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Using chiral perturbation theory to extract the neutron-neutron scattering length
from π−d → nnγ
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The reaction π−d → nnγ is calculated in chiral perturbation theory so as to facilitate an extraction of the
neutron-neutron scattering length (ann). We include all diagrams up to O(Q3). This includes loop effects in the
elementary π−p → γ n amplitude and two-body diagrams, both of which were ignored in previous calculations.
We find that the chiral expansion for the ratio of the quasi-free (QF) to final-state-interaction (FSI) peaks in the
final-state neutron spectrum converges well. Our third-order calculation of the full spectrum is already accurate
to better than 5%. Extracting ann from the shape of the entire π−d → nnγ spectrum by using our calculation in
its present stage would thus be possible at the ±0.8 fm level. A fit to the FSI peak only would allow an extraction
of ann with a theoretical uncertainty of ±0.2 fm. The effects that contribute to these error bars are investigated.
The uncertainty in the nn rescattering wave function dominates. This suggests that the quoted theoretical error
of ±0.3 fm for the most recent π−d → nnγ measurement may be optimistic. The possibility of constraining
the nn rescattering wave function used in our calculation more tightly—and thus reducing the error—is briefly
discussed.
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I. INTRODUCTION

In QCD, charge symmetry (CS) is a symmetry of the
Lagrangian under the exchange of the up and down quarks [1].
This symmetry has many consequences at the hadronic level,
where it translates into, e.g., the invariance of the strong nuclear
force under the exchange of protons and neutrons. However,
CS is broken by the different masses of the up and down quarks,
and thus the strong interaction manifests charge symmetry
breaking (CSB). The different electromagnetic properties of
the up and down quarks also contribute to CSB. An important
consequence of the first CSB effect (strong CSB) is that the
neutron is heavier than the proton, since if CSB were only an
electromagnetic effect the proton would be heavier and prone
to decay. This would make our world very different, since
big-bang nucleosynthesis is dependent on the relative proton
and neutron abundances.

While there are a number of pieces of experimental
evidence for CSB [1]—including recent results in dd →
απ0 at IUCF [2] and np → dπ0 at TRIUMF [3]—one of
the most fundamental to nuclear physics is the difference
between the neutron-neutron (ann) and proton-proton (app)
scattering lengths. The scattering lengths parametrize the
nucleon-nucleon interaction at low relative energies through
the effective range expansion. In this low-energy region the
(1S0) phase shift δ0 can be expressed as

p cot δ0 = −1

a
+ 1

2
r0p

2, (1)

where p is the center-of-momentum (c.m.) relative nucleon
momentum and r0 the effective range. This expansion is
reliable for p <∼ 150 MeV/c.
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Since there are no free neutron targets, it is very difficult
to make a direct measurement of the 1S0 neutron-neutron
scattering length, though proposals to do so have been
made. The latest of these suggests using the pulsed nuclear
reactor YAGUAR in Snezhinsk, Russia [4]. However, the
more common—and so far more successful—approach is to
rely on suitable reactions involving two free neutrons and
corresponding theoretical calculations to extract ann from
indirect data. By choosing the kinematics carefully one can
detect the neutrons in a low-energy relative S-wave that can be
accurately described by the effective range expansion (1). The
currently accepted value

ann = −18.5 ± 0.3 fm (2)

is deduced from the breakup reaction nd → nnp and the pion
radiative capture process π−d → nnγ . The first reaction is,
however, complicated by the possible presence of three-body
forces, but even after they are taken into account there are
significant disagreements between values extracted by the two
techniques. A recent nd breakup experiment reports ann =
−16.1 ± 0.4 fm [5], i.e., more than five standard deviations
from the standard value (2). The result of Ref. [5] is also in
disagreement with another nd experiment that claims −18.7 ±
0.6 fm [6]. Earlier data had an even larger spread, see Ref. [7]
for a review. Since the proton-proton scattering length is app =
−17.3 ± 0.4 fm (after corrections of electromagnetic effects1),
there is even uncertainty about the sign of the difference app −
ann. The more negative ann is favored by nuclear structure
calculations, where the small (but important) CSB piece of
the AV18 potential is fitted to reproduce app − ann with ann =
−18.5 fm [8]. The binding-energy difference between 3H and
3He, which has a small contribution from CSB effects, is then

1There is a small electromagnetic correction (−0.3 fm) to ann [1],
which for the rest of this paper will be ignored.
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very accurately reproduced. This would not occur were app −
ann to take the opposite sign [9].

Because of these issues the accepted value is weighted
toward the ann = −18.50 ± 0.05(stat.) ± 0.44(syst.) ± 0.30
(theory) fm reported by the most recent π−d → nnγ ex-
periment [10]. The extraction is in this case done by fitting
the shape of the neutron time-of-flight spectrum by using the
model of Gibbs, Gibson, and Stephenson (GGS) [11]. This
model was developed in the mid-1970s and explored many
of the relevant mechanisms and the dependence on various
choices of wave functions. Gibbs, Gibson, and Stephenson
calculated the single-nucleon radiative pion capture tree-level
amplitude to order p/M and consequently ignored the pion
loops that would enter at the next chiral order. Two-body
diagrams were not fully implemented in this model. The
theoretical error was dominated by uncertainties in the scatter-
ing wave function. Similar results were obtained in earlier
π−d → nnγ experiments carried out at the Paul Scherrer
Institut (PSI) (then the Swiss Institute of Nuclear Research)
[12]. In the PSI experiments, only the FSI peak was fitted,
while at LAMPF the entire spectrum was fitted. The theoretical
work for the PSI results compared the GGS model with work
done by de Téramond and collaborators [13]. The latter used
a dispersion relation approach for the final-state interaction,
with a theoretical error of the order 0.3 fm, i.e., similar to
GGS.

In this paper we recalculate the π−d → nnγ reaction by
using chiral perturbation theory (χPT). The one-body and two-
body mechanisms are thus consistent, and the constraints of
chiral symmetry are respected, which is of crucial importance
in this threshold regime. At third order, O(Q3), all the
amplitudes of the previous calculation are included, as well
as pion loops and three pion-rescattering diagrams. Additional
advantages of the chiral power counting are that it gives a
clearly defined procedure to estimate the theoretical error
and provides a systematic and consistent way to improve
the calculation if needed. In this first paper we establish
the machinery necessary for a precise extraction of the
nn scattering length. We isolate the sources of the largest
remaining errors and suggest means for their reduction, which
should make it possible to reach the desired high precision in
future work.

The paper is organized as follows. In Sec. II we will develop
the main ingredients of our calculation: The Lagrangian, the
explicit forms of the one- and two-body amplitudes, and
a description of our wave functions. The numerical results
are presented in Sec. III together with our estimate of the
theoretical error. We conclude in Sec. IV.

II. LAYOUT OF CALCULATION

The LAMPF experiment [10] used stopped pions, captured
into atomic orbitals around the deuteron. The subsequent
radiative decay occurs for pionic s-wave orbitals only. Thus the
c.m. and laboratory frames coincide, and the pion momentum
is vanishingly small. The neutron time-of-flight distribution of
the c.m. π−d decay width (with the photon and one neutron

AI

AII
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AII

(b)(a)

(c) (d)

FIG. 1. Generic diagrams of the contributions to π−d → nnγ .
Diagrams (a) and (b) are the one-body contributions, without and
with FSI. Diagrams (c) and (d) are the corresponding contributions
for the two-body currents. The amplitudes AI and AII are described
in the text.

detected) can be expressed as

d2�

dt1dθ3
= 1

2(2π )3Mπdt1

p3
1E1k sin θ3

Mπd − E1 − p1 cos θ3

1

3

∑
pols.

|M|2,

(3)

where t1, p1, and E1 are the time-of-flight, momentum, and
energy of the detected neutron, θ3 is the supplement of the
angle between this neutron and the photon, and k is the
photon momentum. Here the sum is over deuteron and photon
polarizations, and Mπd is the mass of the deuteron-pion bound
system, which to a very good approximation is given by the
sum of the pion (µ) and deuteron (Md ) masses.

The matrix element M is the sum of four interfering parts,
the quasi-free (QF) one-body, the one-body with final-state
interaction (FSI), and the two-body contributions, with and
without FSI. These can be symbolized by the generic diagrams
shown in Fig. 1. In this first calculation we restrict FSI to
S-waves only and subtract the plane wave from the scattering
wave function and include it in the QF contribution.

We will derive the matrix elements for γ nn → π−d rather
than π−d → nnγ in order to reduce the possibility of relative
phase errors when using the γ n → π−p amplitudes. The
π−d → nnγ decay rate can of course then be obtained by
detailed balance. An explicit expression for the matrix element
in terms of πd atomic (�πd ) and deuteron (ϕd ) wave functions
and the pion-photon amplitude A is given by

M(γ nn → π−d) =
∫

d3qd3p′d3p′′

(2π )9

M
√

2Eπd√
E1E22Eπ

×�∗
πd (0; q)ϕ∗

d (−q; p′′)A
−k(p′, p),

(4)

where p, p′, and p′′ are the initial, intermediate, and final
relative momenta of the two nucleons (for γ nn → π−d),
while q is the pion c.m. momentum and Ex the energy of the
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FIG. 2. Basic diagram for π−d → nnγ , defining kinematic vari-
ables.

indicated particle. The meaning of these kinematic variables
can also be inferred from Fig. 2.

Here 
−k(p′, p) is the nn scattering wave function at total
momentum −k, normalized such that∫

d3q

(2π )3

∗

−k(p′, q)
−k(p, q) = (2π )3δ3(p′ − p). (5)

Its Fourier transform is given by


−k(p′, p) =
∫

d3r

(2π )3
e−ip′ ·r
−k(r, p), (6)

where 
−k(p, r) = ∑
l(2l + 1)ilvl(r)/rPl (̂p · r̂), which could

be compared with the plane-wave expansion eip·r = ∑
l(2l +

1)iljl(pr)Pl (̂p · r̂). The form of vl(r) will be discussed in
Sec. II E.

The pion-photon amplitude A can be separated into the
one- and two-body amplitudes AI and AII;

A = (2π )3 E

M
δ(3)

(
p̃ ± k − q

2

)
AI(k, q) + AII(±p̃, k, q),

(7)

where the upper (lower) sign is for interaction on nucleon 1
(2) of the deuteron and p̃ = p′ − p′′. The one- and two-body
matrix elements are then

MI(γ nn → π−d) =
∫

d3qd3p′

(2π )6

E
√

2Eπd√
E1E22Eπ

×�∗
πd (0; q)ϕ∗

d

(
−q; p′ ± k − q

2

)
×AI(k, q)
−k(p′, p),

(8)

MII(γ nn → π−d) =
∫

d3qd3p′d3p′′

(2π )9

M
√

2Eπd√
E1E22Eπ

×�∗
πd (0; q)ϕ∗

d (−q; p′′)
×AII(±p̃, k, q)
−k(p′, p).

In configuration space the matrix elements are given by

MFSI
I =

∑
�πd (0)

√
Mπd

µ

∫
dr

d�r√
4π

[S0u(r)

+ S2( r̂ )w(r)]e± i
2 (k−q)·rAI(k, q)ṽ0(r)χ0, (9)

MQF
I =

∑
�πd (0)

√
Mπd

µ

∫
rdr

d�r√
4π

[S0u(r)

+ S2( r̂ )w(r)]e± i
2 (k−q)·rAI(k, q)eip·rχS, (10)

MFSI
II =

∑
�πd (0)

√
Mπd

µ

∫
dr

d�r√
4π

[S0u(r)

+ S2( r̂ )w(r)]A±
II (r, k, q)ṽ0(r)χ0, (11)

MPW
II =

∑
�πd (0)

√
Mπd

µ

∫
rdr

d�r√
4π

[S0u(r)

+ S2( r̂ )w(r)]A±
II (r, k, q)e±ipi ·rχS, (12)

where p1,2 = − 1
2 k ± p, A±

II (r, k, q) = ∫
d3p̃/(2π )3e−ip̃·r

AII(±p̃, k, q), and ṽ0(r) is the subtracted scattering wave
function as defined in Sec. III E. The sums are over the two
nucleons. In these expressions �πd (0) = (µπdα)3/2/

√
π is

the pion-deuteron atomic s-orbital wave function evaluated
at the origin with µπd the reduced πd mass, while S0 =
−1/

√
2σ · ε

†
d and S2( r̂ ) = 1

2 (3σ · r̂ r̂ · ε
†
d − σ · ε

†
d ) are the

S- and D-wave spin structures of the deuteron, ε
†
d being the

deuteron polarization vector. The χS’s are the neutron-neutron
spin wave functions for spin S.

In the following subsections we will derive explicit expres-
sions for the amplitudes and show how the coordinate-space
wave functions are obtained.

A. Power counting

We start from the relativistic Lagrangian

L = L(1)
πN + L(2)

πN + L(2)
ππ ;

L(1)
πN = N̄

[
iγ · DN − M − 1

4f 2
π

εabcτ cπaγ · ∂πb

− gA

2fπ

(γ · Dabπa)τ bγ5

]
N, (13)

L(2)
πN = −N̄

[
e(κ0 + κ1τ

3)

8M
σµνFµν

]
N,

L(2)
ππ = 1

2
Dab

µ πaDµcbπc − 1

2
µ2π2,

where D
µ

N = ∂µ − ieQNAµ and Dµab
π = δab∂µ − ieQab

π Aµ

are the covariant derivatives for the nucleon and pion
(e < 0), QN = 1

2 (1 + τ 3) and Qab
π = iεab3 are the electric

charge isospin operators (with a/b isospin indices of in-
coming/outgoing pion), and κ0,1 = κp ± κn (κp = 1.793 and
κn = −1.913) represent the nucleon anomalous magnetic
moments. The electromagnetic field tensor is given by Fµν =
∂νAµ − ∂µAν and σµν = i

2 [γ µ, γ ν] as usual.
The Lagrangian (13) is organized according to the number

of powers of small momenta Q (here e counts as one small
momentum). The chiral order of any graph to any amplitude
involving nucleons, together with pions and photons with
energies of order µ, can be assessed by multiplying the
Q-scaling factors of the individual units of the graph by one
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(a) (b)

(c) (d)

FIG. 3. Single-nucleon pion-photon diagrams relevant for pion
photoproduction. In this and all other figures a solid line represent a
nucleon, a dashed line a pion, and a wavy line a photon.

another. These factors are as follows:
(i) Each vertex from L(n) contributes Qn.

(ii) Each nucleon propagator scales as 1/Q (provided that
the energy flowing through the nucleon line is ∼µ);

(iii) Each pion propagator scales as 1/Q2;
(iv) Each pion loop contributes Q4;
(v) Graphs in which two nucleons participate in the reaction

acquire an extra factor of Q3.
In practice tree-level relativistic graphs must be calculated

and then expanded in powers of p/M in order to establish
contact with the usual heavy-baryon formulation of chiral
perturbation theory. The expressions for loop graphs that we
use are also computed in heavy-baryon χPT, and so we do
not need to employ any special subtraction schemes to remove
pieces of loop integrals that scale with positive powers of the
nucleon mass [14,15].

Note that we will employ the Coulomb gauge in all
calculations.

B. One-body amplitudes

There are four basic one-body diagrams, shown in Fig. 3:
The Kroll-Ruderman (KR) term (a), the pion pole (b), and the
s- and u-channel nucleon pole terms (c) and (d).

They can be calculated directly from a nonrelativistic
reduction of the relativistic Lagrangian or from the amplitudes
of heavy-baryon χPT (HBχPT) [16]. In addition, there are
also pion-loop corrections at O(Q3) as shown in Fig. 4.

The loop corrections, together with the corresponding
counterterms from L(3)

πN [17], have already been calculated
in the γN c.m. frame to O(Q3) for radiative pion capture

FIG. 4. Pion loops at NNLO for γN → πN in Coulomb gauge.
Note that not all time orderings are shown.

on a nucleon [18] using the Coulomb gauge. The low-energy
constants (LECs) from the third-order chiral Lagrangian were
fitted to experiment, yielding an excellent description of the
near-threshold data.

The third-order piece of the one-body amplitudes of
Ref. [18] can hence be taken as is, without introducing any
new unknown parameters, and combined with our evaluation
to O(Q2) of the tree-level diagrams in Fig. 3 by using the
relativistic Lagrangian (13).2 In order to incorporate these
amplitudes into the two-body system, they should be evaluated
at the relevant subthreshold kinematics, corrected for a boost
to the overall rest frame, and corrected for off-shell effects.
These issues will all be discussed below.

The full one-body amplitude is given (in Coulomb gauge)
by

AI(γN → πN ) = F1(Eπ, x)iσ · εγ + F2(Eπ, x)σ · q̂ σ

· (̂k × εγ ) + F3(Eπ, x)iσ · k̂ q̂ · εγ

+F4(Eπ, x)iσ · q̂ q̂ · εγ , (14)

where the Fi are the Chew-Goldberger-Low-Nambu (CGLN)
amplitudes [19] and εγ is the photon polarization vector. The
isospin channels are separated as

Fa
i (Eπ, x) = F

(−)
i (Eπ, x)iεa3bτ b

+F
(0)
i (Eπ, x)τ a + F

(+)
i (Eπ, x)δa3, (15)

where a is the pion isospin index. For γ n → π−p this implies
that Fi = √

2[F (0)
i − F

(−)
i ]. The Fi’s of Ref. [18] are evaluated

with the pion energy Eπ and photon-pion cosine x = k̂ · q̂
in the π−p → γ n rest frame. In our case q = 0, Eπ = µ,
and x is undetermined. Thus only F1 survives, the other
spin amplitudes being proportional to the pion momentum.
In charged pion photoproduction F1 is dominated by the KR
contribution [Fig. 3(a)].

1. Subthreshold extrapolation

If the π−p → γ n process were completely free, the CGLN
amplitudes should be evaluated at the pion threshold Eπ = µ.
However, since the proton is bound in the deuteron, the π−p

energy is actually less than µ, which means that we must
extrapolate to the subthreshold regime. To do this we need a
prescription to calculate the invariant two-body energy sπ−p.
The pion and photon energy in the π−p → γ n rest frame can

2The amplitudes of Ref. [18] are based on the third-order heavy-
baryon Lagrangian of Ecker and Mojžiš [17]. There are some
differences between the results obtained in this way and those found
when the tree-level relativistic amplitude for γ n → π−p is expanded
to relative order p2/M2. Thus the tree-level terms we find at O(Q3)
are slightly different from those listed in Ref. [18], but this can be
accounted for by a redefinition of the LECs in L(3)

πN . This redefinition
affects only the O(Q3) (NNLO) photoproduction amplitude, and
thus—at the order we consider here—it is not relevant to the boost or
other issues associated with embedding the γ n → π−p amplitude in
the A = 2 system.
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then be calculated by using the well-known relations

E∗
π = sπ−p − m2

p + µ2

2
√

sπ−p

, (16)

ω∗ = sπ−p − m2
n

2
√

sπ−p

. (17)

The energy available to the π−p subsystem, sπ−p, would seem
to be different depending on whether FSI or QF kinematics are
considered. Furthermore, there are two QF situations: i.e., the
detected neutron can originate from the one-body vertex, or it
can be the spectator. In fact, the first case is overwhelmingly
favored by the kinematics of the LAMPF experiment and
is also the one closest to threshold. The second, spectator,
scenario is suppressed by kinematics, so, even though it is
further from threshold and so results in a larger shift in sπ−p,
any correction resulting from this shift is small compared with
other, included, effects.

For the QF kinematics in which the detected neutron
originates from the one-body vertex the rest frame coincides,
by definition, with the overall γ nn c.m. But, in the FSI
region one has to make a choice. The invariant energy of the
π−p → γ n system can be established from

sπ−p = (Md + µ)2 + m2
n − 2(Md + µ)εs, (18)

where εs = √
m2

n + p2
s is the energy of the spectator nucleon.

We choose to assume that the spectator nucleon is on shell
and that its typical momentum ps can be estimated through
calculating the expectation value 〈p2

s 〉 between initial and final-
state wave functions. With the S state of the deuteron only, the
average is given by

〈
p2

s

〉 = k2

4
−

∫
dr(MB − p2 + 2MVSS)u(r)j0

(
kr
2

)
ṽ0(r)∫

dru(r)j0
(

kr
2

)
v(r)

.

(19)

We then use free kinematics for the one-body amplitudes in
the QF region and formulas (18) and (19) to calculate the
energy at which the one-body amplitude should be evaluated
in the FSI peak. The one-body amplitudes are then calculated
by using E∗

π according to the different kinematics of the QF
and FSI configurations. The theoretical uncertainty due to this
procedure is assessed in Sec. III C1.

2. Boost corrections

In general the γ n → π−p rest-frame does not coincide
with the overall c.m., so we have to adjust the Fi for boost
effects. The boost corrections can be calculated with replacing
the γ n → π−p rest-frame kinematics by the overall γ nn

c.m. kinematics in the evaluation of the one-body amplitudes.
This changes the incoming and outgoing nucleon momenta
but not the photon and pion momenta. The Coulomb gauge
condition ε0

γ = 0 is retained. From the Lagrangian (13) one
can then deduce the following boost corrections for the
reduced amplitudes, up to order Q2/M2 for the γN → πN

reactions:

�F
(0)
1 (Eπ ) = egA

2fπ

−(
Eπpn · k̂ + E2

π

)
2M2

(µp + µn), (20)

�F
(−)
1 (Eπ ) = egA

2fπ

Eπpn · k̂ + E2
π

M2
, (21)

where pn is the outgoing nucleon momentum (= −k in the γ n

rest frame, which makes these amplitudes vanish). As before
we have assumed Coulomb gauge, q = 0, and the same isospin
designations as in Eq. (15). These corrections should thus be
added to the amplitudes of Eqs. (14) and (15) as given in
Ref. [18], except for an overall factor of M/4π

√
s, which is

included in the phase space in our formalism. There are also
terms with new spin-momentum structures:

G(0)(Eπ ) = egA

2fπ

iEπpn · εγ σ · k̂
2M2

(µp + µn − 1), (22)

G(−)(Eπ ) = egA

2fπ

[
Eπpn · (̂k × εγ )

2M2

(
µp − µn + 1

2

)

− ipn · εγ σ · (2pn + Eπ k̂)

M2

]
, (23)

which will also vanish in the limit pn → −k. In the case
of nonvanishing pion momentum, additional terms will show
up. One would expect that the first term of G(−) should give
the largest contribution, since µp − µn + 1

2 = 5.2 is a big
number. However, because of the particular kinematics of
the present problem, pn ≈ −k, and the triple scalar product
pn · (k × εγ ) ≈ E2

π sin θ3 with θ3 = 0.075. Thus, ultimately
this piece of G(−) is very small because of the kinematics.
Similarly pn · εγ ≈ Eπ sin θ3. (Additionally, only one of the
photon polarizations can contribute.) In fact it turns out that
the new spin-momentum structures have a negligible effect
on the pion-photon amplitude, and the only possible relevant
boost corrections come from the terms in Eqs. (20) and (21).
In the actual calculations the subthreshold value E∗

π and not
Eπ = µ was used in evaluating these.

C. Two-body amplitudes

At third order there are three pion-exchange diagrams,
displayed in Fig. 5.

Of these, the first one, Fig 5(a), is expected to give the
largest contribution, since its propagator is coulombic, i.e.,

(a) (b) (c)

FIG. 5. Third-order pion rescattering diagrams relevant for
π−d → nnγ , shown in order of expected importance as explained in
the text.
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behaves as 1/q2, where q is the momentum of the exchange
pion [20]. This is because (for our kinematics) the pion
energy is transferred completely to the photon and vanishes
against the pion mass in the propagator, thus putting the pion
effectively on shell. It has been argued in the literature that
when the intermediate nucleon-nucleon state for this diagram
(as interpreted in time-ordered perturbation theory) is Pauli
allowed, corrections due to nucleon recoil need to be taken into
account [21]. However, in our case the intermediate nucleon
pair is in a triplet-isotriplet state, implying a relative P wave,
which is Pauli suppressed. The recoil correction evaluated in
Ref. [21] is thus small. The second graph, Fig. 5(b), has an extra
pion propagator which is off shell, reducing the magnitude of
this diagram. The third two-body amplitude, Fig. 5(c), has two
off-shell pion propagators and is hence suppressed compared
with the other two. More important, this diagram is further
suppressed because in Coulomb gauge it is proportional to the
(vanishingly small) pion momentum.

The two-body amplitudes, corresponding to the diagrams
of Figs. 5(a)–5(c), are

AIIa(p̃,k,q) = egA

2fπ

(−2iEπ )

4f 2
π

[
τ a

1 τ 3
2 σ 1 · εγ(

p̃ + k+q
2

)2 + τ 3
1 τ a

2 σ 2 · εγ(
p̃ − k+q

2

)2

]
,

(24)

AIIb(p̃, k, q) = egA

2fπ

4iEπ

4f 2
π

{
τ a

1 τ 3
2 σ 1 · (

p̃ − k−q
2

)
εγ · (p̃ + q)(

p̃ + k+q
2

)2[
µ2 + (

p̃ − k−q
2

)2]
+ τ 3

1 τ a
2 σ 2 · (

p̃ + k−q
2

)
εγ · (p̃ − q)(

p̃ − k+q
2

)2[
µ2 + (

p̃ + k−q
2

)2]
}

, (25)

AIIc(p̃, k, q) = egA

2fπ

2Eπ − ω

4f 2
π

(
τ a

1 τ 3
2 − τ 3

1 τ a
2

)
iεγ · q

ω(Eπ − qy)

×
[

σ 1 · (p̃ − k−q
2

)
µ2 + (

p̃ − k−q
2

)2 + σ 2 · (p̃ + k−q
2

)
µ2 + (

p̃ + k−q
2

)2

]
,

(26)

where y = k̂ · q̂ is the pion-photon cosine in the overall c.m.
In configuration space (for q = 0) the two-body amplitudes
can be expressed as

AIIa(r, k, q = 0) = egA

8f 3
π

−2iEπ

4πr

(
τ a

1 τ 3
2 σ 1 · εγ e

i
2 k·r

+ τ 3
1 τ a

2 σ 2 · εγ e− i
2 k·r), (27)

AIIb(r, k, q = 0) = − egA

8f 3
π

2Eπ

4π
τa

1 τ 3
2

×
∫

dαe−µ̃r

(
εγ · r̂

{
σ 1 ·

[
(1 − α)k

+ i

(
µ̃ + 1

r

)
r̂
]

ei( 1
2 −α)k·r + σ 2

·
[
(1 − α)k − i

(
µ̃ + 1

r

)
r̂
]
e−i( 1

2 −α)k·r
}

− i

r

(
σ 1 · εγ ei( 1

2 −α)k·r

− σ 2 · εγ e−i( 1
2 −α)k·r)) , (28)

AIIc(r, k, q = 0) = 0, (29)

where µ̃2 = α(µ2 + ω2) − α2ω2. These expressions agree
with the ones derived in Ref. [20] after the sign correction
of Ref. [22].

D. Matrix elements

The full matrix elements for the QF amplitudes, projected
on spin-0 and spin-1 final states, are, after taking the trace over
nucleon spins and isospins,

M0 = Ci
[
ε
†
d · εγ (F1 − xF2) + k̂ · ε

†
d q̂ · εγ (F2 + F3)

+ q̂ · ε
†
d q̂ · εγ F4

]
f (p2) + 3Ci√

2
p̂2 · ε

†
d

[̂
p2 · εγ (F1

− xF2) + p̂2 · k̂̂q · εγ (F2 + F3)

+ p̂2 · q̂̂q · εγ F4
]
g(p2) + (2 → 1),

M1 = C
{
ε
†
d · (εγ × εnn)F1 − [̂

q · ε
†
dεnn − q̂ · εnnε

†
d

+ ε
†
d · εnnq̂

] · (̂k × εγ )F2 + ε
†
d · (̂k × εnn )̂q · εγ F3

+ ε
†
d · (̂q × εnn )̂q · εγ F4

}
f (p2) + 3C√

2
p̂2 · ε

†
d

[̂
p2

· (εγ × εnn)F1 − (̂
p2 · q̂εnn − q̂ · εnnp̂2

+ p̂2 · εnnq̂
) · (̂k × εγ )F2 + p̂2 · (̂k × εnn )̂q · εγ F3

+ p̂2 · (̂q × εnn )̂q · εγ F4
]
g(p2) − (2 → 1), (30)

where εnn is the polarization vector of a spin-1 neutron pair,

C =
√

4π�πd (0)

√
Mπd

µ
, (31)

f (p) =
∫

rdr

[
u(r)j0(pr) − 1√

2
w(r)j2(pr)

]
, (32)

g(p) =
∫

rdrw(r)j2(pr). (33)

The corresponding spin-0 FSI matrix element is easily ob-
tained by the replacement p2 → k and letting

f (k) =
∫

dr

[
u(r)j0

(
kr

2

)
− 1√

2
w(r)j2

(
kr

2

)]
ṽ0(r),

(34)

g(k) =
∫

drw(r)j2

(
kr

2

)
ṽ0(r). (35)

The symmetrization (2 → 1) is then equivalent to an overall
factor of two in the spin-0 FSI matrix element. Similar
expressions can be derived for the two-body amplitudes and
for higher partial waves.
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E. Wave functions

It is possible to calculate quite accurate deuteron and
nucleon-nucleon scattering wave functions from the well-
established asymptotic states. By using data extracted from
the Nijmegen phase-shift analysis [23] as well as a one-
pion-exchange potential, we ensure that the behavior of the
wave function at r >∼ 1/mπ is correct. This yields wave
functions that are consistent with those obtained from χPT
potentials at leading order [24]. In order to be fully consistent
with the O(Q3), or NNLO, operators that we have derived
here, one should of course include O(Q2) corrections to the
NN potential, i.e., incorporate at least the leading chiral
two-pion exchange (TPE) [25–28]. This will be done in future
work.

1. Deuteron wave function

The deuteron wave function at large distances is described
by the asymptotic S- and D-state wave functions:

u(0)(r) = ASe
−γ r , (36)

w(0)(r) = ηAS

(
1 + 3

γ r
+ 3

(γ r)2

)
e−γ r , (37)

where γ = √
MB = 45.70223(9) MeV/c [B = 2.224575(9)

MeV], AS = 0.8845(8) fm−1/2 is the asymptotic normaliza-
tion, and η = 0.0253(2) the asymptotic D/S ratio [29]. The
(unregulated) deuteron wave functions u(r) and w(r) can be
obtained from the asymptotic ones and the radial Schrödinger
equation by integrating in from r = ∞ [30],

u(r) = u(0)(r) − M

∫ ∞

r

dr ′G0(r ′, r)[VSS(r ′)u(r ′)

+VSD(r ′)w(r ′)],
(38)

w(r) = w(0)(r) − M

∫ ∞

r

dr ′G2(r ′, r)[VDS(r ′)u(r ′)

+VDD(r ′)w(r ′)].

Here, G0/2(r ′, r) is the S- and D-wave Green function
(propagator) and VL′L the standard projections of the Yukawa
OPE potential:

VSS = −f 2 e−µr

r
,

VSD = VDS = −2
√

2f 2 e−µr

r

(
1 + 3

µr
+ 3

(µr)2

)
,

VDD = −f 2 e−µr

r
+ 2f 2 e−µr

r

(
1 + 3

µr
+ 3

(µr)2

)
,

(39)

where f 2 = 0.0750(5) is the πNN coupling constant squared
[31]. The coupled integral Eq. (38) is solved by using standard
numerical techniques.

The integrated wave functions are divergent at small
distances, reflecting that short-range physics has been ignored.
Instead of trying to model this piece as is done in many

phenomenological NN potentials, we choose to regulate it
by matching with a spherical well solution at r = Rd . This
procedure is motivated by the fundamental EFT hypothesis
that results should not be sensitive to the behavior at small r.
If they are, there is some short-distance physics that needs
to be included in the calculation, i.e., the parametrization
is incomplete. This hypothesis can be tested by varying the
cutoff Rd over some sensible range. A thorough discussion of
the boundary between long- and short-distance physics along
these lines can be found in the lectures by Lepage [32].

The D wave (w) is matched at the boundary Rd by the
continuity of the logarithmic derivative, which determines the
depth of the well. The S wave is matched assuming continuity
and that the deuteron wave function is normalized to unity.
The matching condition is then

1 −
∫ ∞

Rd

dru2(r) −
∫ ∞

0
drw2(r) =

∫ Rd

0
dru2(r), (40)

where the left-hand side is calculated numerically and the
right-hand side analytically.

In Fig. 6 these wave functions are compared with each
other, to the modern chiral NLO wave function of Epelbaum
et al. [27], and to the wave function of the Nijm93 potential
[33]. Choosing Rd to be in the range 1.5–2 fm gives wave
functions that are very close to the high-precision wave
functions on the market.

Note that the chiral wave function (thick dashed curve in
Fig. 6) deviates considerably from the potential model wave
function (solid curve) between 1.5 and 2.0 fm. We take this as
an indication that short-range NN dynamics are at play even at
distances as large as 2.0 fm. Thus we vary our matching point
Rd (and Rnn below) between 1.5 and 2 fm, where the lower
limit is set because Rd cannot be reduced much further without
the interaction becoming non-Hermitian. It is possible to use
the asymptotic wave functions (dotted curves in Fig. 6) in the
calculation if the matrix element has the necessary factors of
r to cancel the divergences of the wave functions as r → 0.
Such an approach is similar in spirit to the pionless effective
field theory [EFT( 
π )] and gives analytic expressions for the
matrix element.

2. The nn scattering wave function

The scattering wave function can be calculated in a similar
way. However, the asymptotic state is now described by the
phase shift according to


−k(r, p) ∼ v
(0)
0 (r)

r
= eiδ0 sin(pr + δ0)

pr
, (41)

where δ0 is calculated from Eq. (1) with given values of p, ann,
and r0. In the limit of vanishing momentum this wave function
reduces to 1 − a/r as it should. If higher partial waves can be
neglected, the only integral equation we need is the one for the
1S0 channel, which is

v0(r) = v
(0)
0 (r) − M

∫ ∞

r

dr ′G̃0(r ′, r)VSS(r ′)v0(r ′), (42)
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FIG. 6. The S- (top panel) and D-state (bot-
tom panel) parts of the deuteron wave functions.
Our wave functions are labeled by the choice of
matching radius Rd . These are compared with
the NLO chiral wave function of Ref. [27] and
Nijm93 [33].

where G̃0(r ′, r) is the free S-wave two-body propagator. This
wave function is regularized at r = Rnn by matching the
logarithmic derivative of a spherical well solution. The depth
of the spherical well is hence energy dependent, a treatment
related to the energy-dependent potential used by Beane
et al. [34]. As for the deuteron, we vary Rnn between 1.5 and
2 fm in order to test our sensitivity to short-range dynamics.

In Fig. 7 our nn wave functions are plotted together with
the wave functions used by GGS. The wave functions are
quite similar in that they tend to the same asymptotic limit
(the curve labeled Zero Range) for larger r. Thus they are
very close to each other for r >∼ 1.5 fm. There are, however,
a few important differences between the nn wave functions
in the two calculations. First, the GGS wave functions have
been derived by using the Reid soft-core potential (RSC)
(with the old larger value for the πNN coupling constant) for
the long-range part, while we used one-pion exchange only.
This explains the slight difference in the size of v(r) at r =
1.4 fm. Second, GGS match at a fixed value of Rnn =
1.4 fm, while we vary Rnn. Third, our wave function uses a
spherical well solution (sin κr), and GGS assume a polynomial
of fifth order, where the magnitude and first two derivatives
vanish at r = 0 and are matched to the RSC solution at
r = Rnn. The assumption of vanishing derivatives is equivalent
to using a hard-core potential at short distances, while many
chiral potentials have a softer behavior for small r (see, e.g.,
Ref. [27]). [The different shapes of the GGS wave functions
were obtained by adding an extra term ηr3(r − Rnn)3/pr to
the short-range piece of their wave function.] The combined
effect of all this is that our wave function has most variation
around r = 1 fm, while the GGS wave functions varies most
around ∼0.7 fm. As we will see later, these differences have a
strong influence on the assessment of the size of the theoretical
error in the extracted ann.

An obvious improvement of our calculation would be to use
wave functions whose short-range behavior is constrained by
other observables, thus reducing the uncertainty. We could

FIG. 7. Our 1S0 nn scattering wave functions (thin curve) at p =
10 MeV/c and for varying Rnn as indicated. Here ann = −16 fm and
r0 = 2.8 fm. A comparison is made with the wave functions of the
GGS model (thick curves). The latter are explained in Ref. [11],
from which reference the figure was adapted. Figure reprinted with
permission from W. R. Gibbs, B. F. Gibson, and G. J. Stephenson Jr.,
Phys Rev. C 11, 90 (1975). Copyright (1975) by the American
Physical Society.
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FIG. 8. Time-of-flight distribution for the π−d → nnγ decay
rate. This and all following spectra are calculated assuming ann =
−18 fm, r0 = 2.75 fm, and θ3 = 0.075 rad, unless otherwise
indicated. The plot shows the contributions from the LO KR
(dotted curve), NLO one-body (short-dashed curve), NNLO one-body
(long-dashed curve), and NNLO one- and two-body (solid curve)
amplitudes. The two peaks are labeled QF and FSI from their
dominant contributions.

also compare to wave functions of modern high-precision
potentials, e.g., Refs. [8,33], or the recent N3LO chiral
potentials [35,36]. Another extension would be to include
higher partial waves.

In the actual calculations we subtract the plane-wave
S-wave contribution by j0(pr) from the scattering wave func-
tion [ṽ0 = v0 − rj0(pr)] and then calculate the full plane-wave
(QF or PW) contribution by using eip·r without partial-wave
decomposition.

III. RESULTS

A. Convergence

The calculated differential decay width is shown in Fig. 8
for the LO KR term only and with the NLO and NNLO one-
and two-body amplitudes added in succession.

The spectrum shows two separate peaks, labeled QF and
FSI from the dominant contributions that give rise to them. It
is clear that the LO curve is very similar to the full calculation
and that the corrections of higher orders affect mainly the
magnitude but do have some effect on the shape. The evolution
is most easily assessed by forming the QF to FSI peak ratio
at the various orders. At LO the ratio is 2.58, at NLO 2.59,
at NNLO one-body 2.60, and at full NNLO 2.71. Thus the
LO, NLO, and NNLO one-body results are very close to each
other, but do not contain the full dynamics that the NNLO
two-body amplitudes provide. For a good quantitative result
it is important to include the full NNLO amplitude—using
only one-body amplitudes would give a wrong answer at this
order.
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a = –16 fm

FIG. 9. Time-of-flight distribution for the π−d → nnγ decay
rate. The spectrum is calculated for different choices of ann as
indicated. The curves for ann = −20 and −16 fm have been (slightly)
rescaled to coincide with the QF peak of the ann = −18 fm curve.

B. Sensitivity to ann

In Fig. 9 the decay rate is plotted for various choices of
ann. The curves have been rescaled to coincide at the QF peak,
to facilitate comparison of the relative height of the QF and
FSI peak. This is done since in the LAMPF experiment [10]
the scattering length is extracted by fitting the shape of the
spectrum, not the magnitude of the decay rate.

Note that only the height of the FSI peak changes, the valley
between the two peaks is largely unaffected by the value of
ann.

The theoretical error in the extraction of the scattering
length has several sources, and they will be investigated
and estimated in the following paragraphs. The error in the
extracted ann can be related to the error in the decay rate � by

��

�
= d�

dann

ann

�

�ann

ann

, (43)

where the actual calculations (Fig. 9) give that
d�/dann ann/� = 1.21 at ann = −18 fm. Thus

�ann

ann

= 0.83
��

�
, (44)

a result we shall use repeatedly in what follows.

C. Theoretical error bar

We estimate the theoretical error under the assumption that
the entire time-of-flight spectrum is fitted. To the best of our
knowledge, previous work has considered fitting only the FSI
peak, which limits the kinematics [11–13]. Because of the large
relative momentum in the QF region, this extended analysis
will have significant importance for the size of the error. We
will use a nominal value of ann = −18 fm in our estimate of
the error.
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1. Neglected higher orders in the π− p → γ n amplitude

The present calculation ignore pieces of the π−p → γ n

amplitude of O(Q4) or higher, which is thus three orders
down from the leading piece of O(Q). One might think that
the error would then be of the order (ω/�)3, since the first
dynamical effects not explicitly included in our Lagrangian are
associated with �-isobar excitation, and so the high-energy
scale is �, the �-nucleon mass difference, rather than �χ .
This is supported by the results of Ref. [18] where the
fitted counter terms had unnaturally large coefficients when
expressed in units of GeV−2. However, in Ref. [18] the O(Q3)
one-body (single-nucleon pion photo-production) amplitude
was fitted to actual data for ω0 = 142 MeV and higher (roughly
10 MeV above threshold). The error in our calculation is thus
introduced only in our extrapolation of the amplitude to a
subthreshold energy, denoted ω∗. Compared with the leading
O(Q) term, this gives a correction (ω3

0 − ω∗3)/�3 ∼ 4%. This
is a special, very beneficial feature of the pion absorption
process: Since the pion momentum is vanishing, there is no
angular dependence, and the amplitudes depend only on the
photon energy. This error should include the errors due to
uncertainties in the LECs fitted in [18]. A simple calculation
based on the LEC fit errors and the formulas for the CGLN
amplitudes gives corrections of the order 3% or smaller, which
is in line with the above 4%.

Since the extrapolation photon energy is roughly the same
at the QF and the FSI peak, this error should add roughly
equally to both peaks, which reduces the error on the neutron
time-of-flight spectrum to less than the ∼4% estimated above,
since now only the shape is fitted. The actual calculations
confirm this: The spectrum using extrapolated amplitudes (see
Sec. II B1) differs by only 1.1% in the FSI peak from
the spectrum with amplitudes evaluated at threshold. The
corresponding error in ann is thus 0.95% or 0.17 fm for
ann = −18 fm.

2. Boost corrections

The contribution of the boost corrections [Eqs. (20) and
(21)] is of the order µ2/2M2 ∼ 1%, but the change occurs in
the same direction in both peaks. Thus the relative change is
much reduced (0.14% in �FSI/�QF, i.e., 0.11% or 0.02 fm in
ann) and can be completely neglected for the present purposes.
After rescaling, the boosted curve cannot be distinguished
from the original one. We use the calculated O(Q3) boost
correction of 0.14% as a conservative estimate of the boost
error introduced at higher orders. The boost correction is
included in all plots.

3. Off-shellness

In calculating the one-body amplitudes we tacitly as-
sumed that both nucleons were on shell. This introduces
an off-shellness error that should be estimated. It is well
known that field transformations can be employed to trade
dependence of the one-body amplitude on the off-shellness of
the nucleon, p0 − p2/2M , for a two-body amplitude [37,38].

(a)

(c)

=

(b)

(d)

=

+

FIG. 10. The off-shell nucleon in (a) can be taken care of by
extracting a meson exchange from the deuteron wave function as
in (b). The off-shell part absorbs the closest propagator and becomes
the two-body diagram (c), splitting off the on-shell amplitude (d).
The cross indicates an on-shell nucleon.

This is done as follows: By using field transformations
such as those employed in Refs. [39,40], the dependence
of the γ n → π−p amplitude on the nucleon energy p0 is
replaced by dependence on p2/2M plus terms in L(3)

πN and
beyond. This means that the one-body amplitude for the
photoproduction process now has no off-shell ambiguity,
although we do acquire additional pieces of the two-body
amplitude for the charged-pion photoproduction process.
(This argument is shown graphically in the sequence of
diagrams in Fig. 10.) The new contribution, depicted in
Fig. 10(c), involves a γππ vertex from L(3)

πN , and so is O(Q5).
This two-body effect is thus p2/M2 ∼ µ2/M2 ∼ 2% down
from the NNLO two-body diagrams, which contribute 7.1%
to the rescaled decay rate (according to Fig. 8). Consequently
the error in ann from any potential off-shell ambiguity is
approximately 0.02 × 0.071 × 0.83 = 0.12% or 0.02 fm.

4. O( Q4) two-body pieces of the amplitude

A larger effect comes from O(Q4) two-body pieces of the
γ nn → π−d amplitude, such as the one depicted in Fig. 11.

FIG. 11. Typical two-body operator at O(Q4). The sliced photo-
nucleon vertex is from L(2)

πN .
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FIG. 12. Time-of-flight distribution for the π−d → nnγ decay
rate. The spectra are calculated for ann = −18 fm and different
choices of Rnn as indicated. The case of Rnn = 2.0 fm and ann =
−18.6 fm is also plotted.

A naive estimate indicates that they should be ∼p/�χ ∼
µ/�χ ∼ 20% of the O(Q3) two-body diagrams. This estimate
is supported by studies of pion photoproduction to O(Q4)
in χPT [22]. This suggests that O(Q4) two-body effects are
roughly a 0.7% effect in ann.

5. Error from wave functions

By changing the matching points Rd and Rnn between 1.5
and 2.0 fm, we tested the error introduced by our ignorance
of short-distance physics in the NN wave functions. This
change was significant for the nn scattering wave functions,
as shown in Fig. 12. The resulting error in ann turns out to be
−0.6 fm (3.3%) or smaller. A similar spread was obtained with
wave functions calculated from high-quality NN potentials,
e.g., Nijm I and Nijm II [33]. We note that both of these
potentials have χ2/d.o.f. = 1.03 with respect to the 1993
Nijmegen database and identical nn scattering lengths. They
differ only in their treatment of the heavy mesons, indicating
that our calculation is sensitive to truly short-range parts of
the NN interaction. Our results with the NijmI and NijmII
potentials also suggest that this short-range sensitivity has
a greater effect on the extracted ann than does our neglect
of two-pion exchange. We are confident that this uncertainty
could be considerably reduced by finding other observables
that constrain the wave function, in particular its short-range
behavior. This will be pursued in future work. Note that the
change in Rnn changes not only the height of the FSI peak but
also the valley region. This feature could potentially be used
in a fitting procedure to distinguish the Rnn dependence from
a change in ann.

Indeed, if one focuses only on the FSI peak, then the
variation in the spectrum due to the use of different wave
functions is significantly smaller than the one discussed in the
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FIG. 13. Time-of-flight distribution for the π−d → nnγ decay
rate in the region of the FSI peak. The spectra are calculated for
ann = −18 fm and different choices of Rnn as indicated.

previous paragraph. If we adjust both calculations to agree in
the valley region, we find that the FSI peak height only differs
by 0.6%. (See Fig. 13.) This corresponds to an uncertainty in
ann of ±0.1 fm.

Meanwhile, effects due to the bound-state wave function
chosen are also small. Changing the deuteron wave function
by varying Rd from 2.0 fm to 1.5 fm would alter the extracted
ann by 0.55% or 0.10 fm. Using the Bonn B deuteron wave
function instead of the EFT-motivated wave function yields a
�ann of 0.56% or 0.10 fm.

6. Higher partial waves

The error from neglecting higher partial waves in the
rescattering wave function can be estimated in the following
way. The higher partial waves are substantial only for large
relative energies and are thus negligible in the FSI peak
region. In the QF peak, the relative nn momentum is roughly
80 MeV/c, which means that the S-wave phase shift is
δ0 <∼ 60◦, while the P-wave phase shifts are typically δ1 <∼ 5◦.
The P- to S-wave amplitude ratio can then be estimated as
A1/A0 ∼ sin δ1/ sin δ0 = 0.10.

From Fig. 14 the S-wave FSI amplitude at the QF peak is
A0 = √

0.030 = 0.17, and thus the P-wave FSI amplitude is
A1 ∼ 0.10A0 = 0.017. However, since the P waves are spin-1
and the S waves spin-0 and the two do not interfere, the
influence of the P wave should be related to the QF spin-1
amplitude, which is B1 = √

0.295 = 0.543. The error in the
calculated QF peak is then 2|A1||B1|| cos θ |, where θ is the
unknown phase angle between A1 and B1. Using the maximal
possible error (setting cos θ = 1) seems overly pessimistic,
so we instead choose the average 〈| cos θ |〉 = 2/π . The
relative error at the QF peak is then 4

π
|A1||B1|/�QF ∼ 2.9%,

yielding an error in the extracted scattering length of 2.4% or
0.43 fm. This should be regarded as a conservative estimate
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FIG. 14. Decay rate separated into spin-0 and spin-1 contribu-
tions. The subtracted FSI 1S0 partial wave is also distinguished.

of the error of neglecting P waves for two reasons. First,
the P waves could interfere destructively with each other.
And, second, we implicitly assume that the radial integral for
P waves is of the same magnitude as for S waves, whereas it
is probably smaller. Most important, it is possible to actually
calculate and include the P waves. This error can thus easily
be pushed to higher partial waves and so made substantially
smaller. This will be done in future work.

Note that this P-wave error is much larger than the one
estimated by GGS [11]. The reason is that the P waves
contribute only at large relative energy, i.e., under the QF peak,
where they can interfere with the QF amplitudes, thus changing
the QF to FSI peak ratio and the extracted ann. The GGS error
estimate assumes that the nn opening angle is smaller than 30◦,
which restricts the kinematics to the FSI peak region only and
thus does not apply to the entire range of neutron energies used
in the LAMPF extraction. Also, in the work of de Téramond
et al. [13] as used by the PSI group [12] only the FSI peak
region is fitted, which gives a small P-wave contribution.
Thus, as far as we can ascertain, our analysis is the first that
estimates the interference of the FSI P waves with the spin-1
QF amplitude.

If this effect was not included in the analysis of the data in
Ref. [10], then the �ann of approximately 0.43 fm we have
found here should be included in the theoretical uncertainty
quoted in that work. However, correspondence with one of
the authors of Ref. [10] suggests that FSI in NN P-waves was
included in the version of the GGS model used for the ann

extraction there [41]. This source of uncertainty would then
not be present in Ref. [10]’s value for ann.

7. Sensitivity to r0

An estimate of a change in r0 due to CSB can be obtained
by assuming that the relative change in r0 is similar to the
relative change in aNN . Thus �r0/r0 ≈ �a/a, so that �r0 =

TABLE I. Error budget for the extraction of ann from the π−d →
nnγ reaction as it was performed in Ref. [10]. The calculation of
the absolute errors assumes a scattering length of −18 fm. The total
error is summed in quadrature.

Source Relative error (%) Absolute error (fm)

Off-shell 0.07 0.01
Boost <0.11 <0.02
Subthreshold 0.95 0.17
O(Q4) 2B 0.7 0.12
r0 0.5 0.09
Dep. on Rd 0.55 0.10
p-wave in FSI <2.4 <0.43
Dep. on Rnn <3.3 <0.60
Total <4.3 <0.78

(r0/a)�a = (2.75/18) × 1.5 = 0.23 fm. The sensitivity to the
effective-range parameter r0 was tested by varying it away
from its nominal value 2.75 fm, using a conservative spread of
±0.25 fm. This changes the FSI peak by 1.4% (after rescaling
to the QF peak) and thus indicates a change in the extracted
ann of 1.2% or 0.21 fm. On the other hand, the error suggested
by analysis of different experimental determinations of r0 is
±0.11 fm [7]. If r0 is instead varied over this narrower range,
the resultant �ann is only 0.5% or 0.09 fm. We will use the
latter, smaller, error in our error budget.

D. Error budget

The errors are summarized in Table I.
The first four errors are due to uncertainties in the

amplitudes, while the last four are due to the wave functions.3

We consider the total error of 4.3% to be a very conservative
estimate.

Note that if ann is extracted only from data in the FSI region
then the last two errors drop to 0.2% and 0.5%, respectively,
while a number of the other errors listed in Table I are also
reduced. We find that an extraction performed by using only
data from this section of the neutron time-of-flight spectrum
would have a theoretical uncertainty of ±0.2 fm. This confirms
the conclusion of GGS from thirty years ago. The significantly
reduced theoretical uncertainty comes at a price, though: One
must sacrifice the large number of counts acquired under the
QF peak. We have argued above that the last two errors quoted
in Table I can be decreased by additional theoretical work on
radiative pion capture on deuterium, and therefore we hold
out hope that in future a χEFT extraction of ann that has
an accuracy of ±0.3 fm (or better) and uses the full neutron
spectrum obtained in Ref. [10] can be performed.

One reason for this optimism is the convergence of the chiral
expansion for this reaction, which can be made more explicit

3We realize that such a separation is, strictly speaking, not
meaningful, since unitary transformations can be employed to trade
wave-function effects for operator effects. However, the separation
makes sense within the approach to the calculation we have adopted
here.

014002-12



USING CHIRAL PERTURBATION THEORY TO EXTRACT . . . PHYSICAL REVIEW C 73, 014002 (2006)

by computing the QF to FSI peak ratio for the different orders.
From Fig. 8 we obtain

�QF

�FSI
= (2.580 + 0.014 + 0.112 ± 0.039)(1 ± 0.05), (45)

where the first parentheses contain (in order) the contribution
of the LO, NLO, and NNLO and the error in the chiral
expansion. The second set of parentheses shows the error
due to effects in the wave functions. Note that modifying the
wave functions by including two-pion exchanges, P waves, or
different short-distance dynamics would already change the
LO calculation, which is why we choose to write this error
as an overall factor. The smallness of the NLO and NNLO
one-body terms can perhaps be an effect of the particular
kinematics of the present problem, especially that the pion
momentum is vanishing. On the other hand, the comparatively
large NNLO two-body contribution is most likely a result of a
combination of two effects. First, the two-body currents allow
for momentum sharing between the nucleons, which would
be of importance in the QF region. Second, in the leading
two-body diagram [Fig. 5(a)] the coulombic propagator was
power counted as 1/µ2. However, because of the small
deuteron binding energy, the typical momentum is instead of
the order γ = √

MB = 45.7 MeV [42]. Since γ � µ, this
further enhances this diagram.

IV. CONCLUSIONS

In this paper we have calculated the π−d → nnγ reac-
tion, using χPT pion-photon amplitudes and EFT-inspired
wave functions. The errors in the extracted scattering length
from the operators are of the order of 1%. These errors
include effects that were not considered by Gibbs, Gibson,
and Stephenson (GGS) [11], e.g., errors from extrapolat-
ing the single-nucleon amplitudes subthreshold, the boost
of the γ n → π−p amplitude from the γ n rest frame to
c.m., the effects of off-shell nucleons, and more complicated
two-body mechanisms. A key improvement is that we have
included the full two-body amplitude at third chiral order
and have found that on the scale of the other errors it has a
substantial influence on the extraction of the scattering length.

Nevertheless, if ann is extracted from the FSI region alone,
our analysis within χEFT confirms GGS’s result for the
theoretical uncertainties, putting them at ±0.2 fm. On the
other hand, if—as was done in the most recent ann extraction
[10]—the entire shape of the neutron spectrum, including both
the QF and FSI peaks, is used for the extraction, then the

uncertainty in the scattering wave function at small distances
and the neglect of higher partial waves is a potentially large
source of errors, maybe as large as 4.3%. This might seem
like a large uncertainty, since it is almost three times larger
than the 1.5% estimated by GGS. But, as was argued in
Sec. III C5, some of the assumptions behind their error estimate
do not seem to apply for the entire kinematic range spanned
by the data from the LAMPF experiment. This tempts us to
suggest that the error estimate given in Ref. [10] is optimistic
and should be increased.

We plan to improve our model in the near future by
constraining the short-distance part of the nn wave function
by using other observables and by incorporating higher partial
waves. We will report these results in the future. We also plan
to fold our model with the neutron detector acceptance and
the experimental geometry in order to extract the nn scattering
length from the data of Ref. [10].

Overall we conclude that the π−d → nnγ reaction has
some very desirable features that make it extremely suitable
for the extraction of the neutron-neutron scattering length.
The vanishing pion momentum obviously favors a χPT
calculation and also reduces the number of contributing terms
dramatically, leading to the dominance of the Kroll-Ruderman
term. The fact that the extraction is done by fitting the shape
of time-of-flight spectra rather than an absolute decay rate
reduces many errors further still.

The reaction γ d → nnπ+ could be used as an alternative
and complementary way to extract the neutron-neutron scat-
tering length. This reaction has been considered before; see
the review [43] and later papers, e.g., Ref. [44]. A chiral
calculation should be feasible for this reaction and could
benefit from the work of the present paper. With a threshold
photon laboratory energy of 149 MeV, it should be accessible at
existing experimental facilities, e.g., HIγ S@TUNL after our
planned upgrade and MAX-lab in Lund, Sweden. After our
submission of this manuscript, a calculation of γ d → nnπ+
using chiral perturbation theory along lines similar to ours has
become available [45].
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