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From finite nuclei to the nuclear liquid drop: Leptodermous expansion
based on self-consistent mean-field theory
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The parameters of the nuclear liquid drop model, such as the volume, surface, symmetry, and curvature
constants, as well as bulk radii, are extracted from the nonrelativistic and relativistic energy density functionals
used in microscopic calculations for finite nuclei. The microscopic liquid drop energy, obtained self-consistently
for a large sample of finite, spherical nuclei, has been expanded in terms of powers of A−1/3 (or inverse nuclear
radius) and the isospin excess (or neutron-to-proton asymmetry). In order to perform a reliable extrapolation in
the inverse radius, the calculations have been carried out for nuclei with huge numbers of nucleons, of the order of
106. The Coulomb interaction has been ignored to be able to approach nuclei of arbitrary sizes and to avoid radial
instabilities characteristic of systems with very large atomic numbers. The main contribution to the fluctuating
part of the binding energy has been removed using the Green’s function method to calculate the shell correction.
The limitations of applying the leptodermous expansion to actual nuclei are discussed. While the leading terms
in the macroscopic energy expansion can be extracted very precisely, the higher-order, isospin-dependent terms
are prone to large uncertainties due to finite-size effects.
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I. INTRODUCTION

Bulk properties of atomic nuclei that depend in a smooth
way on the numbers of nucleons have been traditionally
described in terms of macroscopic models, e.g., the liquid
drop model (LDM) or the droplet model; for reviews, see
Refs. [1–5]. These phenomenological models, often aug-
mented by a shell correction which is calculated using
average single-particle potentials, have been tuned up to
describe nuclear bulk properties to a high precision. At the
same time, these models can be interpreted in the language
of the leptodermous expansion [6] that sorts the various
contributions to the binding energy of finite nuclei in terms
that have transparent physical meaning, e.g., volume, surface,
symmetry, curvature, and Coulomb energy.

On the microscopic side, self-consistent mean-field models
employing density-dependent effective interactions or energy-
density functionals are nowadays commonly used in nuclear
structure modeling. The most prominent of these are the
Skyrme-Hartree-Fock (SHF) method, the relativistic mean-
field (RMF) approach (as well as their Bogoliubov extensions),
and the Hartree-Fock-Bogoliubov method with the finite-range
Gogny force; for a recent review, see Ref. [7]. These models
rely on effective energy-density functionals with typically six
to ten parameters adjusted phenomenologically that provide a
global description of all nuclei throughout the nuclear chart
(with exception, perhaps, of the lightest ones). While the

parameters of these models can be organized and interpreted
using the low-energy effective field theory of quantum chromo-
dynamics [8–10], they do not have an immediate interpretation
in terms of the total number of nucleons (or nuclear radius)
and neutron excess. For that reason, it is both convenient
and practical [11] to characterize nuclear energy-density
functionals in terms of certain macroscopic parameters. The
usual starting point is the limit of the homogenous infinite
nuclear matter, which is simple to compute and which defines
the leading LDM characteristics, e.g., the volume energy,
symmetry energy, or incompressibility.

Nuclei have a pronounced surface; hence, a proper charac-
terization of surface properties is crucial. This task, however,
is far from easy. The usual means of characterizing surface
properties of the energy functional is through semi-infinite
nuclear matter having a planar surface zone (see Ref. [12] and
references quoted therein). Early attempts used semiclassical
approaches to circumvent the enormous complexity of self-
consistent calculations for the corresponding mean field (see,
e.g., Ref. [13] for the case of SHF). The limited self-consistent
calculations in SHF [14,15] and RMF [16] indicate that the
quantum effects are non-negligible to the extent that they
change the surface parameters by about 5%.

In Ref. [17] the volume and surface contributions to the
energy density were extracted by assuming the Thomas-Fermi
relation between the local density and the kinetic energy
density. The authors concluded that, in the nuclear surface
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zone, the gradient terms (absent in the homogenous nuclear
matter) are as important in defining the energy relations as
those depending on the local density. That is, the nuclear
surface cannot simply be regarded as a layer of nuclear matter
at low density.

In this work, we extract the macroscopic LDM parameters
by using a large sample of finite, spherical nuclei, including
huge systems having 105–106 nucleons. Based on the self-
consistent SHF and RMF results, we extract the macroscopic
information from the large-scale trends by subtracting fluctu-
ating shell corrections. The Coulomb force is switched off to
allow computation of very large nuclei. (We thus concentrate
on the strong component of the nuclear interaction.) This way
of analysis, using finite nuclei rather than semi-infinite matter,
is conceptually closer to existing nuclei, and it allows the
determination of curvature and surface symmetry effects. In
essence, the aim of this paper is twofold. First, by considering
finite, although huge, nuclei, we investigate the convergence
of the macroscopic expansion. Second, by taking several SHF
and RMF energy functionals, we explore the relation between
surface parameters and the nuclear matter features of the
underlying forces.

The paper is organized as follows. Section II discusses the
macroscopic energy expansions. The details of our SHF and
RMF models and shell-correction calculations are given in
Sec. III. The extraction of LDM parameters is described in
Sec. IV; they are discussed in Sec. V. Finally, conclusions are
drawn in Sec. VI.

II. THE MACROSCOPIC ENERGY

According to the Strutinsky Energy Theorem [18–21], the
energy per nucleon can be decomposed into an average part
(smoothly depending on the number of nucleons) and the shell-
correction term that fluctuates with particle number reflecting
the non-uniformities (bunchiness) of the single-particle level
distribution:

E

A
= E = E (smooth) + δE (shell). (1)

Macroscopic models, such as LDM, deal with the smooth part.
Consequently, in the following we concentrate on the average
part of the binding energy:

E (smooth) = E

A
− δE (shell). (2)

The macroscopic energy can be parametrized in many ways.
However, by far the most successful macroscopic mass
expressions are those rooted in the liquid-drop model (LDM)
and in the droplet model. They are respectively outlined in
Secs. II A and II B below.

A. Liquid-drop model

The LDM parametrizes the binding energy of the nucleus
(Z,N ) in equilibrium. Instead of proton and neutron numbers,
it is convenient to express the LDM energy through the mass

number and neutron excess:

A = N + Z, I = N − Z

N + Z
. (3)

The macroscopic binding energy per nucleon can be expanded
as

E (LDM) = E (smooth)(A, I )

= avol + asurfA
−1/3 + acurvA

−2/3

+ asymI 2 + assymI 2A−1/3 (4)

+ a(2)
symI 4.

All the terms in Eq. (5) have an immediate physical interpre-
tation. The bulk energy is given by the volume energy avol,
and changes with the neutron excess are accounted for by
the symmetry-energy term asymI 2 and by the second-order
symmetry-energy term a(2)

symI 4. The most important finite-size
correction is the surface energy asurfA

−1/3, followed by more
subtle trends in terms of the curvature energy acurvA

−2/3 and
the surface-symmetry energy assymI 2A−1/3.

The sorting in columns indicates the level of importance of
the terms. Two different sorting criteria are used simultane-
ously: an expansion of finite size effects (=surface effects) in
terms of powers of A−1/3 (proportional to inverse radii) and,
parallel to it, an expansion in terms of the neutron-to-proton
asymmetry I 2. The second-order symmetry energy term ∝ I 4

is not always included in the macroscopic binding energy
expression. It has been considered, e.g., in the context of the
Thomas-Fermi model [22] and in a discussion of strongly
asymmetric matter within the RMF [23]. We find that such
a term appears naturally in the hierarchy of Eq. (5), and we
shall demonstrate that it is naturally present in the microscopic
LDM expression.

At this point, it is worth noting that the shell energy per
nucleon, δE (shell), scales with mass as A−2/3 [24], i.e., it has the
same dependence on the nuclear radius as the curvature term.
Consequently, uncertainties associated with the extraction of
shell corrections from self-consistent results, and the presence
of higher-order fluctuating terms that are not accounted for by
the Strutinsky procedure, can seriously impact the values of
higher-order terms in the leptodermous expansion. We will see
it very clearly in the results presented in Sec. IV.

The ansatz (5) does not include explicit information about
the nuclear radius. In fact, the LDM tacitly assumes a fixed
radius

R0 = rsA
1/3, (5)

where the Wigner-Seitz radius is typically rs =1.14–1.20 fm,
which defines the saturation (equilibrium) density

ρ0 = 3

4πr3
s

. (6)

A more general ansatz which allows a determination of the
radius is provided by the droplet model presented below.

B. Droplet model

The droplet model [25] (see, e.g., Ref. [4] for a recent
implementation) includes the effect of the neutron skin
and nonuniformities in the nuclear density. The two crucial
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parameters of the droplet model that describe deviations from
the equilibrium are the neutron skin thickness d and ε, the
relative deviation in the bulk of the density ρ from its nuclear
matter value ρ0:

d = Rn − Rp, (7a)

ε = R − R0

R
= −ρ − ρ0

3ρ0
, (7b)

where R0 is the equilibrium radius of the droplet, see Eq. (5).
Energy changes with d and ε are considered explicitly. For
instance, the volume term is augmented by a compression
effect,

avol −→ avol + 1
2Kε2, (8)

where the nuclear incompressibility coefficient is

K ≡ 9ρ2
0

d2

dρ2

E

A

∣∣∣∣
ρ=ρ0

. (9)

The droplet model binding energy per particle is considered
a function of A, I, ε, and d:

E (drop) = E (drop)(A, I, ε, d)

= avol + asurfA
−1/3 + ãcurvA

−2/3 + 2asurfA
−1/3ε + K

2 ε2

+ asymI 2 + ãssymA−1/3f (I, d) − 3a′
symρ0I

2ε

+ ã(2)
symI 4, (10)

where a′
sym is defined as

a′
sym = ∂asym

∂ρ

∣∣∣∣
ρ=ρ0

. (11)

The function f (I, d) is assumed to be quadratic in I and d; it
is determined by minimizing the energy with respect to d, see
below.

C. Relation between droplet model and LDM expansions

In this section, we recall the relation between the LDM
expression (5) and the more detailed droplet mass formula
(10). The form (5) is valid at the energy in equilibrium (i.e.,
where radius and/or density have been adjusted to minimize
the energy for a given nucleus) while Eq. (10) allows for
separate tuning of ε and d. The equilibrium energy E (red)(A, I )
is obtained by minimizing E (drop)(A, I, ε, d) with respect to ε

and d. At the equilibrium, d = bI , where b ≈ 1.4 fm. For the
radial expansion ε, one obtains

ε = −2asurfA
−1/3 + 3a′

symρ0I
2

K
. (12)

By substituting Eq. (12) in Eq. (10), one arrives at the LDM
expression (5) where the leading parameters avol, asurf , and
asym remain unchanged while the higher-order parameters are
redefined as

acurv = ãcurv − 2a2
surf

1

K
, (13a)

assym = ãssym + 6asurfa
′
sym

ρ0

K
, (13b)

a(2)
sym = ã(2)

sym − 9

2
(a′

sym)2 ρ2
0

K
. (13c)

It is seen that while the leading parameters, avol, asurf , and
asym, are defined unambiguously in both LDM and droplet
model expressions, the higher-order terms differ. We shall
determine the parameters of the leptodermous expansion from
the calculated ground state binding energies. The correspond-
ing mean-field configurations are stable points; hence, the
equilibrium philosophy of the LDM should apply. To deduce
the droplet model parameters ãcurv, ãssym, and ã(2)

sym, one should
use the relations (13).

III. SELF-CONSISTENT MODELS

We employ two variants of self-consistent mean-field
models: SHF and RMF. They are explained in detail in
Ref. [7]. Both approaches provide a functional form for the
energy density with a good handful of free parameters. These
have been adjusted to phenomenological data by different
groups and with different bias. Thus there exist various
parametrizations on the market which provide a fairly good
description of basic nuclear bulk properties in the valley of
stability, but differ in other aspects as, e.g., excitations, fission
barriers, neutron matter properties, or electromagnetic form
factors.

In this work, we have chosen a small subset of Skyrme
forces which perform well for the basic ground-state properties
and have sufficiently different properties which allows one to
explore the possible variations among parametrizations. This
subset contains SkM∗ [27], SkP [28], SLy4 [29], SLy6 [30],
SkO [31], BSk1 [32], BSk6 [33], and SkI1, SkI3, and SkI4
from Ref. [34]. SkP, SkO, and BSk1 have effective nucleon
mass around one, leading to a comparatively large density of
single-particle levels. All other SHF forces employed here have
smaller effective masses. Interesting here is the double BSk1
with BSk6. Both forces were fitted using a similar strategy and
data pool, but have different effective mass m∗/m = 1.05 for
BSk1 and 0.8 for BSk6. The force SLy6 was adjusted with
particular emphasis on isotopic trends and neutron matter. The
functionals SkI3, SkI4, and SkO have a generalized isovector
spin-orbit interaction compared to all other forces. Some
forces, i.e. SkP, BSk1, and BSk6, include a

↔
J 2 term (where↔

J is the spin-orbit tensor) with a coupling constant related to
the surface and effective mass terms, while all others do not.
All the selected forces perform reasonably well concerning
the total energy and radii for nuclei close to the valley of
stability, with some different bias on particular observables. In
particular, BSk1 and BSk6 are fits to all available masses, but
only masses.

As seen in Table I, the values for the volume energy
coefficient avol, saturation density ρ0, incompressibity K, and
surface energy coefficient asurf are quite similar, with slight
systematic differences between SHF and RMF that already
have been noticed earlier; see Ref. [7] and references given
therein. Obvious large variations occur for properties which
are not fixed precisely by nuclear matter and ground-state
characteristics.

As in SHF, there exist many RMF parametrizations which
differ in details. For the purpose of the present study, we choose
the most successful (or most commonly used) ones: NL1 [35],
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TABLE I. LDM coefficients (in MeV, except for a′
sym which is in MeV fm3) for the self-consistent mean-field models applied in this work.

The first block (columns 2 and 3) shows, for reasons of completeness, the bulk droplet-model parameters ρ0 and K. The second block (columns
4–6) shows the bulk parameters of the LDM as computed in the limit of homogenous nuclear matter. The third block (semibulk; column 7)
shows surface parameters from semi-infinite nuclear matter calculations, where available (Ref. [15] for SHF and Ref. [26] for RMF). The
results for the parameters deduced from finite nuclei as described below are shown in columns 8–10. The theoretical uncertainty on surface
energies is 0.05 MeV for SHF and 0.1 MeV for RMF. The curvature energies are reliable within 0.5 MeV. The surface-symmetry energies have
an uncertainty of about 2 MeV for SHF and 10 MeV for RMF. The lowest rows show the LDM coefficients adjusted to data on finite nuclei.
The corresponding parameters of the droplet model (10) can be deduced from the given LDM parameters through the relations (13) plus the
empirically supported assumption (16a).

Model Bulk properties Semibulk From finite nuclei

ρ0 K avol asym a′
sym a

(NM)
surf asurf acurv assym

SkM∗ 0.1603 216.6 −15.752 30.04 95.25 17.70 17.6 9 −52
SkP 0.1625 201.0 −15.930 30.01 40.43 18.22 18.2 9.5 −45
BSk1 0.1572 231.4 −15.804 27.81 15.76 17.54 17.5 9.5 −36
BSk6 0.1575 229.2 −15.748 28.00 35.67 17.3 10 −33
SLy4 0.1596 230.1 −15.972 32.01 95.97 18.4 9 −54
SLy6 0.1590 230.0 −15.920 31.96 99.48 17.74 17.7 10 −51
SkI3 0.1577 258.1 −15.962 34.84 212.47 18.0 9 −75
SkI4 0.1601 247.9 −15.925 29.51 125.80 17.7 9 −34
SkO 0.1605 223.5 −15.835 31.98 163.50 17.3 9 −58

NL1 0.1518 211.3 −16.425 43.48 311.18 18.8 9 −110
NL3 0.1482 271.7 −16.242 37.40 269.16 18.5 18.6 7 −86
NL-Z 0.1509 173.0 −16.187 41.74 299.51 17.8 9 <−125
NL-Z2 0.1510 172.4 −16.067 39.03 281.40 17.7 17.4 10 −90

LDM [4] 0.153 −16.00 30.56 21.1 −48.6
LDM [5] 0.1417 −15.848 29.28 19.4 −38.4
LSD [5] 0.1324 −15.492 28.82 17.0 3.9 −38.9

NL-Z [36], NL-Z2 [37], and NL3 [38]. The parametrization
NL1 is a fit of the RMF along the strategy of Ref. [39]. The
NL-Z parametrization is a refit of NL1 where the correction
for spurious center-of-mass motion is calculated from the
actual many-body wave function, while NL-Z2 is a recent
variant of NL-Z with an improved isospin dependence. The
force NL3 stems from a fit including exotic nuclei, neutron
radii, and information on giant resonances. All the above
parametrizations provide a good description of binding ener-
gies, charge radii, and surface thicknesses of stable spherical
nuclei with the same overall quality as the SHF model. As
seen in Table I, however, the nuclear matter properties of the
RMF forces show some systematic differences as compared
to Skyrme forces. All RMF forces have comparable small
effective masses around m∗/m ≈ 0.6. (Note that the effective
mass in RMF depends on momentum; hence the effective mass
at the Fermi energy is approximately 10% larger.) Compared
with SHF models, the absolute value of the energy per nucleon
is systematically larger, with values around −16.3 MeV, while
the saturation density is always slightly smaller with typical
values around 0.15 nucleons/fm3. The incompressibility of
the RMF forces ranges from low values around 170 MeV for
NL-Z to K = 270 MeV for NL3. There are also differences
in isovector properties; the symmetry energy coefficient of all
RMF forces is systematically larger than for SHF interactions,
with values between 37.4 MeV for NL3 and 43.5 MeV
for NL1.

The absolute variation of the LDM energy coefficients
found in Table I should be put into perspective. There is a
notable difference between the variation of the coefficients in
the LDM expansion on the one hand and the actual variation
of the energy on the other hand. Let us consider the heavy
nucleus 250Fm with A = 250 and I = 0.2 as an example. The
difference in avol between SkM∗ and NL1 is 0.67 MeV, which
seems to be small. It leads, however, to an energy difference
of about 160 MeV, which amounts to a significant fraction
(∼10%) of the total binding energy of this nucleus. The
difference in the symmetry energy coefficient, asym between
the same two forces is 3.44 MeV and appears to be much more
significant than the difference in avol. However, the I 2 factor
suppresses the difference in the symmetry energy between
SkM∗ and NL1 to 34.4 MeV. Even the 60 MeV difference
between the surface symmetry energy coefficients of SkM∗
and NL1 only gives about 100 MeV difference in binding
energy between the two forces, which is comparable with, but
still smaller than, the energy difference arising from the small
difference in the volume energy coefficient.

It is interesting to check to what extent the differences
in ρ0,K , and a′

sym influence the macroscopic parameters
and whether a simple correlation between spectroscopy and
macroscopy can be found. This will be done in Sec. V B,
where we will consider a larger variety of parametrizations
and perform dedicated variations of special features as, e.g.,
the effective nucleon mass.

014309-4



FROM FINITE NUCLEI TO THE NUCLEAR LIQUID . . . PHYSICAL REVIEW C 73, 014309 (2006)

According to Eq. (2), the average energy is obtained
by subtracting the shell-correction energy from the self-
consistent value. The shell energy is computed using the same
prescription as outlined in Refs. [40,41]. This procedure is
based on the Green’s function approach to the level density and
the generalized plateau condition of Ref. [42]. The advantage
of this procedure is that it properly takes care of the continuum
positive-energy states which unavoidably come into play in
the self-consistent approach. In our calculations, we include
a large space of single-particle states up to 60 MeV above
the Fermi energy. Since most of these states are continuum
states, the contribution from a particle gas (treated in the same
numerical box) has to be removed. To meet the generalized
plateau condition, it is assumed that the deviation of the
smoothed level density from linearity is minimal in a wide
energy interval [–50, –20] MeV.

Our calculations are restricted to spherical symmetry; they
were carried out using numerical techniques described in
detail in Ref. [43]. The Coulomb force is ignored to allow an
extension to nuclei of arbitrary sizes. Pairing correlations are
neglected as well. However, open-shell nuclei were treated in
the filling approximation in which we use a very small pairing
force (factor of 10 smaller than usual). The center-of-mass
(c.m.) correction is included. We take care to use precisely the
c.m. recipe that is attached to a given force [7]. This is crucial
because it is known that the actual form of the c.m. correction
has a significant impact on the surface properties [44].

IV. EXTRACTION OF LDM PARAMETERS

A. Bulk parameters

The bulk parameters in the leptodermous expansion are
those proportional to A0. They represent terms which do
not vanish in the A → ∞ limit. In the LDM ansatz (5)
the bulk parameters are the volume energy constant avol,
the symmetry energy constant asym, and the second-order
symmetry energy parameter a(2)

sym. The droplet model (10)
additionally introduces the incompressibility K, the density-
slope of the symmetry energy a′

sym, and the equilibrium density
ρ0. All these parameters can easily be computed in the limit
of the homogenous bulk nuclear matter, see, e.g., Ref. [7].

Asymmetric nuclear matter shows an interesting trend,
which sheds some light on the relation between the LDM
and droplet model. The bulk part of the LDM energy can be
written as

E (LDM) = avol + asymI 2 + a(2)
symI 4. (14)

In order to concentrate on the isospin dependence, we
introduce an effective symmetry energy parameter as

aeff
sym = E(I ) − E(I =0)

I 2

= asym + a(2)
symI 2. (15)

The first line serves as a general definition. The second line
then is specific to the bulk limit.

Figure 1 shows the effective symmetry energy parameter
obtained in the NL-Z2 model. Let us now recall that a(2)

sym

FIG. 1. Solid line: the effective symmetry energy parameter (15)
in asymmetric nuclear matter computed with NL-Z2 as a function
of neutron excess I. Dotted line: the trend (16b) using the bulk
parameters of NL-Z2, see Table I.

is related to the droplet parameter ã(2)
sym through Eq. (13c).

This suggests that there is no explicit second-order isospin
correction to the symmetry energy in the droplet model:

ã(2)
sym = 0, (16a)

which yields

aeff
sym(A=∞, I ) = asym − 9

2
(a′

sym)2 ρ2
0

K
I 2. (16b)

It is seen in Fig. 1 that the estimate (16b) matches the
exact result extremely well. The deviations are small and
predominantly ∝ I 4, thus going beyond the present expansion.
(Higher-order isospin corrections were in fact considered
in Ref. [23] in the context of RMF and infinite nuclear
matter.) We have checked that the assumption (16) is well
fulfilled for all the RMF and SHF functionals used in this
work. The isospin dependence of aeff

sym(A=∞, I ) in SHF is
much weaker than in RMF. This is consistent with Eq. (16b)
and droplet-model parameters displayed in Table I. Finally,
corroborating evidence of a very small ãsym term comes from
Brueckner-Hartree-Fock studies of asymmetric matter based
on realistic nucleon-nucleon and three-body forces [45–47].

B. Isospin-independent surface parameters

The leading isospin-independent parameters characterizing
finite-size (surface) terms in the LDM are the surface and
curvature energy coefficients. We deduce them from the
systematics of binding energies of spherical nuclei.

Figure 2 shows the systematics of binding energies per
nucleon predicted by SLy6. The smooth component obtained
by subtracting δE (shell) is also indicated. At very large values
of A (i.e., small A−1/3), the binding energy per nucleon nicely
converges to a straight line which demonstrates the validity of
the hierarchical LDM (or droplet) ansatz and, not surprisingly,
hints at the dominating role played by the surface energy as
first leading correction to the bulk. The plot also illustrates
the effect of quantum shell fluctuations. The actual binding
energy oscillates around the average trend; the amplitude of
shell oscillations increases in lighter nuclei, consistent with
the expected A−2/3-dependence discussed earlier in Sec. II A.
By subtracting the shell correction, one obtains a fairly smooth
trend, at least at this level of analysis.
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FIG. 2. The binding energy per nucleon E(A, I ) for isospin-
symmetric (I = 0) nuclei computed with SLy6 as a function A−1/3

before (solid line) and after (dotted line) subtracting the shell
correction δE (shell). The fine dotted line connects the last value from
finite nuclei with the nuclear matter limit.

To extract the surface- and curvature-energy coefficients,
it is convenient to introduce the effective surface-energy
coefficient:

a
(eff)
surf = [E (smooth)(A, 0) − avol]A

1/3 (17a)

= asurf + acurvA
−1/3, (17b)

which is a function of system size A. The surface-energy
coefficient asurf is obtained by extrapolating A−1/3 −→ 0. The
curvature acurv is then obtained from the slope of (17b).

Figure 3 shows the effective surface energies. Note that
these are drawn from smoothed energies (i.e., after subtraction
of the shell corrections). The remaining fluctuations are due to
higher-order shell effects [20,21] which cannot be accounted
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FIG. 3. Effective surface-energy coefficient (17a) versus A−1/3

for several SHF (top) and RMF (bottom) functionals, as indicated. A
straight-line fit to the data is marked by a dashed line.

for by the generalized Strutinsky procedure. The construction
(17a) of the effective surface energy amplifies those residual
fluctuations dramatically; it is only by virtue of the smoothed
energy that one can see any clear trend. Thus atop these
remaining shell fluctuations, one can recognize a definite slope
(note the very narrow energy window), which is related to the
curvature energy. By performing a straight-line fit to the data,
surface- and curvature-energy coefficients can be extracted.

Note that different A−1/3 scales are used for SHF and RMF.
The reason is that in SHF cases we have been able to carry up
calculations for really huge nuclei (A = 106). This extends the
scale to smaller A−1/3 and allows us to ignore some data points
for lighter systems where residual shell fluctuations are large.
Unfortunately, we were unable to approach similarly large
nuclei in RMF; hence, we had to scale up to A−1/3 = 0.2 to get
sufficient data for extrapolation. In any case, one sees that one
can extract reliably well surface and curvature energies from
the trends displayed in Fig. 3. We estimate an uncertainty in
asurf to be about 0.05 MeV for SHF and 0.1 MeV for RMF. The
curvature coefficient is determined within about ±0.5 MeV.

C. Surface-symmetry coefficient

In order to deduce the isospin-dependent surface-symmetry
coefficient, we come back to the effective symmetry parameter
(15) now considering finite A and identifying E ↔ E (smooth).
As it is convenient to subtract the known infinite-matter trend
of Eq. (16b), we introduce the reduced effective symmetry-
energy coefficient:

ared
sym(A, I ) = 1

I 2

(
E (smooth)(A, I )

− E (smooth)(A, 0) + 9(a′
sym)2ρ2

0

2K
I 4

)
. (18)

Figure 4 demonstrates how such methodology works. The
symmetry energy involves a difference of smoothed energies;
hence, a difference of shell corrections. These corrections are
prone to uncertainties, as we have already seen in Sec. IV B.
At small values of I 2, the remaining uncontrolled energy
fluctuations are amplified in the finite difference (18), and
the result is not reliable. Fortunately, at larger values of
I � 0.1, where the isospin-dependent terms dominate over
remaining shell fluctuations, one always obtains a stable and
well-defined plateau. The value of I is limited from above
by the neutron drip line. Indeed, at I ≈ 0.3 the neutron Fermi
energy becomes positive and the self-consistent solution can no
longer be trusted. Therefore, for further analysis, we introduce
an I-averaged reduced effective symmetry-energy coefficient:

ared
sym =

∫ 0.2

0.1
dIared

sym(A, I )

/ ∫ 0.2

0.1
dI . (19)

The surface symmetry energy coefficient is obtained by
plotting ared

sym versus A−1/3. The slope for small A−1/3 cor-
responds to assym, similarly as it was done in Sec. IV B for
deducing the surface and curvature parameters. An effective

014309-6



FROM FINITE NUCLEI TO THE NUCLEAR LIQUID . . . PHYSICAL REVIEW C 73, 014309 (2006)

-40

-30

-20

-10

0

0 0.1 0.2 0.3

 F
er

m
i E

ne
rg

y 
(M

eV
)

I=(N-Z)/(N+Z)

protons
neutrons

27

28

29

30

31 A=2840

0 0.1 0.2 0.3

A=80000

a
sy

m
 (

M
eV

)
re

d

FIG. 4. Top: reduced effective symmetry-
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right). Bottom: corresponding proton and neu-
tron Fermi energies.

surface-symmetry constant can thus be obtained from

a(eff)
ssym = (

ared
sym − asym

)
A1/3. (20)

Figure 5 shows typical results of such analysis. It is grat-
ifying to see that the effective symmetry-energy coefficients
(19) are consistent with the corresponding bulk values when
extrapolating back to A−1/3 → 0. The quality of the deduced
slope (= surface asymmetry) can be assessed by inspecting the
rescaled quantity (20) shown in the upper panel. Clearly, very
large A, i.e., very small A−1/3, are required to see convergence
to a strictly horizontal trend. With the present data set, one may

20

25

30

35

0 0.05 0.1 0.15 0.2

a
sy

m
 (

M
eV

)

A-1/3

SLy6

NL-Z2

-110

-100

-90

-80

-70

-60

-50

-40

SLy6

NL-Z2

re
d

a
sy

m
 (

M
eV

)
ef

f

FIG. 5. Bottom: the averaged reduced symmetry-energy coeffi-
cient (19) in SLy6 and NL-Z2; Top: the corresponding effective
surface-symmetry coefficient (20).

attach ∼10% relative uncertainty (or about 2 MeV absolute
error) to assym.

D. Radii

By employing the equilibrium value of ε (12), we can
estimate the droplet-model radius as

R = R0(1 − ε). (21)

It is worth checking the performance of that recipe. To this
end, we have extracted diffraction radii and rms radii from
the SLy6 calculations of large (and huge) spherical nuclei
with N = Z. Figure 6 displays the nuclear radii corrected
for shell fluctuations up to A = 4000. It is seen that the
estimate (21) evaluated with the SLy6 parameters of Table I
nicely approximates the actual results. The rms radii are

1.12

1.13

1.14

1.15

0 0.05 0.10 0.15 0.20

R
A

-1
/3

 (
fm

)

A-1/3

Rdiff

r rms

nuclear matter

FIG. 6. Nuclear radii (multiplied by A−1/3 to remove the overall
mass dependence) for N = Z nuclei computed with SLy6 and (partly)
corrected for shell fluctuations using the Strutinsky method. The
lower curve shows the diffraction radii and the upper curve shows
the rms radii

√
5/3rrms. The nuclear matter Wigner-Seitz value of

1.145 fm is indicated by a box and a horizontal dashed line. The
droplet model estimate (21) of the diffraction radius and the estimate
(22) of the rms radius are shown (dotted lines). It is gratifying to see
the agreement between the droplet-model estimates and the results of
self-consistent calculations for finite nuclei.
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systematically larger than the diffraction radii which is no
surprise because in the Helm model both are related via

rrms =
√

3

5

√
R2

diff + 5σ 2, (22)

where σ is the surface thickness coefficient (related to the first
maximum of the form factor) with a typical value of 1 fm.
The estimate (IV D) is indicated in Fig. 6, and it is shown
to be fully consistent with the self-consistent results for the
rms radii. Moreover, our analysis makes it very clear that the
diffraction radius (or box-equivalent) is indeed the appropriate
quantity entering the droplet model.

V. RESULTS AND DISCUSSION

A. Existing energy functionals

Table I collects the calculated LDM parameters for the
SHF and RMF parametrizations introduced in Sec. III. The
bulk parameters are computed for the homogenous nuclear
matter. The surface-related parameters are deduced from the
present analysis of finite nuclei. We also show for comparison
the surface-energy coefficients, a(NM)

surf , obtained from quantum
mechanical calculations for the semi-infinite nuclear matter
[15,26]. The comparison of a

(NM)
surf with the values of asurf

deduced from finite nuclei shows a nice agreement between
both methods of analysis.

The surface-energy and curvature-energy coefficients are
fairly robust quantities in that the variations throughout all
forces are small. The curvature energy coefficient, 9.5 ±
0.5 MeV, is smaller than other LDM constants but certainly
nonzero. Moreover, its variations remain small throughout
all forces “from the shelves”, below the uncertainties of
our analysis. In that context, we want to comment on the
investigations of Ref. [48] (see also discussion in Ref. [5])
where it was claimed that one needs small curvature-energy
coefficients to obtain a good fit to fission barriers. While
we find about the same curvature energy for a variety
of forces, the fission barriers of actinides and superheavy
elements investigated in Ref. [49] turned out to be strongly
force-dependent for a similar pool of interactions. It will be
of importance to check the force-dependence of the fission
barriers also in the A = 70–120 region, where the macroscopic
energy dominates. We suspect that another key parameter
affecting fission barriers lies in the isovector channel. As
one hint we will see in Sec. V B that strong variations of
the symmetry-energy coefficient can influence acurv.

The surface energy is more important and its (small)
variations are larger than the uncertainty of about ±0.1 MeV.
The observed trends can be sorted in various ways. One
important aspect is that asurf depends to some extent on the
strategy used when fitting a functional. It is obvious that
the weight which was given to light nuclei in the fit has
an influence on the surface coefficients, as well as whether
surface properties were considered (e.g., the surface thickness
in the case of SkI3 and SkI4). Another crucial ingredient in the
trends with A−1/3 is the way in which the center-of-mass (c.m.)
correction was implemented [44]. In the sample of forces
considered here, there are two forces, SLy4 and SLy6, which

were fitted with precisely the same strategy but differ in their
treatment of c.m. correction. The difference of 0.7 MeV in
asurf is quite remarkable and represents mainly the difference
between the recipes for the c.m. correction used [44]. We
think that the recipe used in SLy6, namely to compute
the c.m. energy from the given mean field state, is better
microscopically motivated. Thus the lower value for asurf is
probably more realistic. However, this has yet to be explored
in more detail.

The situation for all the isospin-dependent LDM parameters
is quite different. That begins with the large discrepancy be-
tween asym-values for RMF and SHF. In fact, even within SHF
alone there is a much larger variation in the symmetry energy
than appears from Table I; see, e.g., the discussion in Ref. [50].
Extended RMF functionals also show significant uncertainty
in asym [51]. Even more pronounced are fluctuations in the
surface-symmetry coefficient assym. By inspecting Table I, one
can see a rough correlation between asym and assym. This will
be put on a firmer ground in Sec. V B below where systematic
variations of functionals are discussed.

B. Systematic variations of functionals

The discussion of Table I in Sec. V A has indicated
several features which deserve closer inspection. To this end,
we perform systematic variations of key properties of the
functional, as, e.g., effective nucleon mass m∗/m or symmetry
energy asym. The strategy is to vary only one chosen property
while keeping all other features fixed. A set of SHF forces has
been produced that way by fitting the parameters always to
the same set of data (energies, charge form factors, spin-orbit
splitting) while putting a constraint on the required additional
feature. This was done formerly for the purpose of studying
trends in the giant resonances [50]. We consider these families
of functionals in this work to inspect trends and correlations
in a systematic manner.

Figure 7 shows results of two sets of calculations. The first
group in the left panel contains functionals with systematically
varied effective mass m∗/m. The functionals belonging to the
second set, shown in the right panel, vary asym. Looking at
the left panel, we find sizable variations with effective mass
concerning asurf,K , and a′

sym. All those parameters decrease
with m∗/m. The surface-symmetry coefficient assym is fairly
insensitive to m∗/m. The curvature energy coefficient acurv

(not shown here) varies only between 9 and 10 MeV which
is very little in view of the theoretical uncertainty in this
parameter. Different trends are seen when the variation in asym

is considered (Fig. 7, right). There is a dramatic change of
the isospin-dependent terms, namely the density-dependent
symmetry-energy coefficient a′

sym and the surface-symmetry
coefficient assym. The magnitude of variations in asurf is
comparable to that from the first set. That is, a lower value
of asym can compensate for a larger effective mass. (A similar
conclusion, in a slightly different context, has been drawn in
Ref. [52].) And here is the first time that we see a handle on
the curvature coefficient acurv: it weakly decreases with asym.

The above trends explain most of the results for the
standard Skyrme functionals displayed in Table I. However,
the comparison between BSk1 and BSk6 leaves some puzzles.
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The functional BSk6 has a lower effective mass than BSk1 (0.8
versus 1.05), and yet, the surface-energy coefficient slightly
shrinks. This can probably be related to an improved treatment
of the center-of-mass correction in BSk6.

As already mentioned, there exist different prescriptions for
defining the spin-orbit interaction in SHF [7]. One variation
concerns the possible contribution from the kinetic forces
resulting in a

↔
J 2-term in the energy functional (

↔
J is the

spin-orbit tensor). We have studied this point within our
systematic calculations. The results in Fig. 7 employ a version
without (left panel) and with (right) that term. The same
conditions are met for the left set at m∗/m = 0.81 and the right
set at asym = 32 MeV. All quantities shown are insensitive
to that change, except for the density-dependent symmetry
energy coefficient a′

sym, which exhibits a surprisingly large
sensitivity to

↔
J 2. We have checked this point in more detail and

concluded that the spin-orbit tensor term basically changes the
offset of a′

sym but has no influence on its trends. Anyway, it is
noteworthy that a change of shell structure (here, via the

↔
J 2

term) can have such a dramatic effect on a bulk property of the
functional.

VI. CONCLUSIONS

In this study, we present a systematic survey of nuclear
surface properties in terms of the liquid drop model. Surface,
surface-symmetry, and curvature energy coefficients are de-
duced as they are defined in the LDM, namely from the trends

∝ A−1/3 and ∝ A−2/3 in the binding energies of finite nuclei
over a wide range of sizes. In order to achieve sufficiently
precise values, we have evaluated a smooth background of
binding energies by subtracting the shell corrections, and we
considered huge nuclei containing up to 105 nucleons.

Our calculations show how the bulk-matter limit is recov-
ered in finite nuclei. While it has been known from earlier
studies [53] that semiclassical features are revealed only
for nuclei with A > 5000, we found that extremely massive
nuclei are essential in order to pin down unambiguously
the macroscopic surface-related parameters. The question
emerges what role the LDM background plays for actual nuclei
which are extremely small at that scale.

What is the influence of uncontrolled residual shell effects
on LDM parameters when only dealing with a small sample
of actual nuclei? The recent SHF work [54] that used a sample
of “small” nuclei to extract the symmetry-energy and surface-
symmetry energy coefficients can provide a hint. While in
some cases their results for assym are close to ours (e.g., they
obtain assym = −49.2 MeV for SkM∗ versus −52 MeV here),
there are forces for which the difference is fairly large (e.g.,
they obtain assym =−49 MeV for SkO while we get −58 MeV),
and no clear tendency can be observed.

In fact, the importance of shell effects depends on the
observable. Energies as such exhibit a quick quenching of
shell effects with increasing A (see Fig. 2). However, energy
differences are required when evaluating the effective surface
energy. As illustrated in Fig. 3, these differences reveal shell
effects up to any size. This annoying feature limits the precision
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with which one can deduce the higher-order LDM parameters,
in particular the isovector parameters which are roughly
determined empirically. Those are also much harder to pin
down in the present analysis, and probably in any analysis,
as the available span of I in bound nuclear systems is rather
small.

The leading LDM parameters can be determined suffi-
ciently well as to allow a thorough analysis. First, we have
studied a broad selection of widely used “standard” SHF
and RMF parametrizations. We find that all isoscalar energy
coefficients, including surface and curvature ones, show only
a few percent variation, while the isovector energy coefficients
might differ by a factor of two or even more between forces.
In the second step, we have worked out some interrelations by
a systematic variation of forces. We reconfirm that isovector
features are much more sensitive to parameter changes than
the isoscalar terms. We have also spotted a surprisingly strong
interrelation between the

↔
J 2 term in the Skyrme interaction

and some LDM properties (the density dependent asymmetry
energy coefficient). This demonstrates that the shell structure
and smooth LDM background are intimately connected.
The variation of the LDM coefficients does not, however,
directly translate into similar variations of the corresponding
energies.

Finally, we note that in this work we follow a strictly “em-
pirical” approach relating (shell-corrected) binding energies
to the LDM parameters. One can amplify (and extract) some
of the LDM parameters better by using other, more sensitive,
observables, such as fission barriers or energies of superde-
formed states. Such studies are currently being pursued.
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(1998).

[13] M. Brack, C. Guet, and H.-B. Håkansson, Phys. Rep. 123, 275
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