α-particle in
the nuclear surface region change? This still remains an
open question, because both approaches give qualitatively
the same results. In any case, this analysis clearly shows
that the effective nucleon-nucleon interaction is influenced
by α clustering and this dependence changes with the mass
number.

Concerning the decay widths to 4+ rotational states we
obtained a good agreement with experimental data for the
lightest Z = 90 neutron chain and a satisfactory agreement
for Z = 92, 96, and 98 chains. This simple model is able to
qualitatively explain the gross feature of the fine structure,
but still the computed values in the region around Z =
94 chain differ from experimental data by 1.5 orders of
magnitude. It is an interesting observation that our theoretical
results concerning IJ are proportional to the corresponding
deformations βJ , whereas the experimental values of I4

for the Z = 94 chain do not satisfy this rule. At this
moment we have no explanation for this effect, which is
not connected with the deformed neutron magic number
N = 152.

We also stress on the fact that the parameters of the
nucleon-nucleon interaction were fitted by using heavy ions
scattering data. These experiments can probe potentials only
in the region of the Coulomb barrier. However, the α decay is

014315-9



D. S. DELION, S. PELTONEN, AND J. SUHONEN PHYSICAL REVIEW C 73, 014315 (2006)

a deep subbarrier process at low energies, where the scattering
has a purely Rutherford pattern. Thus, α-decay fine structure
is potentially a valuable tool to probe the nuclear interaction

in the internal region. It is in principle able to improve our
knowledge about how the effective nucleon-nucleon potential
changes in the presence of α clustering.
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J. H. Hamilton, A. V. Ramayya, and B. R. S. Babu, Phys. Rev.
C 54, 258 (1996).

[36] Y. A. Akovali, Nucl. Data Sheets 84, 1 (1998).
[37] G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979).
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