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Nuclear structure calculations with low-momentum potentials in a
model space truncation approach

L. Coraggio,1 A. Covello,1 A. Gargano,1 N. Itaco,1 and T. T. S. Kuo2
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We have calculated the ground-state energy of the doubly magic nuclei 4He, 16O, and 40Ca within the framework
of the Goldstone expansion starting from various modern nucleon-nucleon potentials. The short-range repulsion
of these potentials has been renormalized by constructing a low-momentum potential Vlow−k . We have studied
the connection between the cutoff momentum � and the size of the harmonic oscillator space employed in the
calculations. We have found a fast convergence of the results with a limited number of oscillator quanta.
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I. INTRODUCTION

One of the well-known important features of realistic
nucleon-nucleon (NN) potentials is their strong repulsive be-
havior in the high-momentum regime. This implies that when
performing nuclear structure calculations within a perturbative
approach it is unavoidable to renormalize the NN potential. The
renormalization may be achieved by constructing a potential
that takes into account the high momentum components of
the original potential in an effective way. For example, the
well-known Brueckner reaction matrix G [1] is an energy-
dependent effective interaction, defined in a model space P,
obtained projecting out all two-particle excitations above a
chosen Fermi surface. The main drawback of such a procedure
is that the G matrix is energy dependent, which stems from the
fact that it does not fulfill a decoupling condition between the
model space P and its complement Q.

Recently, we have proposed [2,3] a new method to
renormalize the bare NN interaction, which is proving to be
an advantageous alternative to the use of the Brueckner G
matrix. We define a low-momentum P-space up to a cutoff
momentum � and derive from the original VNN an effective
low-momentum potential Vlow−k that satisfies the decoupling
condition between the low- and high-momentum spaces. This
Vlow−k is a smooth potential which preserves exactly the
on-shell properties of the original VNN and is suitable for
being used directly in nuclear structure calculations.

In applying the low-momentum NN potential Vlow−k to
nuclear structure calculations, an important step is the de-
termination of the decimation momentum � for Vlow−k . There
are two considerations: first, � is based on the separation
of scale idea of the renormalization-group effective field
theory (RGEFT) approach. In low-energy nuclear physics,
one is interested in phenomena at low-energy scale and
consequently the details of the short-distance (high-energy
scale) physics are unimportant. This leads to the derivation
of the low-momentum potential Vlow−k by integrating out the
high-momentum components of modern NN potentials beyond
a cutoff momentum �.

The second consideration is that all modern NN potentials
are constructed to fit the empirical phase shifts up to the

inelastic threshold Elab � 350 MeV, which corresponds to a
maximum relative momentum �2.1 fm−1.

In the past few years, we have profitably employed
this technique in realistic nuclear structure calculations for
both doubly closed-shell nuclei, within the framework of
the Goldstone expansion [4,5], and open-shell nuclei within
the multilevel shell-model framework [2,3,6–8]. In all these
works we have used for the cutoff momentum the value
� = 2.1 fm−1.

It is interesting, however, to investigate the relation of the
cutoff momentum � to the dimension of the configuration
space in the coordinate representation, where actually our
calculations are performed. The study of such a relation is
the aim of the present work, where we show how the choice of
a cutoff momentum implies a maximum value for the energy
of the two-nucleon system, the latter introducing a simple
criterion to choose the two-nucleon model space.

To verify the reliability of this approach we calculate, in the
framework of the Goldstone expansion, the ground state (g.s.)
properties of doubly closed-shell nuclei starting from different
NN potentials renormalized through the Vlow−k procedure.

The paper is organized as follows. In Sec. II we give
an outline of our calculations. A detailed discussion of the
convergence properties of the perturbative calculations is
presented in Sec. III. Section IV is devoted to the presentation
and discussion of our results for the three nuclei 4He, 16O, and
40Ca. Some concluding remarks are given in Sec. V.

II. OUTLINE OF CALCULATIONS

As already mentioned in the Introduction, we renormalize
the short-range repulsion of the bare NN potential VNN by
integrating out its high momentum components through the
so-called Vlow−k approach. A detailed description of this
procedure can be found in Refs. [3,9]. The renormalized NN
potential Vlow−k preserves the observables predicted by VNN

for the two-nucleon system, and consequently its χ2/datum,
up to the cutoff momentum �. The Vlow−k is a smooth potential
and can be used directly in nuclear structure calculations within
a perturbative approach.
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While the Vlow−k is defined in the momentum space, we
perform our calculations for finite nuclei in the coordinate
space employing a truncated harmonic oscillator (HO) basis.
Since the Vlow−k procedure decouples the momentum space
into the low- and high-momentum regime, it is desirable to
recover such a decoupling in the HO space.

Let us consider the relative motion of two nucleons in a
harmonic oscillator well in the momentum representation. For
a given maximum relative momentum �, the corresponding
maximum value of the energy is

Emax = h̄2�2

M
, (1)

where M is the nucleon mass.
This relation may be rewritten in terms of the maximum

number Nmax of HO quanta for the relative coordinate system,
so for a given HO parameter h̄ω we have(

Nmax + 3

2

)
h̄ω = h̄2�2

M
. (2)

The above equation provides a simple criterion to map out
the two-nucleon HO model space. If we write the two-nucleon
states as the product of HO wave functions

|ab〉 = |nalaja, nblbjb〉, (3)

our HO model space is defined as spanned by those two-
nucleon states that satisfy the constraint

2na + la + 2nb + lb � Nmax. (4)

The need for such a boundary condition for our model space
may be also pointed out by the following considerations. The
momentum contents of the two-nucleon wave function clearly
depend on the choice of the model space. For example, the
average momentum of HO wave functions is proportional to
(h̄ω)1/2. Suppose we are doing a calculation using a small
model space together with a small h̄ω, so that the momentum
contents of the basis wave functions are practically all below
1.5 fm−1. In this case, we clearly should use this value for �.
Let us consider another situation where the model-space wave
functions have important momentum components of, say, up
to 3.0 fm−1. Then in this case, we need to use a larger �.

The above considerations may be illustrated by inspecting
the explicit expression of the Vlow−k matrix elements in
terms of wave functions of the center-of-mass and relative
coordinates:

〈nalaja, nblbjb; JT |Vlow−k|nclcjc, nd ldjd ; JT 〉
=

∑
LL′S

(−1)L+L′
ĵa ĵbĵcĵd (2L + 1)(2L′ + 1)(2S + 1)

×




la
1
2 ja

lb
1
2 jb

L S J







lc
1
2 jc

ld
1
2 jd

L′ S J




∑
nln′l′NL

[1 − (−1)l+S+T ]

×〈nlNL, L|nalanblb, L〉〈n′l′NL, L′|nclcnd ld , L
′〉

×
∑
J

(2J+1)

{
L l L

S J J

}{
L l′ L′

S J J

}

×〈nlSTJ |Vlow−k|n′l′STJ 〉, (5)
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FIG. 1. (Color online) Different Pnl’s for h̄ω = 27 MeV. See text
for details.

where ĵ = √
2j + 1, 〈nlNL, L|nalanblb, L〉 are the Brody-

Moshinsky transformation brackets [10], and, according to
Eq. (4), 2n + l and 2n′ + l′ are both �Nmax. The matrix
element 〈nlSTJ |Vlow−k|n′l′STJ 〉 is expressed in terms of
the momentum-space HO wave functions Pnl’s as

〈nlSTJ |Vlow−k|n′l′STJ 〉

=
∫ �

0

∫ �

0
dkdk′kk′Pnl(k)Pn′l′(k

′)V ll′STJ
low−k (k, k′). (6)

Because in Eq. (6) the integrals are evaluated up to �, it is
desirable to throw away those Pnl’s which extend significantly
above the cutoff momentum, and pertain therefore to the
high-momentum regime. We have verified that applying the
constraint (4) amounts to neglect all Pnl’s which extend their
tail more than �5% above �. Figure 1 is an explanatory picture
where we plot, for a given h̄ω = 27 MeV, three momentum
space HO wave functions Pnl’s with 2n + l = 5, 7, and 9,
respectively, as functions of k. The vertical dashed line denotes
a value of � = 2.35 fm−1, corresponding to Nmax = 7.

Relation (4) has a general validity, it should be applied
every time the Vlow−k matrix elements are calculated in the
HO basis.

In this paper, making use of the present approach, we
have studied the ground state properties of doubly closed-shell
nuclei within the framework of the Goldstone expansion [11].
More explicitly, starting from the purely intrinsic Hamiltonian

H =
(

1 − 1

A

) A∑
i=1

p2
i

2M
+

∑
i<j

(
Vij − pi · pj

MA

)
, (7)

where Vij stands for the renormalized VNN potential plus the
Coulomb force, we construct the Hartree-Fock (HF) basis
expanding the HF single particle (SP) states in terms of
HO wave functions. The HF basis is then employed to sum
up the Goldstone expansion, including contributions up to
fourth-order in the two-body interaction.

Our calculations are made in a truncated model space,
whose size is related to the values of the cutoff momen-
tum � and the h̄ω parameter. The calculations are per-
formed increasing the Nmax value (and consequently �) and
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varying the h̄ω value until the dependence on Nmax (�) is
minimized.

III. CONVERGENCE PROPERTIES OF THE
PERTURBATIVE EXPANSION

In Sec. IV we will show the calculated ground state energies
of some doubly closed-shell nuclei within the framework of
the perturbative approach (Goldstone expansion). Here, we
study the convergence properties of the perturbative series. To
this end, we have performed a test calculation, starting from
a Vlow−k with a fixed cutoff momentum � = 2.1 fm−1 and
derived from the NN CD-Bonn potential [12]. For this Vlow−k ,
hermitized according to the procedure based on the Cholesky
decomposition suggested in Ref. [13], an exact calculation of
the ground state energy of 4He has been performed in the
framework of the hyperspherical harmonic (HH) approach
[14]. The value obtained is −27.95 MeV [15], considering
the Vlow−k as a NN potential defined in the whole momentum
space, with Vlow−k(k, k′) = 0 when k or k′ > �. With the
above potential we have calculated the same quantity in the
framework of the Goldstone expansion.

Using Padé approximants [16,17] one may obtain a value
to which the perturbation series should converge. We consider
the following three Padé approximants:

[L|1] = E0 + E1 + · · · + EL

1 − EL+1/EL

, (8)

where L = 2, 3, and

[2|2] = E0(1 + γ1 + γ2) + E1(1 + γ2) + E2

1 + γ1 + γ2
, (9)

where

γ1 = E2E4 − E2
3

E1E3 − E2
2

, γ2 = −E3 + E1γ1

E2
,

Ei being the ith order energy contribution in the Goldstone
expansion.

In Fig. 2 the 4He calculated ground state energy is plotted
versus the number of HO major shells included in the
calculation, the red line representing the exact value. It is
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FIG. 2. (Color online) 4He ground state energy as a function
of the number of harmonic-oscillator major shells. The employed
two-body interaction is a Vlow−k derived from CD-Bonn potential
with � = 2.1 fm−1. The oscillator parameter h̄ω is equal to 18 MeV.
Calculations have been performed with different Padé approximants,
the red line representing an exact calculation [15].

worth here to mention that no further truncation for the
two-nucleon states has been performed, we considering the
Vlow−k as defined in the whole momentum space.

We see that the Padé approximants [3|1] and [2|2] give, for
a given number of HO major shells, almost the same value, the
difference being at most 45 keV. The Padé approximant [2|1]
differs at most by 200 keV from the [3|1], and 245 keV from
the [2|2]. Moreover, the results, corresponding to the largest
space we have employed, come close to the exact value, the
energies being −27.79 and −27.84 MeV with the [3|1] and
[2|2] approximants, respectively.

On these grounds, we report in the following section the
results obtained using the Padé approximant [2|2].

IV. RESULTS

To test the reliability of our calculations we have calculated
the binding energy of 4He starting from different VNN ’s, and
compared our results with those obtained through the Faddeev-
Yakubovsky (FY) method.

In Figs. 3, 4, and 5 we show the calculated 4He ground
state energies obtained from the CD-Bonn [12], N3LO [18],
and Bonn A [19]NN potentials, respectively. In each figure
the straight red line indicates the FY result [20,21] while
the other curves represent our calculated values, for different
values of h̄ω, versus the maximum number of HO quanta Nmax

that binds the two-nucleon configurations according to the
relation (4). In Fig. 6, we report the same results of Fig. 3, but
versus the cutoff momentum �.

For the CD-Bonn, N3LO, and Bonn A potentials we obtain
convergence with h̄ω = 36, 29, and 34.5 MeV, respectively.
Our calculated energies are −25.92, −25.02, and −27.78 MeV
for the above VNN ’s. These values are in good agreement with
the FY results, the largest discrepancy being 0.39 MeV for
N3LO potential. We have done similar calculations starting
from other modern NN potentials, such as the Nijmegen II
[22] and Argonne V18 [23] potentials, but because of their
stronger tensor components it has not been possible to achieve
convergence.

We have calculated also the ground state energies of 16O and
40Ca starting from the CD-Bonn potential. In Fig. 7 we present
our results for 16O and compare them with the experimental
datum. The converged value, as can be seen from the figure, is
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FIG. 3. (Color online) 4He ground state energy with CD-Bonn
potential as function of Nmax, for different values of h̄ω. The straight
line represents the Faddeev-Yakubovsky result.
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FIG. 4. (Color online) Same as Fig. 3, but for N3LO potential.
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FIG. 5. (Color online) Same as Fig. 3, but for Bonn A potential.
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FIG. 6. (Color online) 4He ground state energy with CD-Bonn
potential as function of cutoff momentum �, for different values of
h̄ω. The straight line represents the Faddeev-Yakubovsky result.
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FIG. 7. (Color online) 16O ground state energy with CD-Bonn
potential as function of Nmax, for different values of h̄ω. The straight
line represents the experimental value [25].
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FIG. 8. (Color online) Same as Fig. 7, but for 40Ca.

obtained for h̄ω = 27 MeV and is equal to −118.1 MeV, the
discrepancy with the experimental value being 9.5 MeV. In this
case we cannot compare our calculations with the exact ones. It
is worth mentioning, however, the work by Fujii et al. [24] who,
using the unitary model-operator approach (UMOA), predict
for the CD-Bonn potential a converged value of −115.61 MeV,
including only two-body correlations. In a more recent paper
[26], the above authors have estimated the three-body cluster
effect to contribute about −4 MeV.

As regards 40Ca, a calculation of its ground state energy
including fourth-order contributions in the Goldstone expan-
sion has not been done because of the large CPU time needed.
We therefore report in Fig. 8 the results obtained with the
Padé approximant [2|1], taking into account up to third-order
contributions in the Goldstone expansion. The converged value
is −307.8 MeV with h̄ω = 25.5 MeV. In this case, the dis-
crepancy with respect to the experimental value is 34.2 MeV.

V. SUMMARY

In this work, we have calculated the ground state energy
of some doubly closed-shell nuclei in the framework of the
Goldstone expansion, starting from different realistic NN
potentials. The short-range repulsion of these potentials has
been renormalized by integrating out their high-momentum
components through the so-called Vlow−k approach. We have
introduced a criterion to map out the model space made up by
the two-nucleon states in the HO basis, according to the value
of the cutoff momentum �. The reliability of this procedure
has been tested by calculating the ground state energy of
4He, with the CD-Bonn, N3LO, and Bonn A potentials and
comparing the results with the FY ones. We have found that
the energy differences are at most 390 keV. These differences
are due to two reasons. On the one hand, our calculations have
been performed using a perturbative approach, so that small
contributions coming from higher order terms may have not
been completely taken into account by the Padé approximants.
On the other hand, we do not expect that Eq. (2) recovers
exactly in the HO basis the Vlow−k decoupling into low- and
high-momentum regime.

In any case, the limited size of the discrepancies shows
that our approach provides a reliable way to renormalize the
NN potentials preserving not only the two-body but also the
many-body physics.
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On the above grounds, we have performed similar cal-
culations for heavier systems, such as 16O and 40Ca and
obtained converged results using model spaces not exceeding
Nmax = 10.

The rapid convergence of the results with the size of
the HO model space makes it very interesting to study
in a near future heavier systems employing our present
approach.
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