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Shell model Monte Carlo method in the pn-formalism and applications to the Zr and Mo isotopes

C. Özen1 and D. J. Dean2

1Department of Physics and Astronomy, University of Tennesee, Knoxville, Tennessee 37996, USA
2Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 5 August 2005; published 18 January 2006)

We report the development of a new shell model Monte Carlo algorithm, which uses the proton-neutron
formalism. Shell model Monte Carlo methods, within the isospin formulation, have been succesfully used in
large-scale shell model calculations. Motivation for this work is to extend the feasibility of these methods
to shell model studies involving nonidentical proton and neutron valence spaces. We show the feasibility of
the new approach with some test results. Finally, we use a realistic nucleon-nucleon interaction in the model
space described by (1p1/2, 0g9/2) proton and (1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2) neutron orbitals above the 88Sr
core to calculate ground-state energies, binding energies, B(E2) strengths, and to study pairing properties of the
even-even 90−104Zr and 92−106Mo isotope chains.

DOI: 10.1103/PhysRevC.73.014302 PACS number(s): 21.60.Ka

I. INTRODUCTION AND MOTIVATION

The shell model Monte Carlo (SMMC) method [1–3] was
developed as an alternative to direct diagonalization in order to
study low-energy nuclear properties. It was succesfully applied
to nuclear problems in which large model spaces made diag-
onalization impractical. In the canonical SMMC approach,
one calculates the thermal expectation values of observables
of few-body operators by representing the imaginary-time
many-body evolution operator as a superposition of one-body
propagators in fluctuating auxiliary fields. Thus one recasts
the Hamiltonian diagonalization problem as a stochastic
integration problem.

In this paper, we report on the development of a SMMC
approach in the pn-formalism. This implementation of SMMC
enables one to treat shell model Hamiltonians that are not
isospin invariant in the model space or for which different
model spaces are used for protons and neutrons. In what
follows, we use the abbreviated form SMMCpn, to distinguish
the approach discussed here from the original one. We note
that special features of the pairing-plus-quadrupole interaction
enabled a special implementation of SMMC in nondegenerate
proton and neutron model spaces for calculations in rare-earth
nuclei [4,5]. The method presented in this work is general and
may be used for realistic Hamiltonians as well those of a more
schematic variety.

As a first novel application of the new implementation,
we perform shell model calculations for the even-even
90−104Zr and 92−106Mo isotopic chains. Initial experimental
studies [6] indicated that nuclei in this region have very
large deformations and that the transition from spherical
shapes to highly deformed shapes occurs abruptly: 96Zr is
rather spherical while 100−104Zr nuclei are well deformed
with a quadrupole deformation parameter of β2 = 0.35 [7].
Furthermore, the spherical-to-deformed transition is more
abrupt in the Zr isotopes than in the nearby elements Mo,
Ru and Pd. Generator-coordinate mean-field calculations in
this region [8] are able to reproduce the shape transitions
with particular Skyrme interactions. Furthermore, the region
exhibits significant shape-coexistence phenomena [9,10].

The history of shell model applications in this mass
region goes back to the 1960s with model spaces built
on 88Sr or 90Zr cores [11–14]. Gloeckner [15] used an
effective interaction built on a 88Sr core with a model
space consisting the orbitals π :(1p1/2, 0g9/2), ν:(1d5/2, 2s1/2).
Other studies used larger model spaces [16–18] with vary-
ing effective interactions and truncation schemes. Holt
et al. [19] derived a realistic effective interaction by using
many-body perturbation techniques [20] in the model space
π :(1p1/2, 0g9/2), ν:(1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2). This ef-
fective interaction was based on the realistic nucleon-nucleon
CD-Bonn potential [21], and shell model diagonalization
calculations were carried out for the low-lying spectra of the
Zr isotopes with neutron numbers from N = 52 to N = 60.
Their results showed reasonable agreement with experimental
spectra. In this paper, we use a slightly modified version of
this realistic effective interaction to explore Zr and Mo nuclei
through N = 64.

In Sec. II, we give an outline of the SMMC method with an
emphasise on the differences in the SMMCpn implementation
when compared with the isospin-conserving implementation.
Then, in Subsec. III A, we demonstrate the utility of the
new approach by a comparison of various numerical results
we obtained by using the SMMCpn technique for a few
fp-shell nuclei with those calculated by direct diagonalization
and earlier SMMC studies. Calculations for the Zr and Mo
isotopes, which are presented in Subsec. III B, were carried
out in the same model space as that in Holt et al. [19], by use
of a slightly modified interaction [22]. We show results for
ground-state energies, binding energies, B(E2) strengths, and
BCS-like pairing correlations for the Zr and Mo isotope chains.
We conclude with a perspective on this avenue of research.

II. FORMALISM

The SMMC method calculates expectation values of
operators within a thermal ensemble of particles whose
interactions are governed by the Hamiltonian Ĥ of the system.
(A zero-temperature formalism also exists, but is not discussed
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here.) The canonical expectation value of an operator X̂ at a
temperature T is given by

〈X̂〉 = Tr[ÛX̂]

Z
, (1)

where the partition function of the system is given by Z(β) =
Tr Û , β = 1/kT is the inverse temperature, and the many-body
evolution operator is Û = e−βĤ . The quantum-mechanical
trace of an operator is defined as

Tr X̂ =
∑

α

〈α|X̂|α〉, (2)

where the sum runs over all many-body states in the Hilbert
space. For nuclear calculations, the number of valence particles
is usually limited, so that number projection becomes impor-
tant. The original SMMC method preserved isospin within
the same neutron and proton model spaces. In what follows,
we discuss how to implement number projection when the
isospin quantum number is broken. Note that, in the limit
of β → ∞, we may evaluate ground-state properties of the
nuclear systems.

In the following, we discussion consider Hamiltonians that
have at most two-body terms. Any such Hamiltonian can be
cast into a quadratic form:

Ĥ =
∑

i

εαρ̂α + 1

2

∑
α

λαρ̂2
α, (3)

where εα is the energy of single-particle level α and the
operator ρ̂α is a a one-body density operator of the form a†a.
Details are given in [1] on how to transform one-body operators
with quantum numbers {n, l, j, jz, tz} (where n is the principal
quantum number, l is the orbital momentum, j is the total
angular momentum and jz is its projection, and tz = ±1 for
protons and neutrons) to the form shown in Eq. (3).

At the heart of the SMMC method lies the linearization of
the imaginary-time many-body propagator. Since in general,
[ρ̂α, ρ̂β ] �= 0 we must split the interval β into Nt “time slices”
of length 	β ≡ β/Nt . We apply the Hubbard-Stratonovich
transformation [23,24] to the two-body evolution operator at
each time slice. In compact notation, the partition function can
be written as

Z = Tr Û = Tr e−βĤ −→ Tr[e−	βĤ ]Nt

−→
∫

D[σ ]G(σ )Tr Ûσ , (4)

where the metric of the functional integral is

D[σ ] =
∏
α,n

√
	β|Vα|

2π
dσα(τn), (5)

and the Gausian weight is given by

Gσ = e− 1
2 	β

∑
α,n |λα |σ 2

α (τn). (6)

The one-body evolution operator is written as

Ûσ =
Nt∏

n=1

e−	βĥσ (τn) ≡ T e− ∫ β

0 dτ ĥσ (τ ), (7)

where we note the dependence on the auxiliary fields σ (τn).
This-time ordered product means that this formalism yields
a path integral in the fields σ . The linearized one-body
Hamiltonian for the time slice τn is given by

ĥσ (τn) =
∑

i

εαρ̂α +
∑
αn

sαλασα(τn)ρ̂α, (8)

with s = ±1, if λ > 0 or s = ±i if λ < 0. Note that, because
the various ρ̂α need not commute, Eq. (7) is accurate only
through order 	β and that the representation of e−	βĥ must
be accurate through order 	β2 to achieve that accuracy.

The thermal expectation values can be expressed as the ratio
of path integrals in fluctuating auxiliary fields,

〈Ô〉 = Tr[Ôe−βĤ ]

Tr[e−βĤ ]
=

∫
D[σ ]Gσ 〈Ô〉σ ξσ∫

D[σ ]Gσξσ

, (9)

where the following definitions are used:

ξσ = Tr Ûσ , 〈Ô〉σ = Tr [ÔÛσ ]

Tr Ûσ

. (10)

To use the Monte Carlo sampling methods, of Metropolis
et al. [25], we need to define a positive-definite weight
function,

Wσ = Gσ |ξσ |, (11)

so Eq. (9) can now be rewritten as

〈Ô〉 =
∫
D[σ ]Wσ 〈Ô〉σ
σ∫

D[σ ]Wσ
σ

≡ 〈〈Ô〉σ
σ 〉W
〈
σ 〉W , (12)

where


σ = ξσ

|ξσ | (13)

is the sign of the partition function.
The description above shows how one may transform the

shell model into a problem of quadrature integration. Objects,
ξσ and 〈X̂〉σ , in the integrands are of one-body nature and
are represented by Ns × Ns dimensional matrices, where Ns

is the number of the single-particle levels in the valence
space. The path integrals in the auxiliary fields are evaluated
by performing a Metropolis random walk in the field space.
Thermodynamic expectation values are given as the ratio of
two multidimensional integrals over the auxiliary fields. The
dimension D of these integrals is of the order of N2

s Nt , which
can exceed 105 for the problems of interest.

Note that the Monte Carlo sign problem enters calculations
when any of the λα matrix elements is positive. Realistic shell-
model interactions always have such terms; a special case
is the pairing-plus-quadrupole Hamiltonian that has no sign
problems.

If the proton and neutron valence spaces are identical
and the Hamiltonian Ĥ is isospin symmetric, then the
Hamiltonian can be cast into a quadratic form that respects this
symmetry explicitly. In that case, it is possible to form linear
combinations of density operators that separately conserve the
neutron and proton numbers. In the isospin formulation (as
done in the original shell model Monte Carlo studies) proton
and neutron wave functions can be represented by separate
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Slater determinants, and the ensuing one-body propagator
factors into two propagators as well, one for protons and
another for neutrons. The canonical traces are then calculated
by application of the number-projection operator to obtain the
desired proton and neutron numbers. In contrast, we apply
the SMMC method to Hamiltonians that are not necessarily
isospin invariant or for which proton and neutron valence
spaces are different. A relaxation of the isospin symmetry
in the quadratic forms becomes essential for employing the
SMMC method in such cases. In the pn-formalism, proton
and neutron valence spaces are no longer distinguished
from each other; instead, we consider a single-valence space
containing both proton and neutron orbitals. In this way,
the density operators in the one-body Hamiltonian h(σ )
inevitably mix protons and neutrons, and as a consequence
their respective expectation values will fluctuate from sample
to sample. In principle, this mixing can be averted by use of
a suitable combination of direct and exchange formulations
of the decomposition [3]; however, because the choice of
decomposition is directly related to the the fluctuations of the
Monte Carlo sign and thus the stability of the calculation, it
may be desirable to have a method to deal with the mixing, that
is independent of the decomposition approach. In this paper,
we chose to use a direct decomposition only, and to explore, for
the first time, how the SMMC formalism could be extended to
incorporate number and Tz projections in the case in which
the one-body densities include proton-neutron terms. The
canonical trace is then retrieved by use of projection operators
to fix the total number of particles A and the z component of
the total isospin Tz. This implementation represents the major
difference between the original SMMC and the SMMCpn
techniques.

Projection operators for fixed A and Tz are given by

P̂A =
∫ 2π

0

dφ

2π
e−iφAeiφN̂ (14a)

and

P̂Tz
=

∫ 2π

0

dθ

2π
e−iθTzeiθT̂z , (14b)

respectively. In the discrete Fourier representation, we make
the substitution

∫ 2π

0

dφ

2π

∫ 2π

0

dθ

2π
−→ 1

Ns(NTz
+ 1)

Ns∑
m=1

NTz∑
n=0

, (15)

where the quadrature points are given by φm = 2πm/Ns and
θn = 2πn/(NTz

+ 1), and NTz
is the number of values Tz can

take. As an example, the canonical trace of the one-body
propagator Ûσ can be obtained by acting with both projection
operators on the grand-canonical trace, Tr Ûσ = det(1 + Uσ ):

TrA,Tz
Ûσ = 1

Ns(NTz
+ 1)

∑
m,n

e−iφAe−iθTz Tr eiφN̂ eiθT̂z Ûσ

= 1

Ns(NTz
+ 1)

∑
m,n

e−iφAe−iθTz det(1 + eiφeiθTz Uσ ),

(16)

where the boldface symbols are used for the matrix represen-
tation of the operators; for example,

Tz = 1

2

(−1 0
0 1

)
. (17)

A typical difficulty in the SMMC applications is due to a
sign problem arising from the repulsive part of the realistic
interactions. In the case of realistic interactions, a straightfor-
ward application of Eq. (11) to obtain a positive-definite weight
will introduce a highly fluctuating weight function. This will
give rise to expectation values with very large fluctuations.
To avoid this situation, we adopt a practical solution [26]
to the sign problem by breaking the two-body interaction
into “good” (without a sign problem) and “bad” (with a sign
problem) parts: H = HG + HB . Using a parameter g, we then
construct a new family of Hamiltonians H (g) = HG + gHB

that are free of the sign problem for nonpositive values of
g. The SMMC observables are evaluated for a number of
different g values in the interval −1 � g � 0, and the physical
values are thus retrieved by extrapolation to g = 1. We use
polynomial extrapolations and choose the minimum order that
gives χ ≈ 1. In our calculations, most of the extrapolations
are linear or quadratic. In the extrapolation of 〈H 〉, variational
principle imposes a vanishing derivative at the physical value
g = 1. A cubic extrapolation in this case typically gives the
best results.

We note that in the SMMCpn formalism the sign problem
will occur, even when one has a good interaction, for all nuclei
for which either the proton or the neutron number (or both) is
odd. This contrasts to the original SMMC implementation in
which all N = Z nuclei have no sign problem when a good
interaction is used.

Another problem encountered in applying the SMMC
methods concerns efficiency of the Metropolis algorithm
in generating uncorrelated field configurations. Rather than
sample continuous fields, for which decorrelated samples are
obtained after only very many (of the order of 200) Metropolis
steps, we approximate the continuous integral over each σα(τn)
by a discrete sum derived from a Gaussian quadrature [4]. In
particular, the relation

e	βλρ̂2/2 ≈
∫ ∞

−∞
dσf (σ )e	βλσ ρ̂ (18)

is satisfied through terms in (	β)2 if

f (σ ) = 1
6 [δ(σ − σ0) + δ(σ + σ0) + 4δ(σ )] , (19)

where {σ0 = (3/λ	β)1/2}. In the SMMCpn algorithm we find
that samples are well decorrelated after only a few (typically
fewer than 10) Metropolis steps using these descretized
fields.

We describe in the following section our initial results we
obtained by using the SMMCpn method.
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TABLE I. Comparison of the ground-state energies (in MeV), as
calculated by SMMCpn and the ANTOINE results. A quadrupole-plus-
pairing interaction is used.

Nucleus E (ANTOINE) E (SMMCpn)

24Mg −39.28 −38.68 ± 0.27
26Mg −43.58 −42.75 ± 0.70
22Ne −30.23 −29.53 ± 0.41
28Si −49.25 −48.80 ± 0.37

III. RESULTS

A. Comparisons with direct diagonalization
and previous SMMC calculations

In this section, we present a number of test cases that
validate the SMMCpn approach. For this purpose, we first
carried out calculations on a few sd-shell nuclei, using a
quadrupole-plus-pairing interaction that is free of the sign-
problem. This interaction can be written as

V̂ = −χQ̂ · Q̂ − gP̂ (0,1)† · ˜̂P (0,1), (20)

where

Q̂ = 1√
5

∑
ab

〈ja|
∣∣∣∣dVWS

dr
Y2

∣∣∣∣ |jb〉
[
a
†
ja

⊗ ãjb

]J=1,T =0
(21)

and

P̂ (0,1)† =
∑

a

[
a
†
ja

⊗ a
†
ja

]J=0,T =1
. (22)

The strength of the interaction terms were chosen as χ =
0.0260 MeV−1 fm2 and g = 0.212 MeV. We adopted the stan-
dard Universal SD (USD) shell model interaction [27] single-
particle energies. The term VWS in the equation above is the
central part of a Woods-Saxon potential with parameters given
in [28]. The SMMCpn calculations were performed at β =
2 MeV−1 with Nt = 128 time slices (	β = 1/64 MeV−1), and
each calculation involved 2500–3000 uncorrelated samples.
Note that typical isospin-conserving SMMC calculations
require only 	β = 1/32 MeV−1 for similar convergence.
A comparison of our results with the direct diagonalization
values (which we obtained by running the ANTOINE [29] code)
is given in Table I. Results are compatible within the internal
heating energy and statistical errors of the thermal SMMC
calculations.

We also tested the feasibility of the new implementation
with the utilization of the extrapolation method described
above. For this purpose, a few fp-shell nuclei were chosen

and the modified Kuo-Brown KB3 residual interaction [30]
was used. We calculated the ground-state energies, total
B(M1), B(E2), and the Gamow-Teller strengths of the nuclei
and compared our results with those obtained by exact diago-
nalization [31] and those obtained by the isospin SMMC [32].
The SMMCpn calculations were performed at β = 2 MeV−1

with 	β = 1/64 MeV−1, and each calculation at each of six
values of the extrapolation parameter g involved 8000–9000
uncorrelated samples. We used a quadratic extrapolation for
the total B(M1) and B(GT+) strengths, while for the total
B(E2) strengths a linear extrapolation was more reasonable.
The ground-state energies employed cubic polynomials sub-
ject to the constraint d〈H 〉/dg|g=1 = 0 because of a variational
principle that 〈H 〉 obeys. In all the cases, the errors were
conservatively adopted from a quadratic extrapolation.

In Table II, ground-state energies and B(E2) strengths are
tabulated. In all cases, the energies agree strikingly well within
error bars that are reasonable with the internal excitation
energy of a few hundred kilo-electron-volts because of the
finite-temperature calculations. The B(E2) strength is given
by

B(E2) = 〈(epQ̂p + enQ̂n)2〉, (23)

where the quadrupole operator is defined as Q̂p(n) =∑
i r

2
i Y2(θi, φi). The effective charges were chosen to be

ep = 1.35 and en = 0.35, and the oscillator strength is given
by b = 1.01A1/6. B(E2) values are also nicely reproduced
in general, while in the case of 48Cr, the exact result is
underestimated by ≈25%.

Table III shows a comparison of results for the B(M1) and
B(GT+) strengths. The B(M1) strength is defined by

B(M1) =
〈(∑

i

µN {gl

l + gs
s}

)2〉
, (24)

where µN is the nuclear magneton. We used the bare g factors
for angular momentum and spin (gl = 1 and gs = 5.586
for protons and gl = 0 and gs = −3.826 for neutrons). The
Gamow-Teller strength is defined by

B(GT+) = 〈G∓G±〉, (25)

where the unquenched Gamow-Teller operator is written as
G± = ∑

i 
σ t±. Both B(M1) and B(GT+) results agree well
with those obtained by direct diagonalization. Last, as in the
case of isospin SMMC calculations, our calculations satisfy
the Ikeda sum rule B(GT−) − B(GT+) = 3(N − Z) exactly.

TABLE II. Comparison of exact diagonalization, SMMCpn, and isospin SMMC results for valence space energies (in MeV) and B(E2)
strengths (in e2 fm4). A typical error bar for energies is ±0.6 MeV for SMMCpn and ±0.4 MeV for isospin SMMC calculations.

Nucleus E exact E SMMC (pn) E SMMC (iso)
∑

B(E2) exact
∑

B(E2) SMMC (pn)
∑

B(E2) SMMC (iso)

48Ti −24.6 −24.4 −23.9 476 459 ± 33 455 ± 25
48Cr −32.9 −32.6 −32.3 978 745 ± 40 945 ± 45
56Fe −66.4 −66.0 −65.8 1019 913 ± 55 990 ± 6
64Zn −106.3 −106.5 −104.8 1157 1116 ± 81 1225 ± 65
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TABLE III. Comparison of exact diagonalization, SMMCpn, and isospin SMMC results for B(M1) (in µN ) and Gamow-Teller strengths.

Nucleus
∑

B(M1)
∑

B(M1)
∑

B(M1)
∑

B(GT+)
∑

B(GT+)
∑

B(GT+)
exact SMMC(pn) SMMC (iso) exact SMMC(pn) SMMC (iso)

48Ti 10.6 10.4 ± 4 10.2 ± 1.2 1.26 0.89 ± 0.36 1.13 ± 0.18
48Cr 12.0 12.5 ± 4.4 13.8 ± 1.7 4.13 4.35 ± 0.44 4.37 ± 0.35
56Fe 19.4 22.6 ± 6.4 20.4 ± 3.0 4.69 4.02 ± 0.55 3.99 ± 0.27
64Zn 21.6 22.8 ± 1.2 23.6 ± 2.2 5.54 5.66 ± 0.7 4.13 ± 0.34

B. Applications to Zr and Mo isotopes

Calculations for the Zr and Mo isotopes were carried out in
the same valence space as in Holt et al. [19], which is built on
the 88Sr core, but we employed a slightly modified interaction
that had been previously tested for nuclei with small numbers
of valence particles in this region [22]. The model space and
single-particle energies that were used in the calculations are
given in Table IV ( [19] and references therein). We performed
calculations at β = 2 MeV−1 using Nt = 128 time intervals
with 8500–9500 uncorrelated samples for each extrapolation
parameter g.

1. Ground-state energies

Shown in Fig. 1 is the comparison of the expectation
value of energy 〈Ĥ 〉. Filled circles that are connected with
dashed lines represent exact diagonalization results obtained
by Juodagalvis [33], and in both the Zr and Mo cases, the
agreement of the SMMCpn values is remarkable. Only for
94Zr do the error bars of the SMMCpn result miss the exact
value slightly. This represents the full test of the SMMCpn
approach.

2. Binding energies

The ground-state energies shown in Fig. 1 correspond to the
contribution to the nuclear binding energy of the interaction of
the valence particles among themselves.

In Fig. 2, we plot calculated and experimental values of
binding energies with respect to the 88Sr core. We used the
following formulas to obtain our binding energies (BE):

BE(90+nZr) = BE(90+nZr) − BE(88Sr)

− n[BE(89Sr) − BE(88Sr)]

− 2[BE(89Y) − BE(88Sr)], (26)

TABLE IV. The model space and single-particle energies used in
these calculations. Note also that the effective charges for protons
and neutrons are eP = 1.8e and en = 1.5e. The oscillator parameter
is b = 2.25 fm.

Protons Neutrons

Orbital Energy (MeV) Orbital Energy (MeV)

0g9/2 0.90 0h11/2 3.50
1p1/2 0.00 0g7/2 2.63

1d3/2 2.23
2s1/2 1.26
1d5/2 0.00

BE(92+nMo) = BE(92+nMo) − BE(88Sr)

− n[BE(89Sr) − BE(88Sr)]

− 4[BE(89Y) − BE(88Sr)]. (27)

An inspection of the resulting relative binding energies shows
that the calculated values in Fig. 2 (shown by asterisks) deviate
from the experimental values (shown by filled circles), which
display a parabolic behavior. This situation is common among
calculations made with realistic interactions derived from NN
scattering data [34]. It may be related to the absence of real
three-body forces in the construction of the effective two-body
interactions [35]. It is known that a given Hamiltonian can
always be separated in the form Ĥ = Ĥm + ĤM , where Ĥm is
the monopole part, while the multipole ĤM contains all other
terms [36]. ĤM given by realistic NN interactions takes proper
account of the configuration mixing; however, the monopole
part Ĥm fails to produce the correct unperturbed energies. It is
possible to change the averages of the so-called centroid matrix
elements to fix this failure without affecting the spectrosopy
to produce the correct binding energies [37]. However,
a rigorous treatment of the global monopole corrections would

90 94 98 102 106
A

−40.0

−30.0

−20.0
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−20.0

−15.0

−10.0
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0.0

SMMCpn
Direct Diagonalization

Zr isotopes

Mo isotopes

<
H

>
 (

M
eV

)

FIG. 1. Ground-state energies of Zr and Mo isotopes. Results
from direct diagonalization avaliable for lighter isotopes also shown.

014302-5
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FIG. 2. Binding energies of the Zr and Mo isotopes.

deserve a detailed study and thus goes beyond the scope of
the current work. Instead, to give some substance to how a
monopole correction may work, we add an overall constant to
the diagonal interaction elements so that the modified matrix
elements are given by

V mod
J (ab, ab) = VJ (ab, ab) + W

n(n − 1)

2
, (28)

where n is the number of valence particles. We have adopted
W = −125 keV to reproduce the binding energy of 102Zr. We
plot the effect of this rather naive correction in Fig. 2, in which
modified results, represented by diamonds, show much better
agreement for both chains of isotopes.

3. B(E2) strengths

Since the 2+
1 state is expected to absorb most of the total

B(E2) strength, the latter can be used as a measure of the
0+

1 –2+
1 spacing, which should reflect a strong change with

the shape transitions. Shown in Fig. 3 are the calculated total
B(E2) strengths (open circles) and available experimental [38]
0+

1 → 2+
1 values (filled circles). Despite the fact that the

calculated total strengths increase as expected in both isotope
chains with the addition of neutrons, their numerical values fall
somewhat below the experimental B(E2; 0+

1 → 2+
1 ) values on

the heavier side of the isotope chains. We also investigated
whether this situation would improve by lowering the Oh11/2

single-particle energy since it has been suggested [39] that
the Oh11/2 significantly contributes to deformation in this
region. We found that even a substantial lowering of the
single-particle energy to 2.0 MeV only increased the B(E2) in
Zr by approximately 5%. This inability to obtain a very large
B(E2) is quite possibly due to correlations that are absent
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B
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e2 fm
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FIG. 3. Total B(E2) strengths from the ground state for Zr and
Mo isotopes. Experimental results are for 0+

1 → 2+
1 .

because of our choice of model space. We will investigate this
further in future work.

4. Pairing correlations

Pairing correlations among like nucleons is known to be
important for the ground-state properties of the even-even
nuclei [40]. These correlations should become quenched along
the Zr and Mo isotope chains as the transition from spherical
to well-deformed shapes becomes more pronounced. Similar
effects were recently investigated in N = 40 isotones [41]. We
have investigated the pairing content of the ground states of
the nuclei of interest by using a BCS-like pair operator that is
defined for neutrons as

	̂†
ν =

∑
jm>0

ν
†
jmν

†
jm̄, (29)

where the sum is over all orbitals with m > 0 and ν
†
jm̄ =

(−1)j+mν
†
j−m is the time-reversed operator. Hence the expec-

tation value of the pairing fields is 〈	̂†
ν	̂ν〉. This quantity for

an uncorrelated Fermi gas is given by

〈	̂†	̂〉 =
∑

j

n2
j

2(2j + 1)
, (30)

where nj = 〈ν†
jmνjm〉 are the neutron occupation numbers.

Any excess over the Fermi gas value therefore indicates pairing
correlations in the ground state. Our results, which are plotted
in Fig. 4, confirm a suppression of these correlations, as the
contribution of the added neutrons to the pairing gradually
decreases and the correlations become noticeably quenched
beyond 96Zr and 100Mo.
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FIG. 4. Pairing correlations of Zr and Mo isotopes.

In addition, the occupation numbers of various orbitals are
plotted in Fig. 5, demonstrating that additional neutrons are
distributed into the available orbitals rather uniformly, while
protons tend to migrate from the 0g9/2 to the 1p1/2 orbital. In
the case of Mo isotopes, the spurious effect of exceeding the
maximum-allowed occupancy for the 1p1/2 orbital is a result
of the extrapolation scheme that was used and is indicative that

FIG. 5. Orbital occupation numbers.

the relative error bars on the occupation data after extrapolation
are approximately 15% of the value of the occupation number.
Note that the deformation driving 0h11/2 remains only slightly
occupied.

IV. CONCLUSION AND PERSPECTIVES

We have introduced a new approach for the implementation
of the SMMC method to perform shell model calculations by
using nonidentical proton and neutron valence spaces. General
features of the SMMC method were reviewed. Differences
between the isospin and the pn-formalisms have been pointed
out; in particular, the Tz projection has been described in
detail.

The results of the SMMCpn approach have been validated
in the sd-shell by a “good”-signed schematic interaction and
in the fp-shell by the realistic KB3 interaction. In the latter
case, we dealt with the sign problem by using an extrapolation
method.

As the first novel application of the SMMCpn approach,
we performed a set of calculations for the even-even 90−104Zr
and 92−106Mo isotopes, using a realistic effective interaction
in the valence space described by (π :1p1/2, 0g9/2) and (ν :
1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2) orbitals.

A comparison of the ground-state energies of the first few
nuclei in both isotope chains showed excellent agreement with
the exact diagonalization results and provided a definitive test
of our algorithm and the SMMCpn method. We then studied
the transitional nature of the isotopes by using the B(E2)
strength as a gross measure of the 0+

1 –2+
1 separation. Along

both isotope chains, we obtained an enhancement in the B(E2)
strengths as a function of the added neutrons, accompanied by
a quenching in the neutron-pairing correlations. In spite of this
qualitative reproduction of the onset of deformations, clearly
further research is needed for a qualitative result in the heavier
Zr and Mo nuclei. A comparison with the experimental data
suggests that this situation may be a shortcoming that is due to
the degrees of freedom that are absent in the chosen valence
space. We will investigate this further in following work.

Apart from future applications involving realistic effective
interactions, use of schematic interactions in SMMCpn appli-
cations should be an interesting direction of research. Such
interactions have been commonly used to calculate realistic
estimates of collective properties and level densities; the latter
is an important ingredient in the prediction of nuclear reaction
rates in astrophysics. Parity dependence of these densities may
play a crucial role in the nucleosynthesis. We believe that
SMMCpn will prove to be a useful computational tool in this
regard.
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