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A Skyrme-like effective interaction is built up from the equation of state of nuclear matter. The latter is
calculated in the framework of the Brueckner-Hartree-Fock approximation with two- and three-body forces.
A complete Skyrme parametrization requires a fit of the neutron and proton effective masses and the Landau
parameters. The new parametrization is probed on the properties of a set of closed-shell and closed-subshell
nuclei, including binding energies and charge radii.
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I. INTRODUCTION

For more than 30 years, the microscopic description of
nuclear ground state properties is relying on the self-consistent
mean field approach, or Hartree-Fock (HF) approach built from
effective in-medium nucleon-nucleon interactions [1]. The
most popular interaction is the Skyrme-type interaction [2],
whose analytic form leads to considerable simplification of the
HF calculations in finite nuclei. The general point of view is
that the Skyrme interaction is a phenomenological one whose
parameters are directly adjusted on a few selected observables
taken from infinite matter and some doubly magic nuclei. In
its most sophisticated versions, the Skyrme-type force can
predict binding energies of all measured nuclei with an overall
error of less than 0.7 MeV [3]. Other parametrizations try to
improve the description of systems with a large neutron excess
[4] by incorporating constraints from variational calculations
performed for neutron-rich and pure neutron matter [5,6].

On the other hand, important progress has been made
in recent years concerning Brueckner-Hartree-Fock (BHF)
calculations of infinite matter [7,8]. For many years, a major
drawback of the BHF approach was that the empirical
saturation point of symmetric nuclear matter could not be
reproduced if one starts with only a realistic two-body bare
interaction (the so-called Coester line problem). This is why
in the early attempts to derive from a Brueckner G matrix
an effective interaction suitable for HF calculations of finite
nuclei it was necessary to renormalize phenomenologically
the G matrix [9,10]. Two recent achievements have taken the
BHF approach to a quite satisfactory status: one is that the
convergence of the hole-line expansion has been proved to
occur already at the level of three-body correlations [7]; the
other is that the inclusion of three-body forces improves to a
large extent the prediction of the saturation point [8].

Thus, it is timely to reexamine how one can relate the
BHF description of homogeneous matter to a HF description
of finite nuclei. Our strategy is to look for a Skyrme-like
parametrization adjusted so as to reproduce the BHF results
calculated in symmetric nuclear matter and also spin and
isospin polarized matter, then to examine the HF predictions of
this parametrization in nuclei. In our approach, it is possible to

determine all the parameters of the force except the two-body
spin-orbit parameter W0 because this component of the force
gives no contribution to homogeneous matter. This will remain
an adjustable parameter when calculating finite nuclei, and its
value is fixed on the 1p1/2-1p3/2 splitting in 16O as it is usually
done. Of course, the two-body Coulomb interaction has also
to be added.

In a recent work, Baldo et al. [11] studied the relation
between the Brueckner results in infinite matter and some
of the Skyrme parameters, but the number of constraints used
was insufficient to determine the velocity-dependent part of the
Skyrme force, which is a very important part since it governs
the effective mass behavior.

In this work, we start from the recent BHF calculations of
Refs. [8,12] extended to spin and isospin polarized homoge-
neous matter. The paper is organized as follows: Sec. II gives
a brief review of relevant BHF predictions. In Sec. III, we
explain how the Skyrme parameters are determined. Sec. IV
presents and discusses the HF results obtained for selected
closed-shell nuclei. Concluding remarks are given in Sec. V.

II. REVIEW OF THE RELEVANT BHF PREDICTIONS

The Brueckner theory of nuclear matter was recently
reviewed in Ref. [13]. In this theory, the correlation energy
is cast as a hole-line expansion, where the bare interaction is
replaced by the G matrix, which incorporates the short-range
correlations. The BHF approximation is obtained by truncating
the expansion at the two hole-line level. Roughly speaking, it
amounts to the Hartree-Fock approximation, where the role of
the phenomenological interaction is played by the G matrix.

For densities of nuclear matter around or below the satura-
tion value, the BHF method is a quite good approximation. In
that region in fact, we are allowed to neglect the three-body
correlations, which give a small contribution when adopting
the continuous choice for the auxiliary potential [7]. On the
other hand, the BHF approximation embodies both the inert
core pure BHF mean field and the core polarization term, the
latter arising as rearrangement potential [12]. Thus, the main
effects of the correlations on the effective mass will be taken
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into account. The fit of the microscopic effective mass is a
qualifying aspect of the present parametrization, since this
quantity is one of the least well-constrained properties of the
phenomenological Skyrme forces [14].

Let us briefly review the salient features of the BHF
equation of state (EOS):

(i) Saturation point. The BHF approach with only two-body
forces sizeably overestimates the saturation density [13]. This
is commonly attributed to the missing effect of the three-body
force in the region above the empirical saturation density.
Including a three-body force in the calculations improves
the saturation density without appreciable change of the
corresponding energy. The most recent Brueckner calculations
[8] estimated ρ0 ≈ 0.18 fm−3, still beyond the range of the
empirical values of the central density of nuclei, and the energy
E
A

≈ −14.8 MeV. The main effect of such a failure is expected
to appear in the calculation of the neutron and proton density
profiles.

(ii) Effective mass. The nucleon effective mass inside the
medium is an outcome of the BHF approach, and as such, it
must be reproduced by the equivalent Skyrme parametrization.
It is related to the momentum dependence of the on-shell
self-energy �(εk, k), where εk is the quasiparticle energy. It
plays an important role not only in the theoretical description of
the transport phenomena, including heavy-ion collision (HIC)
simulations, but also for the level density of nuclei. Recently,
the isospin splitting of the effective mass has been the subject of
some debate since different approaches predict contradictory
results [15–18]. In the framework of the Brueckner approach,
it is possible to trace the isospin splitting of the effective mass
back to properties of the bare nuclear interaction [15,19]. It
turns out that the neutron effective mass is linearly increasing
with the neutron excess while the proton effective mass is
symmetrically decreasing. When embodying the neutron and
proton effective masses in the fit, one may expect important
isospin effects in the observables which are sensitive to the
effective mass itself. It has been recently pointed out [20] that
m∗

n < m∗
p leads to the wrong energy dependence of the Lane

potential [21]. Another dynamical observable very sensitive
to the effective mass is the in-medium nucleon-nucleon cross
section. Therefore, heavy-ion collisions involving neutron-rich
systems could provide direct experimental evidence of the
isospin splitting of the effective mass [22].

(iii) Symmetry energy. The symmetry energy as(ρ) has
stimulated a lot of interest for its relevance in HIC physics,
nuclear astrophysics, and exotic nuclei. In fact, it is related
to the isospin splitting of effective mass, neutron and proton
mean fields, etc. In particular, the neutron skin in neutron-rich
nuclei seems to be very sensitive to the details of the density
dependence of as(ρ) [23]. In the microscopic approaches, the
saturation point becomes less and less stable with increasing
neutron excess, and at some critical point, before reaching the
conditions of pure neutron matter, it disappears. This transition
formally amounts to the transition from a minimum to an
inflection point in the function E

A
(β, ρ). Correspondingly the

symmetry energy would also exhibit an inflection point as a
function of density. This means that any parametrization of
as(ρ) such as ρα , which is often adopted in calculations, is
not suitable for reproducing this behavior. This seems to be

the case with the Skyrme forces. In the BHF approximation,
the symmetry energy at the saturation point turns out to
be as(ρ0) ≈ 34 MeV [8]. At low density, it is independent
of the force [11], and therefore it can be considered well
established from the viewpoint of a quantum-mechanical
many-body theory. Above the saturation point, the three-body
force has a strong influence on the symmetry energy. The BHF
prediction is in rather good agreement with the relativistic
Dirac-Brueckner [16], but both diverge from variational
calculations [5,6] and also from some Skyrme forces (for
a discussion, see Ref. [14]). The structure of neutron stars
has been addressed as a possible constraint for the EOS of
asymmetric nuclear matter, particularly, for the symmetry
energy, but so far the calculations do not give a definite answer.

(iv) Landau parameters. To have a full determination of the
Skyrme force parameters and not only some combinations of
them, it is not sufficient to fit bulk properties such as binding
energies, effective masses, and symmetry energy, as we shall
see in Sec. III. These properties are in fact related to only the
time-even part of the BHF energy functional [24]. We will
use the additional constraint of reproducing the G0 Landau
parameter extracted by extending the BHF calculations to spin
and isospin polarized nuclear matter [25], which gives the
time-odd part of the BHF energy functional.

The Brueckner predictions for the Landau parameters [25]
have proved to reproduce the existing experimental data; in
particular, the parameter G′

0 is consistent with the centroid
energy of the Gamow-Teller giant resonance [26]. So far, only
the values of the Landau parameters at the saturation point
can be tested. At lower density, experimental information can
come from the study of giant resonances in exotic nuclei.

III. DETERMINATION OF SKYRME FORCE
PARAMETERS

The standard form of the Skyrme effective interaction is

V (r1, r2) = t0(1 + x0Pσ )δ(r)

+ 1
2 t1(1 + x1Pσ )[P′2δ(r) + δ(r)P2]

+ t2(1 + x2Pσ )P′ · δ(r)P

+ 1
6 t3(1 + x3Pσ )[ρ(R)]σ δ(r)

+ iW0σ · [P′ × δ(r)P], (1)

where r = r1 − r2 is the relative coordinate of the two
particles and R = (r1 + r2)/2 the center-of-mass coordinate.
P = (∇1 − ∇2)/2i is the relative momentum acting on the
right, and P′ its conjugate acting on the left. Pσ = (1 + σ1 ·
σ2)/2 is the spin-exchange operator.

The force parameters are ti and xi , the power σ of the
density dependence, and the spin-orbit strength W0. As already
mentioned, the last parameter will be adjusted phenomenolog-
ically in some specific nucleus. As for the σ parameter, it is
difficult to extract in a unique way just from nuclear matter bulk
properties. In the literature, several classes of Skyrme forces
are characterized by the value of σ , the most common values
being 1/6, 1/3, and 1. Since we do not have enough constraints
from BHF calculations of nuclear matter to determine all the
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free parameters, we choose to adopt in this work σ = 1/6 and
to concentrate on finding the remaining parameters.

The basic inputs of this work are the results of the BHF
self-energy which includes the core polarization term [called
in the literature the extended BHF approximation (EBHF)
[12]] and the EOS with two- and three-body forces [8].
The procedure to determine the force parameters proceeds
through three main steps. The first step concerns the fit of
the nucleon effective mass in symmetric and nonsymmetric
nuclear matter. This enables one to find the values of two
important combinations �s and �v of t1, t2, x1, x2. In the
second step, we look at the energy per particle in symmetric
and nonsymmetric nuclear matter as a function of total density
and neutron-proton asymmetry. The fit of these quantities
determines several families of (t0, t3, x0, x3) parameters. In
the last step, we use the constraints imposed by the value of
the G0 Landau parameter and by a combination of parameters
governing the surface properties of finite nuclei. In this way,
the remaining parameters t1, t2, x1, x2 are uniquely determined
for each parameter family since we already know the values
of �s and �v . Because the fit of BHF bulk properties has been
supplemented with the surface condition, one may hope that
the parameter sets thus obtained could describe finite nuclei
reasonably well.

A. Effective masses

In symmetric nuclear matter, the isoscalar effective mass of
a nucleon has the following expression (here and in the rest of
this paper we follow the same notations as in Ref. [4]):

m∗
s

m
=

(
1 + m

8h̄2 ρ�s

)−1

, (2)

where �s = [3t1 + (5 + 4x2)t2]. One can also define an
isovector effective mass as

m∗
v

m
=

(
1 + m

4h̄2 ρ�v

)−1

, (3)

where �v = t1(x1 + 2) + t2(x2 + 2). In asymmetric nuclear
matter with an asymmetry parameter β = (N − Z)/A, the
nucleon effective mass is

m∗
q

m
=

(
1 + m

8h̄2 ρ�s − m

8h̄2 q(2�v − �s)βρ

)−1

, (4)

with q = 1 for neutrons and q = −1 for protons.
To obtain �s , we fit the values of the nucleon effective

mass calculated in symmetric nuclear matter in the EBHF
approximation [12] with the three-body force effects included.
The fit is illustrated in Fig. 1, and the resulting value from the
fit is �s = 400.8 MeV fm5. Next, we can determine �v by
fitting m∗

q/m calculated in asymmetric nuclear matter. The
fits are shown in Fig. 2, and the corresponding value of �v

is 356.4 MeV fm5. Actually, the fits of m∗
q/m remain good

beyond β = 0.4.
At this point, we can already make an interesting observa-

tion. Some Skyrme parametrizations of the literature predict
that for a fixed density, the proton and neutron effective masses
are, respectively, an increasing and decreasing function of
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FIG. 1. Nucleon effective mass m∗/m in symmetric nuclear matter.

the asymmetry parameter β [14]. This behavior is opposite
to that predicted by EBHF calculations [15]. In Fig. 3, we
show a comparison of effective masses calculated with the
parameter set SLy4 [4] and with our values of �s and �v .
Thus, our Skyrme parametrization will differ from some usual
parametrizations as far as the isospin splitting of effective
masses is concerned. Recently, it was pointed out [17] that
effective masses obtained in Dirac-Brueckner-Hartree-Fock
have a similar behavior to that of EBHF, and opposite to that of
the relativistic mean field (RMF) model. It must also be noted
that if one includes the Fock terms in a relativistic Hartree-Fock
description, the trend of the neutron-proton mass splitting
becomes closer to that of the Dirac-Brueckner-Hartree-Fock
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FIG. 2. Nucleon effective masses m∗
q/m in asymmetric nuclear

matter, at two different asymmetries. Triangles are EBHF results, the
lines are the fits.
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FIG. 3. Neutron (upward triangles) and proton (downward trian-
gles) effective masses m∗/m calculated with SLy4 (in white) and with
the present parametrization (in black).

and, therefore, the behavior of the RMF mass is due to the
omission of exchange terms [27].

B. Energy per particle

In symmetric matter, the energy per particle has the
following expression:

E

A
(ρ) = 3h̄2

10m

(
3π2

2

) 2
3

ρ
2
3 + 3

8
t0ρ

+ 3

80
�s

(
3π2

2

) 2
3

ρ
5
3 + 1

16
t3ρ

σ+1. (5)

More generally, in asymmetric matter characterized by an
asymmetry parameter β, the energy per particle is

E

A
(β,ρ) = 3h̄2

10m

(
3π2

2

) 2
3

ρ
2
3 F 5

3
+ 1

8
t0ρ[3 − (2x0 + 1)β2]

+ 1

48
t3ρ

σ+1[3 − (2x3 + 1)β2]

+ 3

40

(
3π2

2

)2
3

ρ
5
3

[
�vF 5

3
+ 1

2
(�s − 2�v)F 8

3

]
, (6)

where Fm(β) = 1
2 [(1 + β)m + (1 − β)m].

We first start with the case of symmetric matter. The fit of
the BHF values of E

A
(β = 0, ρ) determines several possible

values for the couple (t0, t3). To limit the number of possible
couples, we impose that the compression modulus K∞ must
be between 200 and 240 MeV. The optimal parameter sets
we find have K∞ around 210 MeV. As for ρ0, it is about
0.18 fm−3 in the BHF calculation with three-body force [8], a
value somewhat larger than that usually adopted or predicted in
Skyrme parametrizations. The consequence will be a general
underestimation of radii in finite nuclei, as we shall see in
Sec. IV.

For each (t0, t3) couple previously determined, we add the
constraints of fitting E

A
(β �= 0, ρ) as well as the symmetry

energy as(ρ) of infinite matter calculated in BHF. In terms of
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FIG. 4. Energy per particle as a function of density. Squares,
dots, and triangles are BHF results for symmetric matter, β = 0.4
asymmetric matter, and neutron matter, respectively. Solid and dashed
lines are results of the fit; dotted line is the extrapolation at β = 1.

Skyrme parameters, the symmetry energy as(ρ) is

as(ρ) ≡ 1

2

∂2(E/A)

∂β2

∣∣∣∣
β=0

= 1

3

h̄2

2m

(
3π2

2

) 2
3

ρ
2
3 − 1

8
t0(2x0 + 1)ρ

− 1

24

(
3π2

2

) 2
3

(3�v − 2�s)ρ
5
3

− 1

48
t3(2x3 + 1)ρσ+1. (7)

In practice, we choose the EOS with β = 0.4 as the fitting
object. In the fitting procedure, we set the symmetry energy
at saturation density, as(ρ0) = 34 MeV as a constraint for
the full EOS of asymmetric nuclear matter. Thus, we obtain
several possible solutions for (t0, x0, t3, x3) with t0, t3 already
given by the symmetric matter fits and x0, x3 determined
by nonsymmetric matter properties. Figures 4 and 5 display
typical fits obtained in this way. Figure 4 shows the energies
per particle in symmetric and β = 0.4 nonsymmetric nuclear
matter, calculated in BHF and by the Skyrme procedure.
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FIG. 5. Symmetry energy from BHF calculations (squares) and
the present fit (solid curve).
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The pure neutron matter case, which is not included in the
fitting procedure, is also shown to demonstrate that the present
Skyrme parametrizations describe reasonably well the BHF
energies per particle in the whole range of β from 0 to 1 and
for densities up to the highest BHF calculated values around
0.35 fm−3. However, one can see that the Skyrme energy
functional we adopted is not able to reproduce accurately the
BHF EOS of pure neutron matter which exhibits an S-shaped
behavior. This suggests that a change in the analytical structure
of the energy functional would be necessary. In Fig. 5, we
see the fit of BHF symmetry energy. The deviations observed
in the neutron matter case in Fig. 4 reflect in the fit of the
symmetry energy since the symmetry energy is calculated from
the expression as(ρ) = E

A
(ρ, β = 1) − E

A
(ρ, β = 0), and then

a bad fit for the neutron matter EOS induces a bad fit for as .
To summarize, the bulk properties of nuclear matter

have enabled us to determine several sets of (t0, x0, t3, x3)
parameters and the values of the parameter combinations �s

and �v for a fixed value σ = 1/6 of the density dependence.
To complete the task, we determine the remaining parameters
(t1, x1, t2, x2) in the next subsection.

C. Constraints from Landau parameters and finite nuclei

The bulk nuclear matter properties give only the two
parameter combinations �s and �v . To proceed further,
we can use some additional constraints from the Landau
parameters corresponding to our reference EBHF calculation.
These Landau parameters have been investigated in Ref. [25].
The two parameters F0 and F ′

0 are related to the compression
modulus and symmetry energy, respectively, which are already
incorporated into the preceding constraints. Then, only G0

and G′
0 are left for providing two independent combinations

of Skyrme parameters. Together with the �s and �v combi-
nations, this would determine the four remaining parameters
(t1, x1, t2, x2). However, we prefer to use as constraint only G0,
thereby giving us some freedom to better optimize the surface
properties of finite nuclei. Indeed, the surface effects cannot
be determined from infinite matter calculations, and we need
to adjust these surface effects by performing Skyrme-Hartree-
Fock (SHF) studies of some selected nuclei. The value of G0

in EBHF [25] is 0.83 at ρ0 = 0.18 fm−3. The parameter G0 is
expressed in the Skyrme parametrization [24] as

G0 = N0(2A + 2(3π2ρ/2)
2
3 B), (8)

where N0 is the level density at the Fermi surface and

A = − 1
4 t0

(
1
2 − x0

) − 1
24 t3

(
1
2 − x3

)
ρα, (9)

B = − 1
8 t1

(
1
2 − x1

) + 1
8 t2

(
1
2 + x2

)
. (10)

In the SHF energy functional, an important term governing
surface properties of N = Z systems is the term [4] αs∇2ρ

where αs = [t2(5 + 4x2) − 9t1]/32. To determine the four
parameters (t1, x1, t2, x2) satisfying the fixed values of �s

and �v and also the spin-orbit parameter W0, we adopt
the following procedure. We choose as reference nuclei the
closed-shell and closed-subshell nuclei 16O, 40,48Ca, 56,78Ni,
90Zr, 100,132Sn and 208Pb. We vary αs in a range of values

TABLE I. Skyrme parameter set and the corresponding bulk
properties of infinite nuclear matter.

LNS

t0 (MeV fm3) −2484.97
t1 (MeV fm5) 266.735
t2 (MeV fm5) −337.135
t3 (MeV fm3+3σ ) 14588.2
x0 0.06277
x1 0.65845
x2 −0.95382
x3 −0.03413
σ 0.16667
W0 (MeV fm5) 96.00
ρ0 (fm−3) 0.1746
E/A (MeV) −15.32
K∞ (MeV) 210.85
m∗
m

(isoscalar) 0.825
m∗
m

(isovector) 0.727
as (MeV) 33.4

similar to that of the usual Skyrme forces, and for each value
we obtain a set of (t1, x1, t2, x2) with which we can perform
a SHF calculation of the reference nuclei. The corresponding
value of W0 is obtained by adjusting the p1/2-p3/2 proton
splitting in 16O. In this way, we can determine the set which
gives the best overall results for binding energies and radii in
the reference nuclei.

Table I summarizes the outcome of the fit. The full
parameter set is called the LNS. In the lower part of Table I are
shown the main bulk properties of nuclear matter calculated
with LNS. Note that ρ0 is larger and the saturation energy
is slightly less negative than the empirical saturation point
(0.16 fm−3, −16.0 MeV). The consequence is that in finite
nuclei, central densities will tend to be too large and radii
become systematically underestimated.

IV. HF CALCULATIONS OF MAGIC NUCLEI

We now discuss the results of HF calculations of finite
nuclei made with the LNS parametrization. The parameter
set of Table I is supplemented with the two-body Coulomb
force. The Coulomb exchange contributions are treated in the
Slater approximation. The center-of-mass correction to the
total energy is approximated in the standard way, keeping
the one-body and dropping the two-body terms [28]. The
HF equations are solved in the radial coordinate space,
assuming spherical symmetry.

We choose to test the LNS parametrization on the following
set of closed-shell and closed-subshell nuclei: 16O, 40Ca, 48Ca,
56Ni, 78Ni, 90Zr, 100Sn, 132Sn, and 208Pb. The LNS force has not
been fitted on finite nuclei and, therefore, one cannot expect
a good quantitative description at the same level as purely
phenomenological Skyrme forces. It is nevertheless interesting
to compare its predictions with those of a commonly used
force like the SLy4 interaction. In Fig. 6 are shown the relative
deviations of charge radii and energies per particle calculated
with LNS and SLy4. As for the binding energies, one can see
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that LNS is doing reasonably well in the Ca and Ni regions, but
it is underbinding somewhat 16O and overbinding the medium
and heavy nuclei, the discrepancies remaining within a 5%
limit. This discrepancy is quite large if compared to the usual
Skyrme predictions, but again the LNS force has not been fitted
on finite nuclei. The SLy4 force is doing much better, of course,
since it is adjusted on doubly magic nuclei. The deviations of
the LNS energies can be attributed to the incorrect saturation
point of the BHF equation of state, as well as to the lack
of information concerning surface properties that one should
fulfill. The charge radii of LNS exhibit a systematic behavior of
underestimating the data by 2%–4%. This can be understood
again as a consequence of the BHF saturation point being
shifted toward a larger density. Then, the central density in
nuclei calculated with LNS becomes larger than what it should
be, and this reduces the spatial extension of nuclear densities.
This is illustrated in Fig. 7, where we show the neutron and
proton distributions in 208Pb calculated with LNS and with
SLy4.

Finally, we would like to comment on the spin-orbit
component of the LNS parametrization since this is the only
parameter that we could not relate to the EBHF calculation.
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We have fitted it to reproduce the experimental 1p1/2-1p3/2

spin-orbit splitting of neutron and proton levels in 16O. The
value W0 = 96.0 MeV fm5 that we find seems somewhat
smaller than for other Skyrme forces where W0 usually ranges
from 105.0 to 130.0 MeV fm5. In Fig. 8, we show that the
spin-orbit potentials in 16O calculated with LNS and SLy4 are
nevertheless very close and they must give the same spin-orbit
splitting.

V. CONCLUSION

This work is the first step in deriving a Skyrme-type
parametrization of an effective interaction suitable for Hartree-
Fock calculations of finite as well as infinite systems. The
starting point is the BHF calculations of infinite nuclear
matter at different densities and neutron-proton asymmetries.
These BHF studies include effects of three-body forces;
consequently, the equation of state is much more satisfactory
than with only two-body forces, and the saturation point
becomes closer to the empirical point. This gives a good
motivation for looking for a simple effective interaction—or
energy density functional—whose parameters are determined
by the BHF results.

We have paid special attention to the effective mass
properties in order to get constraints on the velocity-dependent
part of the effective force. The new Skyrme force obeys
the BHF effective mass constraints, and hence the neutron
and proton effective masses are, respectively, increasing and
decreasing when increasing the asymmetry parameter β, a
behavior not always obeyed by the usual Skyrme forces
but consistent with empirical optical potential models [29].
The isospin splitting of effective mass in LNS force can
be also probed in transport-model simulations of HIC with
neutron-rich nuclei.

The LNS force that we have thus obtained looks quite
promising in describing finite nuclei in the HF approximation.
The deviations from the data remain at the level of a few
percent for binding energies and radii. If the BHF results
could be improved with respect to the equilibrium point of
the equation of state, then the HF results of finite nuclei would
most probably become much more satisfactory. In addition,
the spin-orbit and pairing terms have still to be consistently
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elaborated. In any case, it is highly desirable to establish a
link between microscopic many-body theories carried out in
infinite systems and phenomenological approaches for finite
nuclei based on effective interactions. The present work is one
step in that direction.
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