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Microscopic analysis of shape-phase transitions in even-even N ∼ 90 rotating nuclei
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In the cranked Nilsson model plus random phase approximation, we study shape transitions in fast rotating
nuclei undergoing backbending, more specifically, 156Dy and 162Yb. We find that backbending in 156Dy is
correlated with the disappearance of the collective, positive signature γ -vibrational mode in the rotating frame,
and a shape transition (axial→ nonaxial) is accompanied by a large acquisition of the γ deformation. We show
that such a shape transition can be considered as a phase transition of the first order. In 162Yb, the quasiparticle
alignment dominates the backbending, and the shape transition (axial→ nonaxial) is accompanied by a smooth
transition from zero to nonzero values of the γ deformation. We extend the classical Landau theory for rotating
nuclei and show that backbending in 162Yb is identified with the second-order phase transition. A description of
spectral and decay properties of the yrast states and low-lying excitations demonstrates good agreement between
our results and experimental data.
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I. INTRODUCTION

Backbending is a paradigm of structural changes in a
nucleus under rotation. A sudden increase of a nuclear moment
of inertia in the yrast rotational band at some critical angular
momentum or rotational frequency, discovered a few decades
ago [1], continues to attract considerable attention. There
is a general notion that this phenomenon is a result of the
rotational alignment of angular momenta of a nucleon pair
occupying a high-j intruder orbital near the Fermi surface (see
textbooks [2,3] and references therein). However, it has been
understood just recently that this point of view may obscure
different mechanisms if applied to nuclei with relatively small
axial deformation at zero spin. In particular, Regan et al. [4]
proposed that the backbending observed in a number of Cd, Pd,
and Ru nuclei can be interpreted as a change from vibrational
to rotational structure. In our preliminary report [5], we
proposed considering backbending in N ∼ 90 as a result of
the transition from axially symmetric to nonaxial shape due
to a disappearance of a collective γ -vibrational mode in the
rotating frame.

The analogy of the backbending phenomenon to a behavior
of superconductors in magnetic field, noticed in Ref. [4],
is prompting researchers to apply Landau theory of phase
transitions [7] to nuclei. We recall that Landau’s theory
deals with second-order phase transitions, when different
macroscopic phases become indistinguishable at the transition
point. Whether it takes place for rotating nuclei is an open
question. Nuclei are finite systems, and phase transitions
should be washed out by quantum fluctuations. Nevertheless,
long ago Thouless [8] proposed to distinguish two kinds of
“phase transitions” even for nuclei. Such phase transitions
may be connected with shape transitions, for example, from
spherical to deformed or axially deformed to nonaxially
deformed shapes. This idea was advanced in the analysis
of shape transitions in hot rotating nuclei [9]. In this case,
the statistical treatment of the finite-temperature mean field

description provided a justification for an application of the
Landau theory for nuclei. Within this approach, simple rules
for different shape-phase transitions were found as a function
of angular momentum and temperature.

Recently, quantum phase transitions that occur at zero tem-
perature as a function of some nonthermal control parameter
have attracted considerable attention in various branches of
many-body physics, starting from low-dimensional systems
[10] to atomic nuclei and molecules [11]. Until the present,
a major activity in the study of shape-phase transitions for
nuclei in the ground state at zero temperature has been
carried out within the interacting boson model (IBM) (see,
for example, Refs. [12,13] and references therein). The model
naturally incorporates different symmetry limits associated
with specific nuclear properties [14]. While the IBM can be
easily extended to a thermodynamic limit N → ∞, which is
well suitable for the study of phase transitions, the analysis
is rather oversimplified. For example, the model does not
take into account the interplay between single-particle and
collective degrees of freedom in even-even nuclei. A general
trend found for the ground shape transitions is less affected
by this interplay. However, it may be crucial to the study
of quantum phase transitions in rotating nuclei, where static
and dynamic properties are coupled. As we will see below,
this interplay determines the type of quantum shape-phase
transitions in rotating nuclei. It elucidates also the behavior
of low-lying excitations specifically related to the shape
transitions at high spins. Among such modes are γ excitations
and wobbling excitations, which are related to the nonaxial
shapes.

The nuclear shell model (SM) treats the single-particle (s.p.)
and collective degrees of freedom equally and appears to be
extremely successful in the calculation of the backbending
curve in light nuclei [15]. However, the drastic increase
of the configuration space for medium and heavy systems
makes the shell model calculations impossible. In addition,
one needs some model consideration to interpret the SM
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results. On the other hand, various cranking Hartree-Fock-
Bogoliubov (HFB) calculations (cf. [16–18]) provide a reliable
analysis of backbending for medium and heavy systems. As
a rule, low-lying rotational bands are described within the
cranking model with a principal axis (PAC) rotation. For the
PAC rotation, each single-particle (quasiparticle) configuration
corresponds to a band of a given parity and signature [19]. In
the HFB calculations, backbending is explained as a crossing
of two quasiparticle configurations with different mean field
characteristics.

It is well known, however, that a mean field description
of finite Fermi systems could spontaneously break one of
the symmetries of the exact Hamiltonian, the so-called
spontaneously symmetry breaking (SSB) phenomenon (see
Refs. [19,20] for a recent review on the SSB effects in rotating
nuclei). Obviously, for finite systems, quantum fluctuations
beyond the mean field approach are quite important. The
random phase approximation (RPA) being an efficient tool
to study these quantum fluctuations (vibrational and rotational
excitations) also provides a consistent way to treat broken
symmetries. Moreover, it separates collective excitations
associated with each broken symmetry as a spurious RPA
mode and fixes the corresponding inertial parameter. This
was recently demonstrated in fully self-consistent, unrestricted
Hartree-Fock (HF) calculations for another mesoscopic system
such as a two-dimensional quantum dot with a small number
of electrons and a parabolic confinement [21,22]. For large
enough values of the Coulomb interaction-confinement ratio
RW , the HF mean field breaks circular symmetry; the electrons
are localized in specific geometric distributions. Applying the
RPA next, it was shown that the broken symmetry corresponds
to the appearance of the spurious (with a zero energy) RPA
mode (Nambu-Goldstone mode). This mode can be associated
with a rotational collective motion of this specific (deformed)
electron configuration (see [21,22] and references therein),
which is separated from the vibrational excitations. Thus,
self-consistent mean field calculations combined with the RPA
analysis could be useful for revealing structural changes in
a mesoscopic system, i.e., to detect a quantum shape-phase
transition.

In contrast to that in quantum dots, a nucleon-nucleon
interaction in nuclei is less known. Mean field calculations
with effective density-dependent nuclear interactions such as
Gogny or Skyrme forces or a relativistic mean field approach
still do not provide sufficiently accurate single-particle spectra
to obtain a reliable description of experimental characteristics
of low-lying states (cf. [23]). The RPA analysis based on such
mean field solutions focuses only on the description of various
giant resonances in nonrotating nuclei, when the accuracy of
single-particle spectra near the Fermi level is not important
(cf. [24]). Furthermore, a practical application of the RPA for
the nonseparable effective forces in rotating nuclei requires
too large of a configuration space and is not yet available.
A self-consistent mean field obtained with the aid of phe-
nomenological cranked Nilsson or Saxon-Woods potentials
and pairing forces has been quite competitive up to now, from
the above point of view. These potentials allow us to construct
also a self-consistent residual interaction neglected at the mean
field level. The RPA with a separable multipole-multipole

interaction based on these phenomenological potentials is an
effective tool for studying low-lying collective excitations at
high spins (cf. [25,26]).

It was demonstrated recently, in an exactly solvable crank-
ing harmonic oscillator model with a self-consistent separable
residual interaction [27,28], that a direct correspondence be-
tween the SSB effects of the rotating mean field and zero RPA
modes can be established in a rotating frame if and only if mean
field minima are found self-consistently. Thus, it is self-evident
that the analysis of the SSB effects and RPA excitations for
realistic potentials requires a maximal accuracy of the fulfill-
ment of self-consistency conditions. In Ref. [5], we proposed a
practical method for solving almost self-consistently the mean
field problem for the cranked Nilsson model with pairing
forces in order to study quadrupole excitations in the RPA.
In the present paper, we discuss all the details of our method
and analyze backbending in 156Dy and 162Yb. We thoroughly
investigate positive signature quadrupole excited bands as a
function of the angular rotational frequency. In contrast to
those in the HFB calculations, low-lying excited states in
our approach are the RPA excitations (phonons) built on the
vacuum states. Our vacuum states are yrast line states, i.e., the
lowest energy states at a given rotational frequency. Note, that
RPA phonons describe collective and noncollective excitations
equally [2,29]. The rotational bands are composed of the states
with a common structure (characterized by the same parity
and signature and connected by strong B(E2) transitions). We
will demonstrate that positive signature excitations are closely
related to the shape transitions that take place in the considered
nuclei undergoing backbending. Hereafter, for the sake of
discussion, we call our approach the CRPA. The validity of
our approach will be confirmed by a remarkable agreement
between available experimental data and our results for various
quantities such as kinematic and dynamic moments of inertia,
quadrupole transitions, etc.

The paper is organized as follows: In Sec. II, we review
the Hartree-Bogoluibov approximation for rotating nuclei
and discuss mean field results. Section III is devoted to the
discussion of positive signature RPA excitations and their
relation to the backbending phenomenon. Conclusions are
finally drawn in Sec. IV.

II. THE MEAN FIELD SOLUTION

A. The Hartree-Bogoliubov approximation

We start with the Hamiltonian

H� = H − h̄�Î1 = H0 −
∑

τ=n,p

λτNτ − h̄�I1 + V

(1)
= H̃0 − h̄�Î1 + V.

The unperturbed term consists of two pieces

H0 =
∑

i

(hNil(i) + hadd(i)). (2)

The first is the Nilsson Hamiltonian [3]

hNil = p2

2m
+ VHO − 2κh̄ω00l · s − κµh̄ω00(l2 − 〈l2〉N ), (3)
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where

VHO = 1
2m

(
ω2

1x
2
1 + ω2

2x
2
2 + ω2

3x
2
3

)
(4)

is a triaxial harmonic oscillator (HO) potential, whose fre-
quencies satisfy the volume-conserving condition ω1ω2ω3 =
ω3

0 (h̄ω0 = 41A−1/3 MeV). In the cranking model with the
standard Nilsson potential [3] the value of the moment of
inertia is largely overestimated because of the presence of
the velocity-dependent �l 2 term. This term favors s.p. orbitals
with large orbital momenta l and drives a nucleus to a rigid
body rotation too fast. This shortcoming can be overcome
by introducing the additional term. The second piece of H0

restores the local Galilean invariance broken in the rotating
coordinate system and has the form [26]

hadd = �mω00κ

[
2(r2sx − x�r · �s)

+µ

(
2r2 − h̄

mω00

(
N + 3

2

))
lx

]
. (5)

The two-body potential has the structure

V = VPP + VQQ + VMM + Wσσ . (6)

It includes a monopole pairing, VPP = −∑
τ=p,n GτP

†
τ Pτ ,

where P †
τ = ∑

χ c†χc
†
χ̄ . An index χ is labeling a complete set

of the oscillator quantum numbers (|χ〉 = |Nljm〉), and the
index χ̄ denotes the time-conjugated state [30]. VQQ and VMM

are, respectively, separable quadrupole-quadrupole, VQQ =
− 1

2

∑
T =0,1 κ(T )

∑
r=±

∑
µ=0,1,2(Q̃µ[Tr ])2, and monopole-

monopole, VMM = − 1
2

∑
T =0,1 κ(T )(M̃[Tr=+])2, potentials.

Vσσ is a spin-spin interaction, Vσσ = − 1
2

∑
T =0,1 κσ (T )∑

r=±
∑

µ=0,1(sµ[Tr ])2. We recall that the K quantum number
(a projection of the angular momentum on the quantization
axis) is not conserved in rotating nonaxially deformed systems.
However, the cranking Hamiltonian (1) adheres to the D2

spatial symmetry with respect to rotation by the angle π

around the rotational axis x1. Consequently, all rotational
states can be classified by the quantum number called
signature r = exp(−iπα) leading to selection rules for the
total angular momentum I = α + 2n, n = 0,±1,±2, . . . . In
particular, in even-even nuclei, the yrast band characterized
by the positive signature quantum number r = +1 (α = 0)
consists of even spins only. All the one-body fields have good
z component of isospin operator tz and signature r. Multipole
and spin-multipole fields of good signature are defined in
Ref. [31]. The tilde indicates that monopole and quadrupole
fields are expressed in terms of doubly stretched coordinates
x̃i = (ωi/ω0) xi [32].

Using the generalized Bogoliubov transformation for quasi-
particles (for example, for the positive signature quasiparticle,
we have α+

i = ∑
k Ukic

+
k + Vk̄ick̄) and the variational principle

(see details in Ref. [25]), we obtain the Hartree-Bogoliubov
(HB) equations for the positive signature quasiparticle energies
εi (protons or neutrons)(

h(1) �
� h(2)

) (Ui

Vi

)
= εi

(Ui

Vi

)
. (7)

Here, h(1)kl = (H̃0)kl−�(I1)kl , (h(2))kl = −(H̃0)kl−�(I1)kl ,
and �kl = −δklGτ 〈Pτ 〉 and |k〉 denotes a s.p. state of a
Goodman spherical basis (see [31]). It is enough to solve the
HB equations for the positive signature, since the negative
signature eigenvalues and eigenvectors are obtained from the
positive ones according to the relation

(−εi,Ui ,Vi) → (εĩ,Vĩ ,Uĩ), (8)

where the state ĩ denotes the signature partner of i. For a given
value of the rotational frequency �, the quasiparticle (HB)
vacuum state is defined as αi |〉 = αĩ |〉 = 0.

The solution of a system of nonlinear HB equations (7)
is a nontrivial problem. In principle, the pairing gap should
be determined self-consistently at each rotational frequency.
However, in the vicinity of the backbending, the solution be-
comes highly unstable. In order to avoid unwanted singularities
for certain values of �, we followed the phenomenological
prescription [33]

�τ (�) =
{

�τ (0)
[
1 − 1

2

(
�
�c

)2]
� < �c,

�τ (0) 1
2

(
�c

�

)2
� > �c,

(9)

where �c is the critical rotational frequency of the first band
crossing.

In general, in standard calculations with the Nilsson or
Woods-Saxon potentials, the equilibrium deformations are
determined with the aid of the Strutinsky procedure [3].
The procedure, being a very effective tool for an analysis
of experimental data related to the ground or yrast states,
produces deformation parameters that are slightly different
from those of the mean field calculations. The use of the
former parameters (based on the Strutinsky procedure) for
the RPA violates the self-consistency between the mean field
and the RPA description. Therefore, to keep a self-consistency
between the mean field and the RPA as much as possible, we
use the recipe described below.

It is well known [27,28,32,34] that for a deformed HO
Hamiltonian, the quadrupole fields in double-stretched coor-
dinates fulfill the stability conditions

〈Q̃µ〉 = 0, µ = 0, 1, 2, (10)

if nuclear self-consistency

ω2
1

〈
x2

1

〉 = ω2
2

〈
x2

2

〉 = ω2
3

〈
x2

3

〉
(11)

is satisfied in addition to the volume-conserving constraint.
Here, 〈· · ·〉 means the averaging over the mean field vacuum
state of the rotating system. In virtue of the stability conditions
(10), the interaction will not further distort the deformed HO
potential if the latter is generated as a Hartree field. To this
purpose, one starts with an isotropic HO potential of frequency
ω0 and then generates the deformed part of the potential
from the (unstretched) separable quadrupole-quadrupole (QQ)
interaction. The outcome of this procedure is

VHO = mω2
0r

2

2
− mω2

0β cosγQ0
[ 0
+
] − mω2

0β sin γQ2
[ 0
+
]
,

(12)

where one can use the following parametrization of the
quadrupole deformation in terms of β and γ (see, for example,
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Ref. [2]):

mω2
0β cosγ = κ[0]

〈
Q0

[ 0
+
]〉
,

(13)
mω2

0β sin γ = −κ[0]
〈
Q2

[ 0
+
]〉
.

The triaxial form given by Eq. (4) follows from defining

ω2
i = ω2

0

[
1 − 2β

√
5

4π
cos

(
γ − 2π

3
i

)]
, i = 1, 2, 3.

(14)

Here, we follow the convention on the sign of γ deformation
accepted in [2]. The Hartree conditions have the form given
by Eqs. (13) only for a spherical HO potential plus the QQ
forces. Quite often, Eqs. (13) are considered as self-consistent
conditions for pairing +QQ model interaction. In practice,
the use of these conditions is based on �N = 0 mixing in
a small configuration space around the Fermi energy, which
includes only three shells. This restriction limits a description
of physical observables such as a mean field radius and
vibrational excitations. Furthermore, if �N = 2 mixing is
included, the RPA correlations are overestimated [34]. In
addition, the QQ forces, without the volume-conservation
condition, fail to yield a minimum for a mean field energy
of rotating superdeformed nuclei [34]. Because of all these
facts, we allow small deviations from Eqs. (13) and enforce
only the stability conditions (10), which are our self-consistent
conditions for the mean field calculations. These, in fact,
hold also in the presence of pairing (see below) and ensure
the separation of the pure rotational mode from the intrinsic
excitations for a cranked harmonic oscillator [28].

B. Some HB results

As mentioned in the Introduction, we chose 156Dy and
162Yb for our calculations. There are enough available exper-
imental data on spectral characteristics and electromagnetic
decay of high spins in these nuclei [35]. It is also known
that these nuclei possess axially symmetric ground states and
exhibit the backbending behavior at high spins. Moreover,
nuclei with Z ∼ 66 and N ∼ 90 have attracted theoretical
attention for a long time, since the cranking model predicts that
high-j quasiparticles drive rotating nuclei to triaxial shape [36].

We perform the following calculations:

(i) The Hamiltonian (1) includes the term ĥadd (5) that
restores the local Galilean invariance broken in the
Nilsson potential. This calculation will be further refered
to as calculation I.

(ii) The Hamiltonian (1) does not include the term ĥadd. Since
this term is responsible for the correct behavior of the
moment of inertia, such calculations provide the answer
about its importance, for example, to the value of the band
crossing frequency. All microscopic results reported in the
literature (excluding the analysis of octupole excitations
[26]) do not include such a term in the Nilsson potential.
We will refer to this calculation as calculation II.

FIG. 1. Equilibrium deformations in β-γ plane as a function of
the angular momentum I = 〈Î1〉 − 1/2 in units of h̄.

Parameters of the Nilsson potential were taken from
Ref. [37]. These parameters were determined from a sys-
tematic analysis of the experimental s.p. levels of deformed
nuclei of rare earth and actinide regions. In our calculations,
we include all shells up to N = 9, and this configuration space
was sufficient for fulfilling 99% of the sum rule for E2 strength
(see [38]). In contrast to the analysis of [39–41], which is based
on the “single stretched” coordinate method that involves the
�N = 2 mixing only approximatively, we take into account
the �N = 2 mixing exactly. This improves the accuracy of
the mean field calculations. For the values of the pairing
gaps �τ (0) at zero rotational frequency, we use the results
of Ref. [42]: �N (0) = 0.940 MeV, �P (0) = 0.985 MeV for
156Dy and �N (0) = 0.967 MeV, �P (0) = 0.975 MeV for
162Yb. These values were obtained in order to reproduce
nuclear masses. For quantization of angular momentum, we
use the equation 〈I1〉 = I + 1/2. Here, the term 1/2 is due to
the Nambu-Goldstone mode that appears in the RPA (see
Ref. [34]).

As shown in Fig. 1, the triaxiality of the mean field sets in at
the rotational frequency �c which triggers backbending in the
considered nuclei. We obtain the critical rotational frequen-
cies at which the first band crossing occurs, h̄�c = 0.250,

0.301 MeV for 162Yb, 156Dy, respectively. The parameters
so determined yield results that are in better agreement
with experiments, compared to those obtained in Ref. [36]
for N ∼ 90. Moreover, our equilibrium deformations are
sufficiently near to the self-consistent solutions of the HB
equations. The double stretched quadrupole moments 〈Q̃0[ 0

+]〉
and 〈Q̃2[ 0

+]〉 are approximately zero for all values of the
equilibrium deformation parameters, consistently with the
stability conditions (10) (see Fig. 2). Indeed, any deviation
from the equilibrium values of the deformation parameters β

and γ results in a higher HB energy. The double stretched
monopole moment 〈M0[ 0

+]〉 is not far from the corresponding
standard one. Both values, the standard and the double
stretched monopole moments, are almost independent of �.
We infer from the just discussed tests that our solutions are
close to the self-consistent HB ones. In contrast with our
results, in Ref. [36] the fixed parameters (deformation, pairing
gap) were used for all values of the rotational frequency. In
addition, the analysis of Ref. [36] was based on the fitted
moments of inertia, which were kept constant for all rotational
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FIG. 2. (Color online) Rotational behavior
of calculated monopole and quadrupole mo-
ments. “Double stretched” and standard values
are connected by dashed and solid lines, respec-
tively.

frequencies. It is evident that such an analysis can be used only
for a discussion of a general trend.

We get more insight into the backbending mechanism if
we consider the potential energy surface near the transition
point. As shown in Fig. 3, the potential energy surface of the
total mean field energy E�(β, γ ) = 〈H�〉 for 156Dy at h̄� =
0.300 MeV (before the bifurcation point) exhibits the mini-
mum for the axially symmetric shape, which is lower than the
minimum for the strongly triaxial shape with γ ≈ 20◦. The
increase in the rotational frequency breaks the axial symmetry,
and a nucleus settles at the nonaxial minimum at h̄� =

FIG. 3. (Color online) Potential energy surface E�(β, γ ) for
156Dy before (h̄� = 0.300 MeV) and after (h̄� = 0.302 MeV) the
transition point. There are two local minima with almost the same
β deformation and completely different γ deformation.

0.302 MeV (after the bifurcation point). Notice, the main
difference in these minima is a strong nonaxial deformation
of the one minimum in contrast to the other, while the
β deformation is almost the same.

Dealing with transitional nuclei, however, the minimum
becomes very shallow for a collective (around x1 rotational
axis) and noncollective (around x3 symmetry axis) rotation
as the rotational frequency increases. In fact, the energy min-
ima for the collective (≈ −1730.6 MeV) and noncollective
(≈ −1730.62 MeV) rotations are almost degenerate near the
crossing point of the ground with the γ band for 156Dy
(see the upper panel of Fig. 4). The energy difference is
about 15 keV near the critical rotational frequency where
backbending occurs. At the transition point, the competition
between collective and noncollective rotations breaks the axial
symmetry and yields nonaxial shapes. Does this behavior
correspond to a phase transition?

First, notice that half of an experimental value for γ vi-
brations h̄�K=2/2 = 0.414 MeV (at h̄� = 0) [43] is close
to the collective rotational frequency h̄�c = 0.301 MeV at
which the shape transition occurs. Second, let us consider an
axially deformed system, defined by the Hamiltonian H̃ in the
laboratory frame, that rotates about a symmetry axis z with
a rotational frequency �. The angular momentum is a good
quantum number and, consequently, [Ĵz, O

†
K ] = KO

†
K . Here,

FIG. 4. (Color online) Rotational dependence of the total mean
field energy E�(β, γ = 0) = 〈H�〉 for the axially symmetric equilib-
rium deformation. Results for collective (x1 axis) and noncollective
(x3 axis) rotation are connected by solid and dashed lines, respec-
tively.
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the phonon O
†
K describes the vibrational state with K being the

value of the angular momentum carried by the phonons O
†
K

along the symmetry axis z. Thus, one obtains

[
H�,O

†
K

] = [
H̃ − �Ĵz,O

†
K

] = (ω̃K − K�)O†
K ≡ ωKO

†
K,

(15)

where ω̃K is the phonon energy of the mode K in the laboratory
frame at � = 0. This equation implies that at the rotational
frequency �cr = ω̃K/K , one of the RPA frequencies ωK

vanishes in the rotating frame (see discussions in [27,44,45]).
At this point of bifurcation we could expect the SSB effect
of the rotating mean field because of the appearance of the
Goldstone boson related to the multipole-multipole forces
with quantum number K. For an axially deformed system,
one obtains the breaking of the axial symmetry, since the
lowest critical frequency corresponds to γ vibrations with
K = 2 [27,44]. However, the rotation around the collective
x1 axis couples vibrational modes with different K and the
critical rotational frequency is influenced by this coupling: it
becomes lower. The value of �cr can be affected by the degree
of the collectivity of the vibrational excitations, as we will
see below. The most important outcome of this consideration
is that in the vicinity of the shape transition there is an
anomalously low vibrational mode related to the deformation
parameter γ .

For 162Yb, the shape transition takes place at the rotational
frequency h̄�c ≈ 0.25 MeV, while the experimental bifur-
cation point (a half of the γ -vibrational excitation energy
at h̄� = 0) is h̄�cr ≈ 0.45 MeV. The energy difference at
the transition point between the collective (≈−1837.7 MeV)
and the noncollective (≈−1836.6 MeV) minima is still large
∼1 MeV (see the lower panel of Fig. 4). As one can see in
Fig. 5, the difference between the axially symmetric minimum
at h̄� = 0.245 MeV (before the transition) and the nonaxial
one at h̄� = 0.255 MeV (after the transition) for a collective
rotation is ∼1.2 MeV. The deformation parameters change
smoothly with the increase in the rotational frequency at
the transition point (see Fig. 1). It appears that for 162Yb,
there is a different mechanism responsible for the observed
backbending.

To elucidate the different character of the shape transition
from axially symmetric to the triaxial shape and its relation
to a phase transition, we consider potential landscape sections
in the vicinity of the shape transition. The phase transition
is detected by means of the order parameter as a function
of a control parameter [7]. In our case, the deformation
parameters β and γ are natural order parameters, while the
rotational frequency � is a control parameter that characterizes
a rotational state in the rotating frame. Since we analyze a
shape transition from the axially symmetric shape (γ = 0)
to the triaxial one (γ �= 0), we choose only the deformation
parameter γ as the order parameter that reflects the broken
axial symmetry. Such a choice is well justified, since the
deformation parameter β preserves its value before and after
the shape transition in both nuclei: βt ≈ 0.2 for 162Yb and
βt ≈ 0.31 for 156Dy. Thus, we consider a mean field value
of the cranking Hamiltonian, E�(γ ; βt ) ≡ 〈H�〉, for different

FIG. 5. (Color online) Potential energy surface E�(β, γ ) for
162Yb before (h̄� = 0.245 MeV) and after (h̄� = 0.255 MeV) the
transition point.

values of � (our state variable) and γ (order parameter) at
fixed value of βt .

For 156Dy, we observe the emergence of the order parameter
γ above the critical value h̄�c = 0.301 MeV of the control
parameter � (see top panel in Fig. 6). Below and above the

FIG. 6. (Color online) Rotational dependence of the order param-
eter γ and the energy surface sections F (�, γ ) = E(γ, βt ) − Emin

for 156Dy (top) and 162Yb (bottom) before and after the transition
point. Energy is given relative to the value Emin = E�(βt , γ ) at
h̄� = 0.255, 0.302 MeV for 162Yb,156 Dy, respectively.
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transition point, a unique phase occure whose properties are
continuously connected to one of the coexistent phases at the
transition point. The order parameter changes discontinuously
as the nucleus passes through the critical point from the axially
symmetric shape to the triaxial one. The polynomial fit of the
potential landscape section at h̄�c = 0.301 MeV yields the
expression

F (�; γ ) = F0(�) + F2(�)γ 2 − F3(�)γ 3 + F4(�)γ 4, (16)

where F0(�) = 0.3169 MeV, γ is in degrees, and F2(�) =
0.12239, F3(�) = 0.009199, and F4(�) = 1.7 × 10−4 are de-
fined in corresponding units. We can transform this polynomial
to the form

F̄ = F (�; γ ) − F0(�)

F̄0
≈ α

η2

2
− η3

3
+ η4

4
, (17)

where

F̄0 = (3F3)4

(4F4)3
, α = 8F2F4

9F 2
3

, η = 4F4

3F3
γ. (18)

The expression (17) represents the generic form of the anhar-
monic model of the structural first-order phase transitions in
condensed matter physics (cf. [46]). The condition ∂F̄ /∂η = 0
determines the following solutions for the order parameter η:

η = 0, η = 1 ± √
1 − 4α

2
. (19)

If α > 1/4, the functional F̄ has a single minimum at η = 0.
Depending on values of α, defined in the interval 0 < α < 1/4,
the functional F̄ manifests the transition from one stable min-
imum at zero-order parameter via one minimum+metastable
state to the other stable minimum with the nonzero-order
parameter. In particular, at the universal value of α = 2/9,
the functional F̄ has two minimum values with F̄ = 0 at
η = 0 → γ ≈ 0◦ and η = 2/3 → γ ≈ 270 and a maximum
at η = 1/3 → γ ≈ 13.50. The correspondence between the
actual value γ ≈ 20◦ and the one obtained from the generic
model is quite good. Thus backbending in 156Dy possesses
typical features of the first-order phase transition.

In the case of 162Yb, the energy E(�; γ ) and the order
parameter (Fig. 6) are smooth functions in the vicinity of the
transition point �c, This implies that two phases, γ = 0 and
γ �= 0, on either side of the transition point should coincide.
Therefore, for � near the transition point �c we can expand
our functional F (�, γ ) = E�(γ, βt ) − Emin (see Fig. 6) in the
form

F (�; γ ) = F1(�)γ + F2(�)γ 2 + F3(�)γ 3 + F4(�)γ 4 + · · · .
(20)

The conditions of the phase equilibrium [further, we restrict
the expansion (20) up to the terms with γ 4]

∂F

∂γ
= F1(�) + F2(�)2γ + F3(�)3γ 2 + F4(�)4γ 3 = 0,

(21)

∂2F

∂γ 2
= 2F2(�) + 6F3(�)γ + 12F4(�)γ 2 � 0, (22)

which should be valid for all values of � and γ (including
γ = 0), yield

F1(�) = 0. (23)

Eqs. (21) and (22) can be rewritten as

2F2(�)γ + 3F3(�)γ 2 + 4F4(�)γ 3 = 0, (24)

2F2(�) + 6F3(�)γ + 12F4(�)γ 2 � 0, (25)

which implies the inequality

2F4(�)γ 2 � F2(�). (26)

This inequality holds for all values of γ (including γ = 0
at � = �c), which leads to F2(� = �c) � 0. On the other
hand, from the stability condition Eq. (22) at the transition
point �c and γ = 0, we also have F2(� = �c) � 0. Both
inequalities can coincide only when F2(� = �c) = 0. Using
the result F1(�c) = F2(�c) = 0 and the fact that all phases at
the transition point should coincide, we obtain from Eq. (21)
that F3(� = �c) = 0. Assuming that F3 = 0 for all �, the
minimum condition Eq. (24) yields the following solution for
the order parameter:

γ1 = 0, γ 2
2,3 = − F2(�)

2 F4(�)
=

{�= 0 for � �= �c,

= 0 for � = �c.
(27)

Since at the transition point F2(�c) = 0, one can propose the
following definition of the function F2(�):

F2(�) ≈ dF2(�)

d�
(� − �c) . (28)

Thus, we have γ ∼ (� − �c)ν and the critical exponent ν =
1/2, in accord with the classical Landau theory, in which the
temperature is replaced by the rotational frequency.

Our extension of the Landau-type approach for rotating
nuclei is nicely confirmed by the numerical results. The
polynomial fit of the energy potential surfaces for 162Yb
(Fig. 6) yields F1(�) = F3(�) = 0 for all considered values of
the rotational frequencies and F2(�c) = 0 at h̄�c = 0.25 MeV.
Moreover, in the vicinity of �c we obtain dF2(�)/h̄d� ≈
−3.5 [F4(�) > 0 for all �]. In agreement with Eqs. (27)
and (28), we have only the phase γ = 0 for h̄� < h̄�c and
the phase γ �= 0 for h̄� > h̄�c. The energy surfaces are
symmetric with regard to the sign of γ , and this also supports
the idea that the effective energy F can be expressed as an
analytic function of the order parameter γ . Thus, backbending
in 162Yb can be classified as the phase transition of the second
order.

C. Quasiparticle spectra

To understand the microscopic origin of the quantum
shape-phase transitions, we analyze first the quasiparticle
spectra and the rotational evolution of different observables
like quadrupole moments and moments of inertia. A numerical
analysis of the expectation value of the nonaxial quadrupole
moment〈

Q̂2
[ 0
+
]〉 =

∑
kl

〈k|Q̂2
[ 0
+
]|l〉∑

i

[Vik̄Vil̄ + VīkVīl] (29)
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FIG. 7. (Color online) Lowest quasineutron energies for 156Dy
and 162Yb. Thick (thin) lines are used for the positive (negative)
parity states. The positive (negative) signature states are connected
by solid (dashed) lines. At � = 0, levels A, B, C, D, E cor-
respond to the Nilsson states 3/2[651] (subshell i13/2), 1/2[660]
(subshell i13/2), 3/2[521] (subshell h9/2), 5/2[521](subshell f7/2), and
11/2[505] (subshell h11/2), respectively. The shape transition point is
denoted by the vertical line. The quasicrossing is surrounded by a
circle.

shows that in 162Yb, high-j neutron and proton orbitals that
belong to i13/2 and h11/2 subshells, respectively, give the
main contribution to the expectation value. The nonaxial
deformation grows because of the rotational alignment. The
crossing frequencies, where the configurations with aligned
quasiparticles become yrast, are on the order of �c ≈ 2�/i,
where i is an aligned angular momentum carried by quasiparti-
cles. Since the neutron gap is smaller than the proton gap, one
may expect that backbending should occur as a result of the
alignment of the quasineutron orbitals that could contribute
i ∼ 8h̄.

We trace the rotational evolution of quasiparticle orbitals in
the rotating frame (Routhians) as a function of the equilibrium
parameters (ε, γ,�). At � = 0, each orbital is characterized
by the asymptotic Nilsson quantum numbers. However, these
numbers lose their validity in the rotating case due to a strong
mixing. Hereafter, they are used only for convenience. The
analysis of the Routhians for neutrons (Fig. 7) and protons
(Fig. 8) indicates that the lowest quasicrossings occur at
h̄� ≈ 0.275(0.42) MeV for the neutron (proton) system in
156Dy; at h̄� ≈ 0.245(0.41) MeV for the neutron (proton)
system in 162Yb. We recall that the shape-phase transition
occurs at h̄�c ≈ 0.25, 0.3 MeV in 162Yb, 156Dy, respectively.
The proximity of the critical point to the two-quasiparticle
neutron quasicrossing in both investigated nuclei (especially,
in 162Yb) suggests that the alignment of a pair i13/2 is the

FIG. 8. (Color online) Lowest quasiproton energies for 156Dy and
162Yb. Thick (thin) lines are used for the negative (positive) parity
states. At � = 0, levels A, B, C, D correspond to the Nilsson states
7/2[523] (subshell h11/2), 5/2[532] (subshell h11/2), 3/2[411](subshell
d5/2), and 5/2[413] (subshell g7/2), respectively, in 156Dy; 7/2[523]
(subshell h11/2), 9/2[514] (subshell h11/2), 5/2[402] (subshell d5/2),
7/2[404] (subshell g7/2), respectively, in 162Yb. The shape transition
point is denoted by the vertical line. The quasicrossing is surrounded
by a circle.

main mechanism that drives both nuclei to triaxial shapes
(cf. [36,47]). This mechanism itself, however, does not provide
the explanation for the different character of the shape-phase
transition. We recall that the Routhians exhibit the dynamics
of noninteracting quasiparticles. Evidently, the interaction
between quasiparticle orbitals is important and could change
substantially as a function of the neutron and proton numbers.
Indeed, as we will see below (see Sec. III), this explains
the type of shape-phase transitions discussed in the present
section.

D. Inertial properties

The moment of inertia is the benchmark for microscopic
models of nuclear rotation. To understand the interplay
between s.p. degrees of freedom and collective effects, we
calculate the kinematic (1)

1 = 〈Î1〉/� and dynamic (2)
1 =

d〈Î1〉/d� moments of inertia and compare them with the
corresponding experimental values. The kinematic moment
of inertia (1)

1 reflects the collective properties of the rotating
mean field. The dynamic moment of inertia due to the obvious
relation (2)

1 = (1)
1 + �d(1)

1 /d� is very sensitive to struc-
tural changes of the mean field. It reflects the rearrangement
of the two-body interaction upon rotation which leads to level
crossings and shift in the deformation. In fact, the dynamic
moment of inertia provides a definite criterion for on the
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FIG. 9. (Color online) Kinematic (1)
1 (�) (top panels) and dy-

namic (2)
1 (�) (second panel from the bottom) moments of inertia (in

units h̄2/MeV) are compared with the corresponding experimental
values (filled squares). Experimental values are connected by dash-
dotted lines to guide eyes. Results for the kinematic moment of
inertia (1)

1 (�), with (calculations I) and without (calculations II)
the additional term ĥadd, Eq. (5), are connected by solid and dashed
lines, respectively. Second panel (from the top) displays the ratio
R = (1)

II /(1)
I for each nucleus. Experimental and calculated dynamic

moments of inertia (2)
1 (solid line) (obtained by calculation I)

are compared with the Thouless-Valatin inertia moment RPA,
Eq. (39) (dashed line). In the bottom panels, the ratio � = (2)

1 /(1)
1

is displayed.

self-consistency of the rotating mean field when it is compared
with the Thouless-Valatin moment of inertia calculated in the
RPA. A full self-consistency is achieved if they are equal (see
discussion in Ref. [28]).

In Fig. 9, the experimental and theoretical values of
kinematic (upper panels) and dynamic (lower panels) moments
of inertia are compared for 162Yb and 156Dy. We recall that
the calculations I (II) include (not include) the term ĥadd,
Eq. (5). While both calculations reproduce the rotational
evolution of the kinematic moment of inertia, the agreement
with the experimental data is much better for calculations I.
It is interesting to note that with the increase in the rotational
frequency, the ratio (1)

I /(1)
II increases from ∼50% at h̄� ∼

0.2 MeV to ∼85% at h̄� ∼ 0.5 MeV. Partially, the effect of
broken Galilean symmetry is reduced because of the alignment
of the high-j intruder states with a large orbital momentum l.

These states contribute to the collective angular momentum
and decrease the effect of the �l 2 term in the Nilsson potential.

Although one observes a similar pattern for backbending
in the considered nuclei (upper panels, Fig. 9), a different
response of a nuclear field upon rotation becomes more
evident with the aid of the experimental dynamic moment of
inertia (2) = dI/d� ≈ 4/�Eγ as a function of the angular
frequency (see the second panel from the bottom, Fig. 9).
Here, h̄� = Eγ /2, Eγ is the γ -transition energy between two
neighboring states that differ on two units of the angular mo-
mentum I, and �Eγ is the difference between two consecutive
γ transitions. At the transition point, (2) wildly fluctuates with
a huge amplitude in 156Dy, whereas these fluctuations are quite
mild in 162Yb. This behavior can be understood by virtue of
the expansion of the microscopic moment of inertia at small
rotational frequency [48]

 ≈ JIB + JM +
∑

i

∂I

∂βi

∂βi

∂�
+ · · · . (30)

The Inglis-Belyaev moment of inertia JIB neglects a residual
two-body interaction between quasiparticles. Its behavior is
similar to that of the kinematic moment of inertia (1)

1 .
The second term JM is a Migdal moment of inertia [49],
resulting from the effect of rotation on the residual two-body
interaction and, in particular, on the pairing interaction. In
our calculations, the pairing gaps change smoothly in accord
with the phenomenological prescription, Eq. (9). The third
term describes the variation of the self-consistent mean
field, namely, the change of the deformation (β1,2 ≡ β, γ )
under rotation. Therefore, a drastic change of the mean field
configuration (i.e., γ deformation) in 156Dy (Fig. 6, top panels)
explains large fluctuations of the dynamic moment of inertia
at the transition point. In contrast, the smooth behavior of the
function F at the transition point (Fig. 6, bottom panels) implies
a small amplitude of fluctuations of the dynamic moment of
inertia in 162Yb. The magnitude of fluctuations can be traced
by means of the ratio � = (2)

1 /(1)
1 as a function of the

rotational frequency (bottom panel, Fig. 9). While � ∼ 2 at
the transition point in 162Yb, in 156Dy it is much larger � ∼ 8.
Referring to the above analysis of the mean field solutions,
we can formulate the empirical rule to detect the order of the
quantum shape-phase transition at the backbending: If the ratio
� = (2)/(1) � 1 at the transition point, the shape transition
can be associated with a first-order phase transition.

The nature of the backbending becomes more evident by
dint of the RPA analysis presented below. For completeness,
we also compare the Thouless-Valatin moment of inertia (the
definition is presented in Sec. III) with the dynamic moment
of inertia (2)

1 calculated in the mean field approximation.
Notice that all three terms in Eq. (30) are included in the
Thouless-Valatin moment of inertia, RPA = , calculated in
the RPA (see, for example, the discussion in [28] for the exact
model without pairing), which is also valid at large rotational
frequencies. One can observe a remarkable agreement between
experimental, mean field, and CRPA results. The agreement
between the mean field and CRPA results confirms a good
accuracy of our mean field calculations. This agreement, on
the other hand, also demonstrates the validity of our CRPA
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approach in the backbending region, at least for the description
of the spectrum.

III. QUADRUPOLE COLLECTIVE EXCITATIONS

A. Quasiparticle RPA in rotating systems

In this section, we discuss the RPA results to gain a
further insight into the backbending mechanism. By means
of a generalized Bogoliubov transformation, we express the
Hamiltonian given by Eq. (1) in terms of quasiparticle creation
(α†

i ) and annihilation (αi) operators. We then face the RPA
equations of motion, written in the form [25,31]

[H�,Pν] = i h̄ω2
ν Xν, [H�,Xν] = −i h̄ Pν,

[Xν, Pν ′ ] = ih̄δν ν ′ , (31)

where Xν, Pν are, respectively, the collective coordinates and
their conjugate momenta. The solution of these equations
yields the RPA eigenvalues h̄ων and eigenfunctions

|ν〉 = O†
ν |RPA〉 = 1√

2

(√
ων

h̄
Xν − i√

h̄ων

P̂ν

)
|RPA〉

=
∑

µ

(
ψν

µb†µ − φν
µbµ

)|RPA〉, (32)

where µ = (kl̄) or (kl, k̄l̄). Here, the bosonlike operators
b+

kl̄
= α+

k α+
l̄
, b+

kl = α+
k α+

l , and b+
k̄l̄

= α+
k̄
α+

l̄
are used. The first

equality introduces the positive signature boson, while the
other two determine the negative signature ones. These two-
quasiparticle operators are treated in the quasiboson approxi-
mation (QBA) as an elementary bosons, i.e., all commutators
between them are approximated by their expectation values
with the uncorrelated HB vacuum [2]. The corresponding
commutation relations can be found in [25]. In this approx-
imation any single-particle operator F̂ can be expressed as
F̂ = 〈F 〉 + F̂ (1) + F̂ (2), where the second and third terms are
linear and bilinear order terms in the boson expansion. We
recall that in the QBA, one includes all second-order terms
into the boson Hamiltonian such that (F̂ − 〈F 〉)2 = F̂ (1)F̂ (1).
The positive and negative signature boson spaces are not
mixed, since the corresponding operators commute and H� =
H�(r = +1) + H�(r = −1). Consequently, we can solve the
eigenvalue equations (31) for H�(+) and H�(−) separately.

The symmetry properties of the cranking Hamiltonian yield

[H�(+), Nτ=n,p ]RPA = 0, [H�(+), I1 ]RPA = 0. (33)

The presence of the cranking term in Hamiltonian (1) leads to

[H�(−), �†] = h̄��†, (34)

where �† = (I2 + iI3)/
√

2〈I1〉 and � = (�†)† = (I2 − iI3)/√
2〈I1〉 fulfill the commutation relation

[�,�†] = h̄. (35)

According to Eqs. (33), we have two Nambu-Goldstone
modes, one is associated with the violation of the conservation
law for a particle number, the other is a positive signature zero
frequency rotational solution associated with the breaking of
spherical symmetry. Equation (34), on the other hand, yields
a negative signature redundant solution of energy ων = �,

which describes a collective rotational mode arising from
the symmetries broken by the external rotational field (the
cranking term). Equations (33) and (34) ensure the separation
of the spurious or redundant solutions from the intrinsic
ones. They would be automatically satisfied if the single-
particle basis was generated by means of a self-consistent HB
calculation. As we will show, they are also fulfilled with good
accuracy also in our not fully self-consistent HB treatment.

We recall that the yrast states possess the positive signature
quantum number. Obviously, SSB effects of the mean field
are related to Nambu-Goldstone modes of the same signature.
Therefore, in this paper our analysis is focused upon positive
signature RPA excitations.

The positive signature Hamiltonian consists of the terms

Ĥ�[r = +1] =
∑
ij

Eij̄ b
+
ij̄

bij̄ −
∑

τ=N,P

Gτ P̂
(1)+
τ P̂ (1)

τ

− 1/2
∑

T =0,1

κ0[T ]
(
M̃ (1)

[T

r=+1

])2

− 1

2
κσ

∑
T =0,1

(
s̃

(1)
1

[T

r=+1

])2 − 1

2

∑
T =0,1

κ2[T ]

×
∑

µ=0,1,2

(
Q̃(1)

µ

[T

r=+1

])2
. (36)

Here, Eij̄ = εi + εj̄ are two-quasiparticle energies, and the
definitions of the matrix elements of the operators involved in
the Hamiltonian (36) can be found in Ref. [31]. The solution of
the equations of motion (31) leads to the following determinant
of the secular equations

F(ων) = det

(
R − 1

2c

)
, (37)

with a dimension n = 12 and c = κ0, κ2 or Gτ . The matrix
elements Rkm(ων) = ∑

µ qk,µqm,µCkm
µ /(E2

µ − ω2
ν) involve the

coefficients Ckm
µ = Eµ or ων for different combinations of

matrix elements qk,µ (see details in Refs. [25,31]). The zeros
of the function F(ων) = 0 yield the CRPA eigenfrequencies
ων . Once the RPA solutions are found, the Hamiltonian (36)
can be written in terms of the collective modes (X̂ν, P̂ν)as

Ĥ�[r] = 1

2

∑
ν

(
P̂2

ν + ω2
νX̂2

ν

) =
∑

ν(ων �=0)

h̄ων

(
Q+

ν Qν + 1

2

)

+ 1

2
gI1 Î(1)2

1 + 1

2

∑
τ

gNτ
N̂(1)2

τ , (38)

where gI1 = 1/RPA, gNτ
are the Thouless-Valatin moment of

inertia and the nucleus mass, respectively, determined in the
uniform rotating (UR) frame. The general derivation of the
mass parameters gI1 and gNτ

can be found in Refs. [25,50]. In
particular, for the moment of inertia, we have

RPA = detA

detB
, (39)

where Akl is the matrix (dimension n = 10) given by the part
of the matrix Fkl(ω = 0) corresponding to the s.p. operators
k, and l involved in Ĥ [r = +1] with the structure (b+

ij̄
+ bij̄ )

type. The matrix Bkl (dimension n = 11) is given by matrix
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Akl with additional one column and row involving 0 and sums

±∑
µ=ij̄

f (k)
µ J (1)

µ

Eµ
, (k = 1, . . . , 8) where J

(1)
ij̄

are quasiparticle

matrix elements of the operator Î1 (see Ref. [50] for details).
Transition probabilities for the Xλ transition |Iν〉 → |I ′ν ′〉

between two high-spin states is given by the expression

B(Xλ; Iν → I ′ν ′) = (I I λ µ1|I ′ I ′)2|〈ν ′|M̂(1)(Xλ; µ1

= I ′ − I )|ν〉|2. (40)

At high spin limit (I � λ, I ′ � λ), this expression takes the
form [51]

B(Xλ; Iν → I ′ yr) � |〈RPA|[Qν,M̂(1)(Xλ; µ1

= I ′ − I )]|RPA〉|2 (41)

for the transition from one phonon states into the yrast line
states. Here, M̂(1)(Xλµ1) is the linear boson part of the
corresponding transition operator of type X, multipolarity λ,
and projection µ1 onto the rotation axis (the first axis of the
UR system). The commutator in (41) can be easily expressed
in terms of phonon amplitudes ψ (ν)

µ , φ(ν)
µ (µ = ij̄ or ij, īj̄ ) and

|RPA〉 denotes the RPA vacuum (yrast state) at the rotational
frequency �. The multipole operator in the rotating frame is
obtained from the corresponding one in the laboratory frame
according to the prescription [51]

M(Xλµ1) =
∑
µ3

Dλ
µ1µ3

(
0,

π

2
, 0

)
M(Xλµ3). (42)

Taking into account that 〈ν|M̂ (E)
2µ3=0,2[+]|ν〉 = 〈|M̂ (E)

2µ3=0,2
[+]|〉 holds in the first RPA order and Eq. (42), we have

B(E2; Iν → I − 2ν) = |〈ν|M̂(1)(E2; µ1 = 2)|ν〉|2

= 1

2

∣∣∣∣∣
√

3

2

〈∣∣M̂ (E)
2µ3=0[+]

∣∣〉

− 1

2

〈∣∣M̂ (E)
2µ3=2[+]

∣∣〉∣∣∣∣∣
2

. (43)

Using the β-γ deformation parametrization, Eq. (13), and
the oscillator value for the isoscalar quadrupole constant,

κ2[0] ≈ 4π
5

mω2
0

〈r2〉 ≈ 4π
3A

mω2
0R

2 (R = 1.2A1/3 fm), we obtain an
approximate expression

B(E2; I yr → I − 2 yr) ≈ 1

2

9e2Z2

16π2
R4β2 cos2

(π

6
− γ

)
.

(44)

Here, we use M̂ (E) = (eZ/A)M̂ . From this expression, one can
conclude that the change of the γ deformation from zero to
π/6 will increase the transition probability. The negative sign
of γ deformation results in the decrease of this probability. As
we will see below, this expression is useful for the analysis of
the experimental data.

FIG. 10. (Color online) The ratio f = κcal/κosc between actual
and oscillator isoscalar quadrupole strength constants for the positive
and negative signature is displayed on the upper panel. On the lower
panel, the actual and the BCS pairing constants GN and GP (see
the definition in the text) are shown. All actual values used in the
calculations are obtained so as to fulfill the RPA equations, Eqs. (33)
and (34), for the spurious or redundant modes. The results correspond
to calculation I, when the term ĥadd (5), which restores the local
Galilean invariance broken in the Nilsson potential, is included.

B. Determination of the residual interaction strengths

In order to determine the strength κ of the monopole and
quadrupole interactions, we start with the oscillator values [32]

κλ[0] = 4π

2λ + 1

mω2
0

A〈r̃2λ−2〉 , κλ[1] = − πV1

A〈r̃2λ〉 . (45)

For instance, the isoscalar strength follows from enforcing the
Hartree self-consistent conditions. We then change slightly
these strengths and the pairing interaction constants Gτ at each
rotational frequency, while keeping constant the κ[1]/κ[0]
ratio (κ0[1]/κ0[0] ≈ −18, κ2[1]/κ2[0] ≈ −3.6), so as to fulfill
the RPA equations (33) and (34) for the spurious or redundant
modes.

The rotational dependence of these parameters is relatively
weak. The ratio between actual and oscillator values for
the isoscalar quadrupole constant is displayed in Fig. 10.
For comparison, the BCS values Gτ ,GN ≈ 22.5/A MeV,
GP ≈ 26.5/A MeV, obtained from the systematic of pairing
gaps (see Ref. [29]), are shown in Fig. 10 as well. Surprisingly,
the difference between actual values and the latter ones is
mild. However, the determination of κ2[0] and Gτ is a tedious
task, since a tiny change of the strength parameters leads
to large shifts in energies of spurious modes. The constants
so determined differ from the HO ones by 5–10% at most.
For the spin-spin interaction, we use the generally accepted
strengths [52]

κσ [0] = κσ [1] = −28
4π

A
MeV

for all rotational frequencies. The spin-spin interaction does
not influence the position of Nambu-Goldstone modes and,
therefore, does not play any role in the self-consistent
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determination of the quadrupole strength constants. Finally,
we adopted bare charges to compute the E2 strengths and a
quenching factor gs = 0.7 for the spin gyromagnetic ratios to
compute the M1 strengths.

By using the above set of parameters, it was possible not
only to separate the spurious and rotational solutions from
the intrinsic modes, but also to reproduce the experimental
dependence of the lowest β and γ bands on the rotational
frequency h̄� and, in particular, to observe the crossing of the
γ band with the ground band in correspondence with the onset
of triaxiality.

Concluding the discussion about our calculation scheme,
we should mention some drawbacks to our approach. One
disadvantage is that the CRPA breaks down at the transition
point when �p or �n vanish [51]. We have avoided this
problem by means of the phenomenological prescription for
the rotational dependence of the pairing gap (see Sec. II). In
principle, projection methods should be used in the transition
region in order to calculate transition matrix elements. In the
case of the phase transition of the first order, we run into the
problem of the formidable overlap integral. A theory of large
amplitude motion would provide a superior means to solving
this problem.

However, in contrast to the standard RPA calculations,
where the residual strength constants are fixed for all values
of � (see, e.g. [39,40]), we determine the strength constants
for each value of � by the requirement of the validity of the
conservation laws. This enables us to overcome the instability
of the RPA calculations at the transition region, at least for the
excitations (see also discussion for quantum dots in Ref. [21]).
Although the amplitudes φ(ν)

µ [see Eq. (32)] are higher for the
RPA modes in the transition region than in other regions, the
relation |φ(ν)

µ | < |ψ (ν)
µ | is still valid to hold the QBA. And last

but not least, the CRPA becomes quite effective at high spins,
when the pairing correlations are suppressed.

C. Positive signature excitations in the rotating frame

In this section, we analyze the spectral and decay properties
of the positive signature states. Transition probabilities repre-
sent the most challenging task, since they are sensitive to the
wave function structure of the considered state and, therefore,
exhibit hidden drawbacks of a theory.

Experimental values of B(E2, Iν → I ′ yr) are deduced
from the half-life of the yrast states [35] using the stan-
dard, long wave limit expressions B(E2, i → f ) = P (i →
f )/(1.223 × 109E5

γ ) (e2 fm4) [2,30]. Here, the transition
energy Eγ is in MeV and the absolute transition proba-
bility P (i → f ) = ln 2/T (i → f ) is related to the half-life
T (i → f ) (in seconds). For 156Dy, the yrast energies and
corresponding half-lives are known up to the momentum
I ≈ 40h̄. For 162Yb, the the yrast energies are observed up
to I ≈ 28h̄, but half-lives were measured only up to I ≈ 20h̄.
While the cranking approach should be complemented with a
projection technique in the backbending region due to the large
fluctuation of the angular momentum (cf. Ref. [2]), its validity
becomes much better at high spins. The agreement between
calculated and experimental values of intraband B(E2) transi-

FIG. 11. (Color online) Reduced transition probabilities
B(E2; I yr → I − 2 yr) along the yrast line. Experimental data (filled
squares) are connected with a thin line to guide the eyes. Results of
calculations by means of Eqs. (43) and (44) are connected by solid
and dashed lines, respectively.

tions along the yrast line is especially good after the transition
point.

Experimental data are compared with the results of cal-
culations (a) by means of Eq. (43) and calculations (b) by
means of Eq. (44) (see Fig. 11). In calculations (a), we use the
mean field values for the quadrupole operators. In calculations
(b), these values have been replaced by the deformation
parameters via Eq. (13) and we use the oscillator value for
the quadrupole strength constant. Calculations (a) evidently
manifest the backbending effect obtained for the moments
of inertia (see Fig. 9) at h̄�c ≈ 0.25, 0.3 MeV for 162Yb
and 156Dy, respectively. Thus, the use of the self-consistent
expectation values 〈|M̂ (E)

2µ3
[+]|〉 is crucial to the reproduction of

the experimental behavior of the yrast band decay. Calculations
(b) [Eq. (44)] reproduce the experimental data with less
accuracy. However, these results also catch on the correlation
between the sign of the γ deformation and the behavior of
the transition probability. The onset of the positive (negative)
values of γ deformation lead to the increase (decrease) of
the transition probability along the yrast line. This fact nicely
correlates with the experimental data.

To analyze experimental data on low-lying excited states
near the yrast line, we construct the Routhian function for
each rotational band ν (ν = yrast, β, γ, . . .)

Rν = Eν(�) − h̄�I (�), �(I ) = Eν(I + 2) − Eν(I )

2
,

(46)

and define the experimental excitation energy in the rotating
frame h̄ω

exp
ν = Rν(�) − Ryr(�) [53]. This energy can be

directly compared with the corresponding solutions h̄ων of
the RPA secular equations for a given rotational frequency �.
We recall that our vacuum states are adiabatic quasiparticle
configurations that correspond to the occupied orbitals at a
given rotational frequency.

The first lowest positive signature RPA solutions (ν = 1)
create an excited band built on the yrast line. In both nuclei, this
band is close to the experimental γ excitations with even spin
at small rotational frequency � (see Figs. 12 and 13). In the
low-spin region, the transitions B(E2; Iν = 1 → I ′ yr) are
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FIG. 12. (Color online) 156Dy. Experimental (filled squares)
and calculated excitation energies in the rotating frame h̄ων =
Rν(�) − Ryr(�) (upper panel) and reduced transition probabilities
B(E2; Iν → I ′ yr) (lower panel) for the two lowest RPA solutions,
ν = 1 and ν = 2, as a function of the angular frequency h̄�. Results
for excitations, calculated with and without the term ĥadd, Eq. (5), are
connected by solid and dash-dotted lines, respectively. Experimental
values for the transitions are indicated by arrows. Transitions with
�I = 2, 0, −2 are connected by solid, dash-dotted, and dashed lines,
respectively. Two-quasiparticle energies, indicated by arrows with
numbers 1, 2, and 3 in circles, originate from two s.p. Nilsson
states (nn̄ 3

2 [651] 3
2 [651]), (pp̄ 7

2 [523] 7
2 [523]), and (nn̄ 1

2 [530] 5
2 [523])

at � = 0 and �τ = 0.

large and RPA solutions exhibit a strong collective nature of
the γ band (Weisskopf units are B(E2)W = 49.9, 52.5 e2 fm4

for 156Dy,162 Yb, respectively) in both nuclei. The collective
character of the low-spin part of the γ bands is manifested
in the phonon structure that is composed of a few two-
quasiparticle components (see below and Tables I and II).

In 156Dy, the RPA results, obtained with the term ĥadd (5),
reproduce quite well the rotational behavior of the lowest
excitations associated with the collective γ vibrations. We
also obtain good agreement with the experimental value of
the critical rotational frequency h̄�cr ≈ 0.324 MeV, at which
this mode disappears in the rotating frame. This result is very
close to the critical rotational frequency h̄�c ≈ 0.3 MeV (see
Fig. 6), where the backbending occurs [see Eq. (15) and dis-
cussion in Sec. II]. In accordance with the phenomenological
theory of the first-order phase transitions discussed in Sec. II,

FIG. 13. (Color online) Same as Fig. 12 but for 162Yb. Two-
quasiparticle energies, indicated by arrows with numbers 1, 2, and 3
in circles, originate from two s.p. Nilsson states (nn̄ 3

2 [651] 3
2 [651]),

(nn̄ 3
2 [521] 3

2 [521]), and (pp̄ 7
2 [523] 7

2 [523]) at � = 0 and �τ = 0.

this soft mode creates a shape transition from the axial to
the nonaxial shape. We emphasize that without the term ĥadd

the transition point is located considerably higher than the
experimental one. In 162Yb, the results with and without this
term are very close (Fig. 13). In contrast to 156Dy, in 162Yb the
crossing is determined by a single two-quasiparticle state (see
Table I at I = 10h̄). The term ĥadd results in a collective effect
to the mean field solution, while its contribution to a single,
two-quasiparticle energy Eµ is weak. As discussed in Sec. II,
the effect of this term is also reduced because of the alignment.

In Tables I and II, we present the contribution nij̄ (ν = 1) =
(ψ (ν=1)

ij̄
)2 − (ϕ(ν=1)

ij̄
)2 of main two-quasiparticle components to

the norm
∑

ij nij̄ (ν = 1) = 1 of the RPA solution h̄ων=1 as
a function of the angular momentum (rotational frequency).
The collectivity is weaker in 162Yb than in 156Dy. With the
increase of the rotational frequency, in 162Yb the phonon
loses the collective nature and a single, two-quasiparticle
neutron component (ij̄ = nn̄ 3

2 [651] 3
2 [651]) is dominant in

the transition region. At the crossing point, its weight reaches
96% and the B(E2; Iν = 1 → I ′ yr) values fall down to their
s.p. values B(E2)W . The transition from axially symmetric
to nonaxial shapes occurs due to the alignment of this
two-quasiparticle component along the axis of the collective
rotation. There the SSB effects display a single-particle
mechanism.

In contrast with 162Yb, in 156Dy the phonon excitation
h̄ων=1 remains collective even in the backbending region (see
Table II for I ≈ 14h̄). The B(E2; Iν = 1 → I ′ yr) values

TABLE I. Structure of ν = 1 positive signature phonon in 162Yb.

I = 2 nn̄ 3
2 [651] 1

2 [660] 49% nn̄ 3
2 [651] 3

2 [651] 40% pp̄ 7
2 [523] 11

2 [505] 13%

I = 6 nn̄ 3
2 [651] 3

2 [651] 72% nn̄ 3
2 [651] 1

2 [660] 20% pp̄ 7
2 [523] 7

2 [523] 4%

I = 10 nn̄ 3
2 [651] 3

2 [651] 96% pp̄ 7
2 [523] 7

2 [523] 2% nn̄ 1
2 [651] 1

2 [660] 1%

I = 14 nn̄ 3
2 [651] 3

2 [651] 85% nn̄ 3
2 [521] 3

2 [521] 7% pp̄ 7
2 [523] 7

2 [523] 7%

I = 18 nn̄ 3
2 [521] 3

2 [521] 70% pp̄ 3
2 [651] 3

2 [651] 21% pp̄ 7
2 [523] 7

2 [523] 5%
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TABLE II. The structure of ν = 1 positive signature phonon in 156Dy.

I = 2 nn̄ 3
2 [651] 1

2 [660] 48% pp̄ 7
2 [523] 7

2 [523] 17% nn̄ 1
2 [530] 5

2 [523] 16%

I = 6 nn̄ 3
2 [651] 3

2 [651] 63% pp̄ 1
2 [550] 1

2 [541] 15% nn̄ 1
2 [530] 5

2 [523] 13%

I = 10 nn̄ 3
2 [651] 3

2 [651] 60% pp̄ 1
2 [550] 7

2 [523] 17% nn̄ 1
2 [530] 5

2 [523] 14%

I = 14 nn̄ 3
2 [651] 3

2 [651] 65% pp̄ 7
2 [523] 7

2 [523] 18% nn̄ 3
2 [530] 5

2 [523] 13%

I = 18 nn̄ 3
2 [651] 3

2 [651] 71% pp̄ 7
2 [523] 1

2 [541] 12% nn̄ 1
2 [530] 5

2 [523] 13%

decrease with the increase in the rotational frequency, but
the phonon holds the collectivity even at the transition point
h̄�c = 0.301 MeV. Although two-quasiparticle states align
their angular momenta along the x axis (collective rotation),
the axial symmetry persists till the transition point (see also
discussion in Ref. [5]). The mode blocks a transition to the
triaxial shape. At the transition point, the phonon becomes
anomalously soft and we obtain a change of the symmetry
of the HB solution from axially symmetric to the nonaxial
shape. Thus, the SSB effect occurs because of the collective
γ -vibrational excitations vanish in the rotating frame.

The second positive signature nonspurious RPA solution
h̄ων=2 can be associated with the β band at small rotational
frequencies. For 156Dy, the agreement between the experimen-
tal h̄ωβ and the calculated h̄ων=2 is good (Fig. 12). In 162Yb,
only one lowest level of β band is experimentally observed
at h̄� = 0 MeV, and it is very close to the calculated value
of the h̄ων=2. Our results may be considered as a theoretical
prediction for the behavior of the β band at larger rotational
frequencies.

IV. SUMMARY

We developed a practical method based on the cranked
Nilsson potential with separable residual interactions for the
analysis of the low-lying excitations near the yrast line. In
contrast to previous studies of low-lying excitations at high
spins (cf. Refs. [39,40]), we pay special attention to the
self-consistency between mean field results and the description
of low-lying excitations in the RPA. We accounted for the
�N = 2 coupling in generating the Nilsson states and included
the Galilean invariance restoring piece according to the pre-
scription of Ref. [26]. Moreover, we enforced the HB stability
conditions, provided by Eq. (10), that yield deformation
parameters very close to the self-consistent values. Finally,
we fixed the strength parameters of the interaction so as to
ensure the separation of the spurious modes from the intrinsic
excitations at each rotational frequency. This way we provide a
reliable approach to studying the spontaneous breaking effects
of continuous symmetries of the rotating mean field. Note
that even in self-consistent calculations with effective forces
(Gogny or Skyrme type) this separation is not guaranteed
because of the finite size of the configuration space. One needs
an extended configuration space to ensure a good separation
of a spurious contribution to the intrinsic wave function (see,
for example, discussion in Ref. [21]).

We also analyzed the rotational properties of the yrast
and low-lying positive signature excitations in the transi-

tional nuclei 156Dy and 162Yb undergoing backbending. The
agreement between our results and experimental data is
remarkable. We obtained a simple expression, Eq. (44), for the
reduced transition probability along the yrast line that naturally
explains the increase/decrease of B(E2) transitions due to the
shape transition from axially symmetric to nonaxial shapes
with different sign for the γ deformation of the rotating mean
field. The magnitude of the B(E2) transition probability along
the yrast line increases with the angular momentum and drops
down at the transition point in both nuclei. We demonstrated
a good agreement between the dynamic moment of inertia
calculated at the mean field level and the Thouless-Valatin
moment of inertia calculated in the RPA in the realistic
calculations. This is a stringent test of the self-consistency
between mean field and RPA calculations. Our RPA analysis
reveals a mechanism of the backbending phenomena in
rotating nuclei that is caused by the disappearance of the
γ vibrations in the rotating frame and the following alignment
of the two-quasiparticle components of the γ phonon.

We found that in axially symmetric nuclei in the ground
state, two types of quantum phase transitions may occur
with rotation, which are associated with backbending. In
156Dy, we determined that γ -vibrational excitations (K = 2)
tend to zero in the rotating frame with the increase of the
rotational frequency �, in close agreement with experimental
data. Although two-quasiparticle states align their angular
momenta along the x axis (collective rotation), the axial
symmetry persists, since the vibrational mode blocks a
transition to the triaxial shape. Near the transition point
�c, there are two HB minima with different shapes: axially
symmetric and strongly nonaxial. At the transition point, the
phonon energy tends to zero and we obtain a change of
the symmetry of the HB solution from axially symmetric to
nonaxial shape, which corresponds to backbending in 156Dy.
A drastic change of the mean field configuration leads to large
fluctuations of the dynamic moment of inertia at the transition
point. The observed phenomenon resembles very much the
structural phase transition discussed within the anharmonic
Landau-type model in solid state physics [46]. We propose
to consider the onset of the γ instability at the transition
point associated with backbending, accompanied by large
fluctuations of the dynamic moment of inertia, that exceed
by a few times the value of the kinematic moment of inertia,
as a manifestation of a shape-phase transition of the first
order.

In contrast with that in 156Dy, at the vicinity of the
transition point �c in 162Yb, a single neutron two-quasiparticle
component dominates (∼96%) in the phonon structure. There,
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backbending is caused by the alignment of the neutron
two-quasiparticle configuration. The energy E�(β, γ ) and the
order parameter γ (see Fig. 6) are smooth functions in the
vicinity of the transition point �c. The smooth behavior of
the energy at the transition point implies a small amplitude
of fluctuations of the dynamic moment of inertia. Extending
the Landau-type theory for rotating nuclei, we proved that this
transition can be associated with the second-order quantum
phase transition. Thus, if the amplitude of the fluctuations of
the dynamic moment of inertia at the transition point is of
the same order of magnitude as the value of the kinematic
moment of inertia, backbending may be associated with a
quantum shape-phase transition of the second order. We expect
that different backbending mechanisms should affect wobbling

excitations, which attract considerable attention nowadays.
This is the subject of a forthcoming paper.
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