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A complete realistic study of the 5
�He hypernucleus is presented using a realistic Hamiltonian and a fully

correlated wave function that takes into account all relevant dynamical correlations and �N space-exchange
correlation (SEC). Results are sensitive to SEC, which significantly affects energy breakdown, �-separation
energy, nuclear core polarization, point proton radius, and density profiles.

DOI: 10.1103/PhysRevC.73.011302 PACS number(s): 21.80.+a, 13.75.Ev, 13.75.Cs, 27.10.+h

Strangeness can be experimentally injected in a bound
nuclear system through the (K−, π−) reaction, for example,
causing subtle distortions in it. This introduces new sym-
metries to the system, replacing older ones [1]. Hypernu-
clei are unique laboratories for studying these interesting
aspects owing to the presence of the strangeness degree of
freedom. The 5

�He hypernucleus comes to mind first for an
in-depth study because of the rich experimental statistics. We
perform a variational Monte Carlo study using a realistic
Hamiltonian and a fully correlated wave function (WF)
that includes the �N space-exchange correlation (SEC).
The effect of the SEC on energy breakdown, nuclear core
polarization (NCP), point proton radius, and density profiles
is presented. Realistic studies [2,3] have been performed on
s-shell single hypernuclei using the realistic two-nucleon (NN)
Argonne v18 potential [4] and the three-nucleon (NNN) Urbana
model-IX potential [5,6] in the nonstrange sector in conjunc-
tion with the two-baryon (�N ) Urbana-type charge symmetric
potential [7,8] and the three-baryon (�NN) potential [9–11]
in the strange sector. In addition, there are studies of 5

�He
[12] and of 17

�O [13] using the truncated NN (v6) potential,
which is the first six terms of the Argonne v14 potential
[14] and a Coulomb term. A couple of these studies aim at
pinning down the strengths of the �NN force [3,12]. Despite
the fact that the �N space-exchange potential arising from
an equivalent �N interaction in the relative p state is not
insignificant, the SEC has always been put aside when writing
the WF in both the aforementioned studies as well as in
several others [15,16]. In an alternative approach, Nemura
et al. [17] have performed an ab initio calculation of s-shell
single hypernuclei by explicitly including the � degree of
freedom at the two-body level. Nogga et al. [18] have
performed Faddeev-Yukubosvky calculations but have yet to
extend these to 5

�He. In their calculations, the SEC effects
cannot be extracted as the SEC is included naturally in the
formalism.

The charge-symmetric �N potential is written as

v�N (r) = v0(r)(1 − ε + εPx) + (vσ /4)T 2
π (r)σ� · σN . (1)
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Here, the first term is the sum of the direct potential
[v0(r) = vc(r) − v2π (r)] and the space-exchange potential
[εv0(r)(Px − 1)]. Therefore, function ε, which determines
the odd-state potential, is the strength of the space-exchange
potential relative to the direct potential. It is quite poorly
estimated from the �p forward-backward asymmetry, whose
value ranges from 0.1 to 0.38 [19]. In these expressions,
vc(r) = Wc/[1 + exp(r − R)/ar] is the Woods-Saxon repul-
sive potential with Wc = 2137 MeV, R = 0.5 fm, and a =
0.2 fm, and v2π = v̄T 2

π (r) is the two-pion attractive potential.
The v̄ = (vs + 3vt )/4 and vσ = vs − vt terms are, respec-
tively, the spin-average and spin-dependent strengths, with vs(t)

the singlet(triplet) state depths. A value of v ≈ 6.15(5) MeV
is found to be consistent with low-energy �p scattering
data [10].

We solve the Schrödinger equation

[−h̄2

2µ
∇2 + ṽ�

s(t)(r) + θ (r) + h̄2�(� + 1)

2µr2

]
f �

s(t)(r) = 0 (2)

for the radial solutions f �
s (r) and f �

t (r) using quenched �N

potentials in singlet and triplet states:

ṽ�
s (r) = [

vc(r) − α2π v̄T 2
π (r)

](
1 − ε + εP �

x

)
+ (3/4)ασ vσT 2

π (r), (3)

ṽ�
t (r) = [

vc(r) − α2π v̄T 2
π (r)

](
1 − ε + εP �

x

)
− (1/4)ασ vσT 2

π (r), (4)

where α2π and ασ are quenching factors for the two-pion
and spin-exchange parts, respectively, of the central and
spin channels [13]; P �

x ≡ Px is a Majorana space-exchange
operator whose value is 1(−1) for � = 0(1); the function
Tπ (r) is the one-pion exchange tensor potential; and θ (r) is
an auxiliary potential that ensures the asymptotic behavior of
the long-range correlation functions (f �

s(t) ∼ r−νe−κr ) [2,10].
Using these radial solutions f �

s (r) and f �
t (r), we obtain the

�-dependent spin-averaged correlation function

f �
�N (r) = [

f �
s (r) + 3f �

t (r)
]/

4. (5)
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f c
�N (r) = f 0

�N (r) is the �N repulsive central correlation
function with no SEC. With SEC,

ux
�N (r) = [

f 0
�N (r) − f 1

�N (r)
]/

2, (6)

and the correlation function f c
�N (r) is modified as

f c
�N (r) = [

f 0
�N (r) + f 1

�N (r)
]
/2 = f 0

�N (r) − ux
�N (r). (7)

The weak spin-spin correlation function is written as uσ
�N (r) =

[f 0
s (r) − f 0

t (r)]/4.
The WF of A-baryon s-shell hypernuclei with l number of

� baryons and A − l number of nucleons is written as

|�〉 =

1 + U 3 +

A−l∑
i<j

ULS
ij




A−l∏

j=1

(
1 + uσ

�j

)

S A−l∏

i<j

(1 + Uij )


�J

+ η

�p

l∑
λ=1

A−l∑
n=1

[1 + U 3]


S A−l∏

i<j

(1 + Uij )


�J ux

λnPx, (8)

where U 3 = 1 + ∑l
λ=1

∑A−l
j<k Uλjk + ∑A−l

i<j<k(Uijk + UT NI
ijk )

and

�J =

 l∏

λ=1

A−l∏
j<k

f c
λjk





 l∏

λ=1

A−l∏
j=1

f c
λj




×
[

l−1∏
λ=1

f c
�λ

] 
 A−l∏

i<j<k

f c
ijk





A−l∏

i<j

f c
ij


 χσ

� �JT (9)

is the Jastrow WF involving two- and three-baryon central
correlations and the appropriate spin function (χσ

� ) resulting
from l number of � baryons. η is a variational parameter.
In Eqs. (8) and (9), Uij , U

LS
ij , Uijk, U

T NI
ijk , and U�jk are the

noncommuting two- and three-baryon correlation operators
(where subscripts i, j, k, and n stand for nucleons and λ for �

baryons). Functions ux
�iPx and uσ

�iσ� · σN [13] are SEC and
spin-spin �N correlations. S is the symmetrization operator.
The second term in Eq. (8) is due to the SEC, where the
Px operation (exchange of space positions between � and
N) runs over �N pairs:

∑l
λ=1

∑A−l
n=1 = �p. With l = 0 and

without � correlation functions, these equations represent A
nucleon s-shell nucleus wave function [20,21]. To make the
WFs translationally invariant, all the positions of baryons are
measured from the c.m. of the system (Rc.m. = [mN

∑A−l
i=1 ri +

m�

∑l
λ=1 rλ]/[(A − l)mN + lm�]),

r̃ = r − Rc.m.. (10)

A Px operation on a �N pair interchanges the positions of �

and N. This results in a new set of configurations (rx ≡ Pxr),
which alters the c.m. to a new position R′

c.m. by a shift �Rc.m. =
R′

c.m. − Rc.m.. To keep it unaltered, we make a translational
shift in all the baryon positions:

r̃′ = rx − (Rc.m. + �Rc.m.) = rx − R′
c.m.. (11)

The �-separation energy is expressed as

B� = 〈�A−1|HNC |�A−1〉
〈�A−1|�A−1〉 − 〈�A|H |�A〉

〈�A|�A〉 , (12)

where, �A and �A−1 refer to the WFs of the hypernucleus and
of its isolated bound nuclear core (NC).

A nonrelativistic Hamiltonian H of the hypernucleus
involving two- and three-body forces is written as a sum of
the Hamiltonians due to the NC (HNC) and due to the � (H�):

HNC = TNC +
∑
i<j

vij +
∑

i<j<k

Vijk, (13)

H� = T� +
∑

i

v�i +
∑
i<j

V�ij . (14)

V�NN is the �NN force written as a sum of two Wigner types
of forces: V�NN = V D

�NN + V 2π
�NN . Here, V D

�NN is a dispersive
force, suggested by the suppression mechanism owing to
�N–�N coupling [19,22–24], which may be written with
explicit spin dependence as [10]

V D
�ij = WDT 2

π (r�i)T
2
π (r�j )[1 + σ� · (σ i + σ j )/6]. (15)

V 2π
�NN is a sum of two terms resulting from p- and s-wave π–N

scatterings, V 2π
�NN = V S

�NN + V P
�NN , written as

V P
�ij = −(CP /6)(τ i · τ j ){Xi�,X�j }, (16)

V S
�ij = CSZ(mπri�)Z(mπrj�)σ i · r̂i�σ j · r̂j�τ i · τ j , (17)

with X�i = (σ� · σ i)Yπ (r�i) + S�iTπ (r�i) and Z(x) = x
3

[Yπ (x) − Tπ (x)]. Here, CP ,CS , and WD are strengths, S�i =
3(σ� · r̂�i)(σ i · r̂�i) − σ� · σ i is a tensor operator, and Yπ is
the Yukawa function. Charge asymmetry and other possibil-
ities may improve the Hamiltonian. Correlations induced by
�NN potentials are included using scaled pair distances (r̄)
and a variational parameter δm as in Ref. [2],

U�ij =
∑

m=D,P,S

δmV m(r̄�i, r̄ij , r̄j�). (18)

We perform calculations for both choices of WF: with SEC
and without SEC. We use three different sets of vs and vt ,
which give three different values of spin-average strength
v̄ and a constant spin-dependent strength vσ as in Table I,
referred to as v̄1, v̄2, and v̄3. With each set, we use three
values of ε: 0.1, 0.2, and 0.3. In principle, we tune the
variational parameters of the WF every time we change a
potential strength. In the absence of SEC, the WF remains
constant with the variation of ε as its parameters stay tuned.
However, SEC offsets some of the parameters, especially the
quenching parameter α2π and the asymptotic parameter κ , the
latter of which is correlated with ε. Thus, even for � = 0, radial
solutions f �

s (r) or f �
t (r) with SEC differ from those with no

SEC. The optimized correlation functions, f c
�N (r) = f 0

�N (r)
with no SEC and f c

�N (r) = f 0
�N (r) − ux

�N (r) and ux
�N (r) with

SEC, are plotted in Fig. 1. Results are presented in Table II.
We begin with the no-SEC case for the calculations with

the strengths v̄1, ε = 0.3, CP = 0.75 MeV, and CS= 0.15 MeV.

TABLE I. �N potential strengths in units of MeV.

vs vt v̄ = (vs + 3vt )/4 vσ = vs − vt

v̄1 6.33 6.09 6.15 0.24
v̄2 6.28 6.04 6.10 0.24
v̄3 6.23 5.99 6.05 0.24
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TABLE II. Energy breakdown for 5
�He. All quantities are in units of MeV except for ε. Subscripts i, j , and k refer to nucleons.

ε = 0.1 ε = 0.2 ε = 0.3

(SEC) (No SEC) (SEC) (No SEC) (SEC) (No SEC)
A B A − B C D C − D E F E − F

v̄1 (v̄ = 6.15 and vσ = 0.24)
T� 8.77(3) 9.00(3) −0.23(4) 8.49(3) 9.00(3) −0.51(4) 8.11(3) 9.00(3) −0.89(4)
v0(r)(1 − ε) −16.15(5) −16.59(5) 0.44(7) −13.92(5) −14.75(5) 0.83(7) −11.64(4) −12.90(4) 1.26(6)
v0(r)εPx −1.56(1) −1.61(1) 0.05(1) −3.02(1) −3.23(1) 0.21(1) −4.30(2) −4.84(2) 0.54(4)

( 1
4 )vσ T 2

π (r)σ� · σ i 0.015(0) 0.040(0) −0.025(0) 0.012(0) 0.040(0) −0.028(0) 0.009(0) 0.040(0) −0.031(0)
v�i −17.69(4) −18.16(6) 0.47(7) −16.93(4) −17.94(6) 1.01(7) −15.93(4) −17.71(6) 1.78(7)

V D
�ij 2.29(1) 2.42(1) −0.13(1) 2.25(1) 2.42(1) −0.17(1) 2.16(1) 2.42(2) −0.26(2)

V P
�ij −2.88(2) −2.71(2) −0.17(3) −2.68(2) −2.71(2) 0.03(3) −2.53(2) −2.71(2) 0.18(3)

V S
�ij −0.001(0) −0.015(1) 0.014(1) −0.006(0) −0.015(2) 0.009(2) −0.010(0) −0.015(2) 0.005(2)

V 2π
�ij =V P

�ij + V S
�ij −2.88(2) −2.73(2) −0.15(3) −2.69(2) −2.73(2) 0.04(3) −2.54(2) −2.73(2) 0.19(3)

V�ij =V D
�ij +V 2π

�ij −0.58(2) −0.30(1) −0.28(2) −0.44(2) −0.30(1) −0.14(2) −0.39(2) −0.30(2) −0.09(3)
V� = v�i +V�ij −18.28(6) −18.47(6) 0.19(8) −17.37(6) −18.24(6) 0.87(8) −16.32(6) −18.01(6) 1.69(8)
E� = T� +V� −9.51(4) −9.46(4) −0.05(6) −8.88(4) −9.23(4) 0.35(6) −8.20(4) −9.01(4) 0.81(6)
TNC 118.00(15) 118.12(15) −0.12(21) 117.52(15) 118.12(15) −0.60(21) 117.47(15) 118.12(15) −0.65(21)
VNC = vij + Vijk −140.52(15) −139.98(15) −0.54(21) −140.31(15) −139.98(15) −0.33(21) −140.63(15) −140.11(15) −0.52(21)
ENC = TNC +VNC −22.51(4) −21.86(4) −0.65(6) −22.79(4) −21.86(4) −0.93(6) −23.16(4) −21.86(4) −1.30(6)
E =E� +ENC −32.02(2) −31.32(2) −0.70(3) −31.68(2) −31.09(2) −0.58(3) −31.36(2) −30.86(2) −0.50(3)
B� 4.29(2) 3.59(2) 0.70(3) 3.95(2) 3.36(2) 0.58(3) 3.63(2) 3.13(2) 0.50(3)
NCP 3.59(4) 4.31(3) −0.72(5) 3.16(4) 4.31(3) −1.15(5) 2.70(4) 4.31(3) −1.61(5)

v̄2(v̄ = 6.10 and vσ = 0.24)
T� 8.25(3) 8.14(3) 0.11(4) 8.04(3) 8.14(3) −0.10(4) 7.77(3) 8.14(4) −0.37(5)
v0(r)(1 − ε) −14.68(5) −14.67(5) −0.01(7) −12.74(5) −13.04(5) 0.30(7) −10.71(5) −11.41(4) 0.70(6)
v0(r)εPx −1.41(1) −1.41(1) −0.00(1) −2.75(1) −2.82(1) 0.07(2) −3.93(2) −4.24(2) 0.31(3)

( 1
4 )vσ T 2

π (r)σ� · σ i 0.007(0) 0.058(0) −0.051(0) 0.007(0) 0.058(0) −0.051(0) 0.005(0) 0.058(0) −0.053(0)
v�i −16.08(6) −16.02(6) −0.06(8) −15.48(6) −15.81(6) 0.33(8) −14.64(6) −15.59(6) 0.95(8)

V D
�ij 2.05(2) 2.08(1) −0.03(2) 2.02(2) 2.08(1) −0.06(2) 1.96(1) 2.08(2) −0.12(2)

V P
�ij −2.63(2) −2.22(2) −0.41(3) −2.43(2) −2.22(2) −0.21(3) −2.38(2) −2.22(2) −0.16(3)

V S
�ij −0.004(2) −0.032(2) 0.028(3) −0.013(2) −0.032(2) 0.019(3) −0.013(2) −0.032(2) 0.019(3)

V 2π
�ij =V P

�ij + V S
�ij −2.64(2) −2.25(2) −0.39(3) −2.44(2) −2.25(2) −0.19(3) −2.40(2) −2.25(2) −0.12(3)

V�ij =V D
�ij +V 2π

�ij −0.59(2) −0.17(1) −0.42(2) −0.43(2) −0.17(1) −0.26(2) −0.44(2) −0.17(1) −0.27(2)
V� = v�i +V�ij −16.67(6) −16.20(6) −0.47(8) −15.91(6) −15.98(6) 0.07(8) −15.08(6) −15.76(6) 0.68(8)
E� = T� +V� −8.42(4) −8.06(3) −0.36(5) −7.86(4) −7.84(3) −0.02(5) −7.31(4) −7.62(3) 0.31(5)
TNC 117.02(15) 116.43(15) 0.59(21) 116.78(15) 116.43(15) 0.35(21) 116.99(15) 116.43(15) 0.56(21)
VNC = vij + Vijk −139.90(14) −138.86(14) −1.04(20) −139.88(14) −138.86(14) −1.02(20) −140.30(14) −138.86(14) −1.44(20)
ENC = TNC +VNC −22.87(4) −22.44(4) −0.43(6) −23.10(4) −22.44(4) −0.66(6) −23.31(4) −22.44(4) −0.87(6)
E =E� +ENC −31.29(2) −30.50(2) −0.79(3) −30.96(2) −30.28(2) −0.68(3) −30.62(2) −30.06(2) −0.56(3)
B� 3.56(2) 2.77(2) 0.78(3) 3.23(2) 2.55(2) 0.68(3) 2.89(2) 2.33(2) 0.56(3)
NCP 2.93(4) 3.22(4) −0.29(6) 2.61(4) 3.22(4) −0.71(6) 2.39(4) 3.22(4) −0.83(6)

v̄3 (v̄ = 6.05 and vσ = 0.24)
T� 7.75(3) 7.54(3) 0.21(4) 7.51(3) 7.54(3) −0.03(4) 7.25(3) 7.54(3) −0.29(4)
v0(r)(1 − ε) −13.27(5) −13.18(5) −0.09(7) −11.42(5) −11.72(4) 0.30(6) −9.63(4) −10.25(4) 0.62(6)
v0(r)εPx −1.27(1) −1.26(1) −0.01(1) −2.44(2) −2.52(1) 0.08(2) −3.51(2) −3.78(2) 0.27(3)

( 1
4 )vσ T 2

π (r)σ� · σ i −0.003(1) 0.034(0) −0.037(1) 0.004(1) 0.034(0) −0.030(1) 0.002(1) 0.034(0) −0.032(1)
v�i −14.55(6) −14.41(6) −0.14(8) −13.85(6) −14.21(6) 0.36(8) −13.14(6) −14.25(6) 1.11(8)

V D
�ij 1.83(2) 1.83(1) 0.00(2) 1.80(2) 1.83(1) −0.03(2) 1.74(2) 1.83(1) −0.09(2)

V P
�ij −2.40(2) −1.92(1) −0.48(2) −2.30(2) −1.92(1) −0.38(2) −2.16(2) −1.92(1) −0.24(2)

V S
�ij −0.012(1) −0.034(0) 0.022(1) −0.018(1) −0.037(0) 0.019(1) −0.017(1) −0.034(0) 0.017(1)

V 2π
�ij =V P

�ij + V S
�ij −2.41(2) −1.96(2) −0.45(3) −2.32(2) −1.96(2) −0.36(3) −2.17(2) −1.96(2) −0.21(3)

V�ij =V D
�ij +V 2π

�ij −0.58(2) −0.12(1) −0.46(2) −0.52(2) −0.12(1) −0.40(2) −0.43(2) −0.12(1) −0.31(2)
V� = v�i +V�ij −15.12(6) −14.54(6) −0.58(9) −14.37(6) −14.33(6) −0.04(9) −13.57(6) −14.13(6) 0.56(9)
E� = T� +V� −7.38(4) −6.99(3) −0.39(5) −6.86(4) −6.79(3) 0.07(5) −6.32(4) −6.59(3) 0.27(5)
TNC 115.90(15) 115.24(15) 0.66(21) 115.78(15) 115.14(15) 0.64(21) 116.12(15) 115.14(15) 0.98(21)
VNC = vij + Vijk −139.19(14) −138.03(14) −1.16(20) −139.28(14) −138.03(14) −1.25(20) −139.85(14) −138.03(14) −1.82(20)
ENC = TNC +VNC −23.28(4) −22.89(4) −0.39(6) −23.49(4) −22.89(4) −0.60(6) −23.73(4) −22.89(4) −0.84(6)
E =E� +ENC −30.66(2) −29.88(2) −0.78(3) −30.35(2) −29.68(2) −0.67(3) −30.05(2) −29.48(2) −0.57(3)
B� 2.93(2) 1.15(2) 1.78(3) 2.62(2) 1.95(2) 0.67(3) 2.32(2) 1.74(2) 0.58(3)
NCP 2.19(4) 2.39(4) −0.20(6) 1.91(4) 2.39(4) −0.48(6) 1.69(4) 2.39(4) −0.70(6)
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FIG. 1. The �N correlation function f c
�N (r)

with and without SEC, represented by solid and
dashed lines, respectively. The dotted line shows
the ux

�N (r) function. The left, middle, and right
columns represent v̄1, v̄2, and v̄3, respectively.

The repulsive strength WD is varied to reproduce the experi-
mental B

exp
� = 3.12(2) MeV, which is found to be 0.013 MeV.

Because of the constant nature of the WF with no SEC,
among the entire energy breakdown only the central and space-
exchange parts of v�i [Eq. (1)] are affected with the variation of
ε. Hence the strange energy E�= T�+v�i+V�ij and the total
energy E = E� + ENC. E� includes the nucleon kinetic energy
and ENC (nuclear core energy) includes the � kinetic energy
through �N correlations. They exhibit a linear behavior:
∂v�i/∂ε = ∂E�/∂ε = ∂E/∂ε = −∂B�/∂ε ≈ 2.3 MeV for ev-
ery v̄. However, the SEC modifies the WF through f c

�N (r) and
ux

�N (r); hence it affects the entire energy breakdown, giving
additional binding. The effect is more evident with increasing
ε. Interestingly, for the fine-tuned WFs, E� obeys a linear
behavior: ∂E�/∂ε ≈ constant. Because this is true for every v̄,
it cannot be an accident. With increasing ε, both δP and δS of
U�ij set to lower values. Being sensitive to its own correlation,
the attraction from 〈V 2π

�ij 〉 is reduced with the reduction in
U�ij . This offsets other energy pieces of E�. Therefore, any
change in CP leads to a quadratic dependence of 〈V 2π

�ij 〉.
This may be understood as follows: The {Xi�,X�j } may
be expressed in terms of operators (σ i · r�i)(σj · r�j ), (σ i ·
r�i)(σj · r�i), (σ i · r�j )(σj · r�j ), and (σ i · σj ) followed by
(τ i · τ j ) and hence is a generalization of the Sijτ i · τ j

operator. The expectation value of Sij in a Jastrow WF for a
closed-shell nucleus is zero, whereas the expectation value of
S2

ij is nonzero. Therefore, V 2π
�ij is sensitive to both U�ij and Sij

[2,12,13]. As no other operatorial correlation is affected by the
variation of ε, the change in U�ij is basically due to the change
in baryon densities (discussed later), which affects {Xi�,X�j }
through Tπ (r) and Yπ (r) functions. A little variation in UT NI

ijk

is also noticed. The difference in the �N “central” potential
[v0(r)(1 − ε)] with and without SEC too is due to the change
in density profiles. With the observations that ∂B�/∂ε = c1

and ∂V D
�ij /∂WD = ∂E/∂WD = −∂B�/∂WD = c2, the B

exp
�

for any value of ε may be reproduced through variation in
WD as ∂WD/∂ε ∼ −0.016 MeV. Here c1 and c2 are positive
numbers. The behavior of B� with v̄ is not linear. We can now
examine the behavior of B�(v̄, vσ , ε, Cp, CS,WD) compared
with strengths in detail.

The average 〈Px〉 = 〈v0(r)εPx〉/〈εv0(r)〉 values as ex-
tracted from Table II for the no-SEC case are 0.88(1), 0.87(1),
and 0.86(1) for v̄1, v̄2, and v̄3, respectively. But with SEC,
the WF involves another Px operator. For a properly weighted

independent calculation using Eq. (10) for the configurations
with no Px operation, v�N [Eq. (1)] would be independent of
ε. Hence ε may be treated as a variational parameter, which
implicitly appears in the WF through ux

�N . The best energy is
found about ε = 0.2. This is compared with the full calculation
involving Px [Eq. (11)] in Table III. The difference in every
energy piece is significant. The WF with the SEC term [Eq. (8)]
even with no Px operation gives better results than the no-SEC
case.

The difference of the internal energy (Eint
NC = T int

NC + VNC)
of the (A − l) subsystem and the energy of an identical isolated
bound nucleus is defined as the NCP. Here,

T int
NC =

A−l∑
i=1

p2
i

2mN

−
(∑A−l

i=1 pi

)2

2(A − l)mN

≡ TNC − T c.m.
NC , (19)

where T c.m.
NC is the kinetic energy resulting from the c.m. motion

of the subsystem around the c.m. of the hypernucleus. As
reported in Table II, at a fixed ε, NCP increases with increasing
v̄ with SEC as well as with no SEC. However, at a fixed v̄ it
decreases with increasing ε with SEC but remains constant
with no SEC as WF does not change. A similar dependence is
found for the point proton radius (Table IV), which establishes
a direct correlation between the two. The obvious reason is
the significant reduction in the repulsive f c

�N correlation at
moderate and large r, if the SEC is invoked (Fig. 1). As a result,
all the baryons receive an inward pull, leading to a reduction

TABLE III. Independently minimum energy breakdown with Px

operation on the configurations (A) and without it (B). All quantities
are in units of MeV.

A B A − B

T� 8.49(3) 9.01(3) −0.52(4)
v0(r)(1 − ε) −13.92(5) −14.55(5) 0.63(7)
v0(r)εPx −3.02(2) −3.70(2) 0.68(3)
(1/4)vσ T 2

π (r)σ� · σ i 0.012(0) 0.010(0) 0.002(0)

V D
�ij 2.25(2) 2.31(1) −0.06(2)

V P
�ij −2.68(2) −2.80(1) 0.12(2)

V S
�ij −0.006(2) −0.024(1) 0.018(2)

TNC 117.52(15) 117.94(15) −0.42(21)
VNC −140.31(15) −139.66(15) −0.65(21)
E −31.68(2) −31.46(2) −0.22(3)
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TABLE IV. Point proton radius of the NC in units of femtometers.

ε = 0.1 ε = 0.2 ε = 0.3

SEC No SEC SEC No SEC SEC No SEC

v̄1 1.588(1) 1.619(1) 1.585(1) 1.619(1) 1.586(1) 1.619(1)
v̄2 1.605(1) 1.647(1) 1.602(1) 1.647(1) 1.600(1) 1.647(1)
v̄3 1.624(1) 1.676(1) 1.621(1) 1.676(1) 1.620(1) 1.676(1)

in p and � densities at the periphery (right column of Fig. 2).
The change in the interior is weak enough to be noticed (left
column of Fig. 2). Compared to the no-SEC case, 5

�He and its
NC are more compact with SEC owing to “space-exchange
pressure.” The NC is found to be quite spherical. The � skin
is also seen. The features are similar for v̄2 and v̄3.

We conclude that the SEC is an important correlation. It
significantly affects energy breakdown, �-separation energy,
nuclear core polarization, point proton radius, and density
profiles. Findings suggest that a study without SEC would be
misleading. Hence, any such effort to reslove the outstanding
A = 5 anomaly [11,15,25] or to pin down the strengths of �N

and �NN potentials would be deficient.
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4He FORTRAN code. The referees’ thorough reviews have
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FIG. 2. (Color online) The dashed and long dashed lines represent
� and p densities in 5
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the no-SEC cases, respectively. The red color shows the NC. Blue
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