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High-spin states in 162Ho have been populated in the reaction 160Gd(7Li, 5n) at a beam energy of 49 MeV.
The K π = 1− band, the low-K Gallagher-Moszkowski (GM) partner band of known high-K(K π = 6−) band,
based on the configuration π7/2−[523] ⊗ ν5/2+[642], and the K π = 6+ band, the high-K GM partner band
of known low-K(Kπ = 1+) band, based on the configuration π7/2−[523] ⊗ ν5/2−[523], have been identified.
GM splitting energies, defined as �EGM = E

K〈
int − E

K〉
int , 80 keV and −135 keV were extracted from these two

sets of GM doublet bands, respectively. They are comparable with 65 keV and −145 keV, reported recently by
Hojman et al. for the corresponding configurations π7/2−[523] ⊗ ν5/2+[642] and π7/2−[523] ⊗ ν5/2−[523]
in 164Ho, respectively.
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The recent experimental studies on high-spin states in 160Ho
[1] and 164Ho [2] make 162Ho the less studied nucleus among
the deformed holmium odd-odd isotopes. This report presents
the new experimental results of high-spin states in 162Ho.

Hign-spin states in 162Ho were populated using the reaction
160Gd(7Li, 5n) at a beam energy of 49 MeV. The beam was
delivered by the Tandem Accelerator at the China Institute
of Atomic Energy in Beijing. The target was a self-supporting
foil of 4.5mg/cm2 in thickness. Gamma-ray coincidences were
measured with 11 Compton-suppressed HPGe-BGO detectors.
About 120 million events requiring two or more detectors
to be fired within 200 ns were accumulated. In the offline
analysis, the data were sorted into a symmetrized Eγ -Eγ

matrix. To obtain information on γ -ray multipolarities, two
asymmetric matrices were constructed and ADO ratios (γ -ray
angular distribution from oriented nuclei) were evaluated using
the method as described in Ref. [3]. Figure 1 shows the level
scheme of 162Ho proposed in the present study and it was
constructed by combining the previous results [1,4,5,6,7,8]
and the new results of the present study. Figure 2 shows the
sample spectra supporting the level scheme of Fig. 1.

The decay of 67 min Iπ = 6− isomeric state at ≈106 keV
in 162Ho was studied by Jφrgensen et al. [4] and Harmatz et al.
[5] and as results of these studies, the first two members, 2+ and
3+ states of the ground-state band, were established and the
6− isomeric state was linked to the 3+ state of the ground-state
band through a ≈10 keV transition with E3 multipolarity.
Schilling et al. [6] established the Kπ = 1− bandhead at
179.8 keV with the configuration π7/2−[523] ⊗ ν5/2+[642]
by means of 162Dy(p, n)162Ho reaction. Excited levels of the
Kπ = 6− yrast band with the configuration π7/2−[523] ⊗
ν5/2+[642] were observed up to Iπ = 15− by Leigh et al. [7]
in the 160Gd(7Li, 5n) reaction. All these previously obtained
results were integrated into a partial level scheme as presented
in Ref. [8]. Very recently, the excited levels of the yrast band
were extended to Iπ = 28− by Escrig et al. [1], while no

information on other rotational bands in 162Ho was provided
in Ref. [1].

In the present work, the excited levels of ground-state band
have been extended from 6+ [8] to 14+ with minor changes,
namely the energies of the γ -transitions 114.0 keV(6+ → 5+)
and 99.6 keV(5+ → 4+) have been replaced by 115.9 keV
and 98.2 keV, respectively. For the yrast band, we can only
reach the level with Iπ = 24− in the present study and, for
completeness, the levels above Iπ = 24−in Fig. 1 are adopted
from Ref. [1].

Band 4 was identified for the first time in the present study.
The placement of band 4 in the level scheme was fixed by the
linking transitions between band 3 and band 4. These linking
transitions are weak, but they can be seen in the sum spectrum
gated by the 141.5 and 179.8 keV γ -rays as indicated in
Fig. 2. Strong coincidences were observed between
γ -transitions in band 4 and the 141.5 and 179.8 keV deex-
citing γ -rays of the Kπ = 1− bandhead with configuration
π7/2−[523] ⊗ ν5/2+[642], which most probably suggest
that band 4 is the upper part of the Kπ = 1− band with
configuration π7/2−[523] ⊗ ν5/2+[642]. A similar situation
had occurred in the case of 164Ho [2], except that the low-lying
levels between 1− and 6− in 164Ho were established by
combining the careful analysis of low-energy spectra and
known information from particle-transfer reactions while the
later information is not available in the case of 162Ho. The
spin values of the levels in band 4 were tentatively assigned
on the basis of the arguments: (i) Considering that the
parities of band 3 and band 4 are different, the observed
linking transitions between band 3 and band 4 can only
be of E1 character and thus the spin of level in band 4
can be deduced by the spin of the related level in band 3.
(ii) The level structure of band 4 is similar to that of the upper
part (above 6−level) of Kπ = 1− band with configuration
π7/2−[523] ⊗ ν5/2+[642] in 164Ho (band 5 of Fig. 4 in
Ref. [2]) and the correspondence between the levels of
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FIG. 1. Level scheme of 162Ho proposed in the present work. Iπ assignments to the levels of bands 1, 4, 5, and 6 are considered to be
tentative as indicated by placing the Iπ of the lowest observed states of these bands in the brackets.

Kπ = 1− band (band 4) in 162Ho and those of Kπ = 1− band
in 164Ho can easily be found. The configuration assignment of
band 4 is supported by the reasonably well agreement between
the experimental and theoretical B(M1)/B(E2) ratios, as
shown in Fig. 3(a). The experimental in-band B(M1)/B(E2)
ratios were computed from the γ branching ratios assuming
pure dipole character for the �I = 1 transitions and the
theoretical values were predicted by the geometrical model
[10]. The level structure of band 4 has previously been reported
in Ref. [1] and it was tentatively assigned to 161Ho and no
discussion on Iπ and configuration assignments was given
Ref. [1].

Band 1 was established in the present study. The placement
of band 1 in the level scheme was fixed by the linking
transitions (79.1, 124.7, 260.5, 170.0, and 215.0 keV) between
band 1 and band 2. These linking transitions are indicated
in the sum spectrum gated by the 414.7 and 479.5 keV
γ -rays as shown in Fig. 2. The ADO ratio 0.45(11) of the
79.1 keV decay out transition suggests that it has the character
of �I = 1. Schilling et al. [6] reported an unplaced 78.7 keV
transition with T1/2 = 25 ns in their 162Dy(p, n)162Ho reaction
study. Assuming the 79.1 keV decay out transition observed
in the present study corresponds to the 78.7 keV delayed
transition reported by Schilling et al. [6], the hindrance factor
relative to the Weisskopt estimate Fw ≈ 105 is obtained for
the 79.1 keV γ -transition, which falls within the systematics
for an E1,�K = 0 transition [9]. Based on this argument,
Iπ = 6+ is tentatively assigned to the bandhead of band 1

and the Iπassignments for the member states of band 1 are
tentatively suggested as shown in Fig. 1.

The configurations of bands in 162Ho resulted from the
coupling of the low-lying proton orbitals, such as π7/2−[523],
π7/2+[404], π1/2+[411], and π1/2−[541], as observed
in 161Ho [1] and neutron orbitals, such as ν5/2+[642],
ν5/2−[523], ν3/2−[521], and ν11/2−[505], as observed in
161Dy [12]. π7/2−[523] ⊗ ν5/2−[523] and π7/2+[404] ⊗
ν5/2+[642] are the possible candidates for the configuration
of band 1. Both of these configurations can provide Iπ =
6+ for the bandhead of band 1 through the antiparallel
coupling of intrinsic spins of proton and neutron. However,
the later configuration is not favored by the B(M1)/B(E2)
ratios as shown in Fig. 3(b). Therefore configuration of
π7/2−[523] ⊗ ν5/2−[523] was assigned to band 1.

Band 5 and band 6 were not linked to the rest part of
the level scheme. The assignment of band 5 to 162Ho was
mainly based on systematic comparison with the similar
band π7/2−[523] ⊗ ν3/2−[521] reported in 160Ho [1] and
164Ho [2]. The assignment of band 6 to 162Ho was mainly
based on the systematic comparison with the similar band
π7/2−[523] ⊗ ν11/2−[505] reported in 156Ho [15], 158Ho [16]
and 160Ho [1]. A detailed discussion on the assignments of
spins, parites, and configurations of bands 5 and 6 will appear
elsewhere.

For each pair of proton and neutron orbitals, there are
two possible couplings, the low-K,K< = |�p − �n|, and the
high-K,K> = �p + �n, couplings. When the intrinsic spins
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FIG. 2. Examples of γ -γ coincidence spectra in 162Ho. Inset of (a) is produced by a sum of spectra gated on the 116.5, 136.0, 155.5,
328.5, 348.0, and 414.7 keV transitions. Inset of (b) displays linking transitions between bands 3 and 4. Inset of (c) displays linking transitions
between band 1 and band 2.

of proton and neutron are coupled in parallel (� = ±1) or
in antiparrallel (� = 0), the corresponding states are placed
lower or higher in energy, respectively, according to the
Gallagher-Moszkowski (GM) coupling rules [13]. These two
K> and K< bands form the so-called GM doublet. K-values,
parities, and configurations of the bandhead of bands 2, 3, and
4 are adopted from the previous studies as summarized in
Ref. [8], namely, the K-value of the bandhead of band 2
is a result of the high-K coupling, K> = 7/2 + 5/2, of
the proton orbital 7/2−[523] and neutron orbital 5/2+[642],
and thus bandhead of band 2 is the high-K member of
the GM doublet based on the π7/2−[523] ⊗ ν5/2+[642]
configuration. Similarly, the bandhead of band 3 is the
low-K,K< = 7/2 − 5/2, member of the GM doublet based

on the π7/2−[523] ⊗ ν5/2−[523] configuration, and the
bandhead of band 4 is the low-K,K< = 7/2 − 5/2, member
of the GM doublet based on the π7/2−[523] ⊗ ν5/2+[642]
configuration.

Bands 1, 2, 3, and 4 in 162Ho form two pairs of GM
doublets. The Kπ = 6− band (band 2) and Kπ = 1− band
(band 4) are the K> and K< members of the GM doublet
based on π7/2−[523] ⊗ ν5/2+[642] configuration, respec-
tively. The 6− and 1− bands correspond to parallel and
antiparrallel couplings of intrinsic spins of proton and neutron,
respectively, and thus the 6− bandhead lies lower in energy.
The Kπ = 6+ band (band 1) and Kπ = 1+ band (band 3)
are the K> and K< members of the GM doublet based on
π7/2−[523] ⊗ ν5/2−[523] configuration, respectively. The

(a) (b) FIG. 3. Experimental and predicted
B(M1)/B(E2) ratios as a function
of spin for bands 1 and 4 of 162Ho.
Parameters used in the calculations of the
predicted B(M1)/B(E2) values: Q0 =
0.72eb, gR = 0.3, g(π7/2−[523]) =
1.35, g(π 7/2+ [404]) =0.73, g(ν5/2+

[642]) = −0.34, g(ν5/2−[523]) = 0.20,
i(π7/2−[523]) = 1.4, i(π 7/2+ [404]) =
0.8, i(ν5/2+[642]) = 3.0, i(ν5/2−[523])
= 0.50. The gyromagnetic factors were
taken from Ref. [11].
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FIG. 4. Experimental level energies of GM doublets of 162Ho and
the linear fits (straight lines) according to the rotational formula.

Kπ = 6+ and Kπ = 1+ bands correspond to antiparrallel and
parallel couplings of intrinsic spins of proton and neutron,
respectively, and thus the Kπ = 1+ band lies lower in
energy.

In the case of K �= 0, the energy of a state with spin I
in a rotational band of an odd-odd nucleus, neglecting the
nondiagonal contributions of the Coriolis and of the p-n
residual interaction, can be written as [14]

EIK = Ep + En + h̄2

2J
[I (I + 1) − K2] + EK

int, (1)

where EK
int is the diagonal part of the p-n interaction. The

energy separation between the two K> and K< members of
the GM doublet, appropriately corrected for the zero-point
rotational energy, is called the GM splitting energy of a GM
doublet and is defined by the expression: �EGM = E

K〈
int − E

K〉
int .

In the plot of EIK vs I (I + 1) − K2, Eq. (1) is a straight
line characterized by two parameters Ep + En + EK

int and
h̄2/2J . These two parameters can be obtained by a least-
square fitting. The GM splitting energy �EGM = E

K〈
int − E

K〉
int

of a GM doublet can be obtained as the difference between
the parameters Ep + En + EK

int of the two rotational bands
constituting the GM doublet, the contribution from Ep + En

cancels out when the difference is taken.
Figure 4(a) shows the EIK vs I (I + 1) − K2 plots of

the Kπ = 6+ and Kπ = 1+ rotational bands of the GM
doublet based on the π7/2−[523] ⊗ ν5/2−[523] configura-
tion. �EGM = E

K〈
int − E

K〉
int = −135 keV is obtained from the

difference of Ep + En + E
K〈
int and Ep + En + E

K〉
int , which

were extracted from the linear fits of the data.
The plots of the two rotational bands of the GM doublet

based on π7/2−[523] ⊗ ν5/2+[642] deviate from straight line
in the low-spin region as shown in Fig. 4(b). The appearance
of this distortion is consistent with the presence of the i13/2

neutron for which the Coriolis effects are more important
as discussed in the case of 164Ho [2]. The experimental
data were fitted in the energy range 0.5 ∼ 2.0 MeV and
the �EGM for this GM doublet was determined to be
80 keV. These two GM splitting energies, −135 keV and
80 keV, obtained in the present study are comparable with
−145 keV and 65 keV obtained in Ref. [2] for the GM
doublets based on configurations π7/2−[523] ⊗ ν5/2−[523]
and π7/2−[523] ⊗ ν5/2+[642] in 164Ho, respectively.

In summary, hign-spin states of 162Ho have been studied
through the reaction 160Gd(7Li, 5n). The band with Kπ = 1−
and configuration π7/2−[523] ⊗ ν5/2+[642], and the band
with Kπ = 6+ and configuration π7/2−[523] ⊗ ν5/2−[523]
have been identified for the first time in 162Ho. Combining
with previously known rotational bands, two pairs of GM
doublet bands with configurations π7/2−[523] ⊗ ν5/2+[642]
and π7/2−[523] ⊗ ν5/2−[523] were established, and GM
splitting energies 80 keV and −135 keV were extracted,
respectively.
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