
PHYSICAL REVIEW C 72, 067303 (2005)

Unified analysis of spin isospin responses of nuclei
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We investigate the Gamow-Teller (GT) response functions at a momentum transfer of q = 0 fm−1 and the
pionic response functions for quasielastic scattering (QES) at q ≈ 1.7 fm−1 using the continuum random phase
approximation with the π + ρ + g′ model interaction. The Landau-Migdal (LM) parameters, g′

NN and g′
N�,

are estimated by comparing the calculations with recent experimental data. The peak of the GT resonance and the
pionic response functions below the QES peak constrain g′

NN , whereas the quenching of the GT total strength and
the enhanced pionic strength around the QES peak provide information about g′

N�. We obtained g′
NN = 0.6 ± 0.1

and g′
N� = 0.35 ± 0.16 at q = 0 fm−1 and g′

NN = 0.7 ± 0.1 and g′
N� = 0.3 ± 0.1 at q ≈ 1.7 fm−1. These results

indicate that the q dependence of the LM parameters is weak.
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Recent (p, n) and (n, p) experiments at intermediate ener-
gies have yielded reliable information on nuclear spin-isospin
responses [1]. Two contrasting issues have arisen that are
especially interesting. One is quenching of the total strength
of the Gamow-Teller (GT) transitions [2] from the sum rule
value 3(N − Z) [3] and the other is enhancement of the
pionic (isovector spin-longitudinal) response functions in the
quasielastic scattering (QES) region [4–6] as a precursor of
pion condensation [7]. A common key concept in under-
standing these contrasting phenomena is the Landau-Migdal
(LM) parameters, g′

NN, g′
N�, and g′

��, which specify the LM
interactions VLM, namely the zero-range interactions between
particle-hole (ph) and delta-hole (�h) states.

In this Brief Report we present a unified analysis of
the GT strength distribution and quenching factor observed
at 295 MeV at the Research Center for Nuclear Physics
(RCNP) and the spin-longitudinal cross section IDq of ( �p, �n)
at 346 MeV at RCNP and at 494 MeV at the Los Alamos
Meson Physics Facility (LAMPF), which represents the pionic
response function RL. To these measurements we apply the
continuum random phase approximation (RPA) with the π +
ρ + g′ model interaction, which properly treats finite geometry
and continuum single-particle spectra. We then determine the
LM parameters that best reproduce the experimental data.

Estimations of g′
NN from GT giant resonances (GTGR)

have been carried out by several researchers [8]. For instance,
Suzuki [9] used the energy-weighted-sum technique and
Bertsch, Cha, and Toki [10] used the continuum RPA. By
fitting the peak position of the GTGR, these two groups
obtained similar values of g′

NN ≈ 0.6 for 90Zr. However, their
analysis used only the LM interaction for nucleons. Most later
works with � [11,12] used the universality ansatz g′

NN =
g′

N� = g′
��. We re-investigate the GTGR spectrum using the

π + ρ + g′ model interaction without the universality ansatz.
From the GT quenching factor, Suzuki and Sakai [13]

estimated g′
N� ≈ 0.2 for 90Zr, using the Fermi gas model

with only VLM and treating the finite-size effect crudely.
Using the first-order perturbation on the N� transition part of
the π + ρ + g′ model interaction, Arima et al. [14] obtained

g′
N� ≈ 0.3. This increase of 0.1 from the Suzuki-Sakai result

arises from the π and ρ exchange interactions resulting from
the nuclear finite size. In this Brief Report we present an
integrated RPA analysis.

It has been shown [15] that for pionic responses in the
QES region, a conventional eikonal approximation for the
nuclear distortion is not quantitatively reliable for extracting
the pionic response function RL from IDq . Thus, in Ref. [6]
we calculated IDq for the RCNP data by the distorted wave
impulse approximation (DWIA), incorporating continuum
RPA response functions, and compared the theoretical and
experimental results of IDq directly. We also found that
two-step processes contribute appreciably to the background.
Here we extend the same DWIA + two-step analysis to the
LAMPF data and attempt to find suitable values for g′.

We write the β±(GT±) transition operators with N and �

in the unit of gA as

O±
GT = ∓ 1√

2

A∑
k=1

[
τk,±1σ k + gN�

A

gA

(Tk,±1 Sk + T
†
k,±1 S†

k)

]
,

(1)

with τ±1 = ∓ 1√
2
(τx ± iτy) and T±1 = ∓ 1√

2
(Tx ± iTy), where

gA and gN�
A are the axial-vector weak coupling constants

for the NN and N� transitions, σ and τ are the nucleon
Pauli spin and isospin matrixes, and S and T are the spin
and isospin transition operators from N to �. Similarly, we
write the isovector spin-longitudinal transition operators with
momentum transfer q as

Oλ
L(q) =

A∑
k=1

[
τk,λσ k· q̂ + fπN�

fπNN

(Tk,λSk· q̂ + T
†
k,λS†

k · q̂)

]
eiq· rk,

(2)

where λ = 0,±1 and fπNN and fπN� are the πNN and πN�

coupling constants. We have neglected the transitions from �

to � in both O±
GT and Oλ

L(q) and we have used the quark model
relation fπN�/fπNN = gN�

A /gA = √
72/25 � 1.70. Having
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defined these operators, we are interested in how the nuclei
respond to them.

Since neither momentum q nor spin direction are conserved
in finite nuclei, we introduce the spin-isospin transition
densities

ON
λ,a(r) =

A∑
k=1

τk,λσk,aδ(r − rk),

(3)

O�
λ,a(r) =

A∑
k=1

Tk,λSk,aδ(r − rk),

with a = x, y, z, and calculate the spin-isospin response
functions

R
αβ

λ,ba(r ′, r, ω) =
∑
n�=0

〈�0|Oα†
λ,b(r ′)|�n〉〈�n|Oβ

λ,a(r)|�0〉

× δ[ω − (En − E0)], (4)

using the continuum RPA with the orthogonality condition in
coordinate space [16].

The π + ρ + g′ model interaction is written as

V eff(q, ω) = VLM + Vπ (q, ω) + Vρ(q, ω), (5)

where Vπ and Vρ are the one-pion and the one-rho-meson
exchange interactions, respectively. The LM interaction VLM

is written by the LM parameters as

VLM =
[
f 2

πNN

m2
π

g′
NN (τ 1 · τ 2)(σ 1 · σ 2) + fπNNfπN�

m2
π

× g′
N�{[(τ 1 · T 2)(σ 1 · S2) + (τ 1 · T †

2)(σ 1 · S†
2)]

+ (1 ↔ 2)} + f 2
πN�

m2
π

g′
��{[(T 1 · T 2)(S1 · S2)

+ (T 1 · T †
2)(S1 · S†

2)] + h.c.}
]
δ(r1 − r2). (6)

We fixed g′
�� = 0.5 [17], since the calculated results depend

on it very weakly. Nonlocality of mean fields is taken into
account by a local effective mass approximation in the form

m∗(r) = mN − fWS(r)

fWS(0)
[mN − m∗(0)], (7)

with the free nucleon mass mN and the Woods-Saxon radial
form fWS(r).

We first discuss the strength distributions of the GT−

transitions, which are expressed by the GT± response functions
for the ground state |�0〉 as

R±
GT(ω) =

∑
n�=0

|〈�n|O±
GT|�0〉|2δ[ω − (En − E0)], (8)

where |�n〉 and En denote the n-th nuclear state and its energy.
The response functions are experimentally extracted from
the �Jπ = 1+ cross sections d2σ1+ (q, ω)/d�dω deduced by
multipole decomposition analysis (MDA) as [18]

d2σ1+ (q, ω)

d�dω
= σ̂GTF (q, ω)R±

GT(ω), (9)

FIG. 1. g′
NN dependence of GT− strength distributions from 90Zr

to 90Nb, where g′
N� and m∗(0)/mN are set to 0.3 and 0.7, respectively.

The filled circles are experimental data taken from Ref. [18].

with the GT unit cross section σ̂GT and the (q, ω) dependence
factor F (q, ω).

Converting the calculated response functions Rαβ(r ′, r, ω)
into the momentum representation, Rαβ (q ′, q, ω) gives the GT
response functions R±

GT(ω) of Eq. (8):

R±
GT(ω) = 1

2

∑
a

[
RNN

±1,aa(ω) + 2
gN�

A

gA

RN�
±1,aa(ω)

+
(

gN�
A

gA

)2

R��
±1,aa(ω)

]
, (10)

where Rαβ(ω) = Rαβ(q ′ = 0, q = 0, ω). The strength distri-
bution R−

GT(ω) from 90Zr to 90Nb was obtained by MDA of
(p, n) data [18,19], which cover not only the GTGR region
but also excitation energies up to 50 MeV.

Figure 1 shows the g′
NN dependence of the GTGR peak

position. The curves correspond to the results for g′
NN =

0.0−0.9 in 0.3 steps, with g′
N� = 0.3 and m∗(0)/mN = 0.7.

The result for g′
NN = 0.6 reproduces the peak position well

and is very close to previous results [9,10]. The excess of the
theoretical values around the peaks can be redistributed by
mixing 2p2h and other excitations [20], interpreted as being
significant experimental strength beyond the GTGR. This is a
quenching mechanism that should be distinguished from that
resulting from �h mixing discussed in the following.

Figure 2 shows the g′
N� and m∗ dependences of the GTGR

spectrum. In the left panel, the curves denote the results for
g′

N� = 0.0–0.9 in 0.3 steps. The peak position barely depends
on g′

N�, though the peak height strongly does. Since g′
N�

governs the coupling between ph and �h, it controls the
amount by which the GT− strength in the GTGR region
moves into the �h region. The m∗ dependence is shown
in the right panel, where the curves represent the results
for m∗(0)/mN = 1.0–0.6 in 0.2 steps. It is hard to make a
conclusion about the effect of m∗ since m∗ affects the GTGR so
weakly. From this analysis, we determined g′

NN = 0.6 ± 0.1
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FIG. 2. g′
N� (left panel) and m∗(0)/mN (right panel) dependences

of the RPA calculations. In the left panel g′
NN and m∗(0)/mN are set

to 0.6 and 0.7, respectively. In the right panel g′
NN and g′

N� are set to
0.6 and 0.3, respectively.

as an appropriate value, accounting for the small g′
N� and m∗

dependences.
We next discuss the GT quenching factor Q, which is

defined as

Q = S−
GT(ω−

top) − S+
GT(ω+

top)

3(N − Z)
, (11)

with

S±
GT(ω±

top) =
∫ ω±

top

R±
GT(ω)dω. (12)

Recently Yako et al. [21] applied MDA to 90Zr(p, n) and
90Zr(n, p) data and obtained Q = 0.86 ± 0.07 using an end
energy of ω−

top = 57 MeV and selected a corresponding ω+
top

accounting for the Coulomb energy shift and the nuclear mass
difference.

Since Q is almost exclusively determined by g′
N� in the

calculations, we display the g′
N� dependence in Fig. 3 with

FIG. 3. GT quenching factor Q as a function of g′
N�. The

experimental result for Q = 0.86 ± 0.07 [21] is shown by the
horizontal solid line and band. The dashed curve is the theoretical
prediction of Suzuki and Sakai [13].

a fixed g′
NN = 0.6. The solid line shows the results of the

continuum RPA and the dashed line shows those of the Suzuki-
Sakai formulas [13]. The experimental Q and its uncertainty
are shown by the horizontal solid line and the horizontal
band, respectively. From this comparison we obtained g′

N� =
0.35 ± 0.16. The difference between the present calculation
and the Suzuki-Sakai line can be understood by the mechanism
of Arima et al. [14].

We next investigate the enhancement of the pionic modes in
the QES region. The relevant spin-longitudinal cross sections
IDq were measured for 12C and 40Ca at Tp = 346 MeV
[5,6] and 494 MeV [4], taken at RCNP and LAMPF,
respectively. We performed DWIA calculations using the
response functions Rαβ(r ′, r, ω) and estimated the two-step
contributions in the same manner as in Ref. [6]. Since the
obtained characteristics are very similar for both 12C and 40Ca,
in Fig. 4 we compare the calculations with the experimental
IDq only for 12C taken at RCNP and LAMPF in the left and
right panels, respectively.

The top panels show the g′
NN dependence for g′

NN =
0.0−0.9 in 0.3 steps with fixed g′

N� = 0.3 and m∗(0)/mN =
0.7. The calculations are sensitive to g′

NN near and below the
QES peak. The experimental data are reasonably reproduced
for g′

NN = 0.7, with an uncertainty of about 0.1. This result
is close to the value of g′

NN = 0.6 ± 0.1 evaluated from the
GTGR spectrum.

FIG. 4. Spin-longitudinal polarized cross section IDq for the 12C
reaction at Tp = 346 MeV [5,6] (left panels) and Tp = 494 MeV [4]
(right panels). The top, middle, and bottom panels show the g′

NN, g′
N�,

and m∗(0)/mN dependences of the calculations. The notation for the
curves is the same as in Figs. 1 and 2 except that g′

NN = 0.7 for the
middle and bottom panels.
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The middle panels denote the g′
N� dependence for g′

N� =
0.0−0.9 in 0.3 steps with fixed g′

NN = 0.7 and m∗(0)/mN =
0.7. The dependence is seen around the QES peak. The most
likely choices of g′

N� are about 0.4 and 0.2 for the RCNP and
LAMPF data, respectively. The systematic uncertainties of the
data are in the range 6–8% [4–6], which corresponds to the
≈ ±0.1 uncertainty in g′

N�. Thus the difference between
g′

N� = 0.2 and 0.4 seems acceptable in the present analysis.
Note that this difference gives rise to the difference of the
full spin-longitudinal interaction strength at q ≈ 1.7 fm−1

including a one-pion exchange contribution by about 30%.
From these results, we estimate g′

N� = 0.3 ± 0.1.
The bottom panels display the m∗ dependence for

m∗(0)/mN = 1.0−0.6 in 0.2 steps with fixed g′
NN = 0.7 and

g′
N� = 0.3. The theoretical estimate [22,23] of m∗(0)/mN ≈

0.7 is consistent with the data.
In summary, we have reported the theoretical analysis of

two contrasting phenomena, the quenching of the GT transition
at q = 0 fm−1 and the enhancement of the pionic response for

QES at q ≈ 1.7 fm−1. The GT strength distribution and the
latest value for the quenching factor were calculated using
the continuum RPA with π + ρ + g′ interactions including �

degrees of freedom. In the same structure calculation frame-
work, incorporating the DWIA and two-step calculations, we
also calculated the spin-longitudinal cross sections IDq at
different incident energies. By these elaborated and compre-
hensive calculations we obtained g′

NN = 0.6 ± 0.1 and g′
N� =

0.35 ± 0.16 at q = 0 fm−1 and g′
NN = 0.7 ± 0.1 and g′

N� =
0.3 ± 0.1 at q ≈ 1.7 fm−1. Comparing these results, we
conclude that the q dependence of the LM parameters
is weak.
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