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Planar versus non-planar N̄ N annihilation into mesons in the light of q̄q operators
and the 1/Nc expansion

B. El-Bennich
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It is argued that in the antiproton-proton annihilation into two mesons, p̄p → m1m2, the origin of different
restrictive angular momentum selection rules commonly obtained for planar annihilation diagrams A2 and for
non-planar rearrangement diagrams R2 lies in the omission of momentum transfer between an annihilated
antiquark-quark pair and a remaining quark or antiquark. If momentum transfer is included, there is no reason
for dismissing one type of diagram in favor of another one. Some considerations in the large-Nc limit of
QCD equally shed light on the planar and non-planar contributions to the total N̄N → m1m2 annihilation
amplitude.
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In antiproton-proton annihilation described by quark-line
diagrams, within the context of the constituent quark model,
the common wisdom is that planar diagrams A2 and non-planar
diagrams R2 do not contribute equally in a given reaction, say
p̄p → ππ or p̄p → πρ. As depicted in Fig. 1, both the R2
and A2 diagram can lead to the same final nonstrange two-body
configuration despite the different flavor-flux topology. Since
the initial p̄p pair contains no strangeness, the annihilation
p̄p → K̄K can proceed directly only via the A2 diagram.
Indirectly, taking into account final-state interactions, the two-
pion final state can couple to the K̄K state via the R2 topology.

Some authors [1] favor the R2 topology owing to the
following observation: For A2 one gets the same branching
ratio [assuming SU(3) symmetry is unbroken] for p̄p →
πρ and p̄p → K̄K∗. The experimentally observed ratio
Br(K̄K∗)/Br(πρ) is small and favors the R2 topology, which
produces only πρ but not K̄K∗ (where the authors ignore
final-state interactions). It is therefore concluded that among
the two graphs R2 is the dominant one. However, in the review
of nucleon-antinucleon annihilation by Dover et al. [2], it
is noted that this argument ignores a strong mechanism of
SU(3) breaking, namely the suppression of s̄s pairs [3]. It
seems thus incorrect to attribute the suppression of strange
modes K̄K, K̄K∗, etc. to the dominance of the R2 over the
A2 topology. Moreover, the authors of the review [2] reverse
the argument and reason in terms of selection rules to establish
instead the preponderance of A2 over R2 diagrams in p̄p

annihilation into two mesons.
The pro A2 argument follows from a supposedly restrictive

set of selection rules for the R2 diagrams, which does not
allow for the experimentally observed annihilation of a p̄p

pair into two pions (and similar restrictions also hold for
the annihilation into two different mesons) with certain total
angular momentum J = lp̄p ± 1 = �ππ . In more detail, if we
concentrate on ππ final states, the R2 annihilation diagram
with the specific rules of Ref. [2] permits only S waves
(�ππ = 0) when the q̄6q3 pair annihilates into an vacuum
3P0 state, whereas q̄6q3 annihilation into an 3S1 state with gluon
quantum numbers restricts �ππ to S and P waves. No final state
with �ππ = 2 or higher is allowed in either case. The planar

A2 diagram, in contrast, does not exhibit this restriction on the
orbital angular momentum �ππ .

One argument speaks against these restrictions—the spe-
cific rules applied by the authors of Ref. [2] stem from the
absence of momentum transfer from the annihilated q̄6q3

vertex to any of the remaining quarks or antiquarks in Fig. 1,
which we claim is not realistic. If, however, momentum
transfer is allowed in the non-planar R2 diagram [4–7], the
selection rules are modified and result into R2 transition
operators

T̂R2
(

3P0
) = iN

[
AV σ · R′ sinh(C R · R′)

+BV σ · R cosh(C R · R′)
+CV (σ · R̂′) R cos θ cosh(C R · R′)

]

× exp{AR′2 + BR2 + DR2 cos2 θ} (1)

for q̄q annihilation into 3P0 state. The 3S1 transition operator
is split into a longitudinal component

T̂R2
(

3SL
1

) = iN
[
ALσ · R′ sinh(C R · R′)

+BLσ · R cosh(C R · R′)
+CL(σ · R̂′) R cos θ cosh(C R · R′)

]

× exp{AR′2 + BR2 + DR2 cos2 θ} (2)

and a transversel component

T̂R2
(

3ST
1

) = N
[
AT σ · R′ cosh(C R · R′)

+BT σ · R sinh(C R · R′)
+CT (σ · R̂′) R cos θ sinh(C R · R′)

]

× exp{AR′2 + BR2 + DR2 cos2 θ}. (3)

Here, R′ = Rm1 − Rm2 and R = Rp̄ − Rp are the relative
meson and antiproton-proton coordinates in the c.m. system,
respectively. The c.m. angle θ is between the relative meson
vector R′ and antiproton-proton vector R, σ are the usual Pauli
matrices, and N is an overall normalization. The coefficients
Ai, Bi , and Ci with i = V,L, and T and A,B,C, and D
depend on size parameters α (proton) and β (pion) and the
boost factor γ = Ec.m./2mc2. They are detailed in Ref. [6].
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FIG. 1. (Color online) Rearrangement diagram R2 (left) and
annihilation diagram A2 (right). The numbers with bars denote
antiquarks; those without bars the quarks. The dashed lines represent
the exchange of an effective state with either vacuum 3P0 or gluon 3S1

quantum numbers and with momentum transfer δ(p1′ − p1 − p3 −
p6) for R2 and δ(p1′ − p1 − p3 − p6)δ(p2′ + p5′ − p2 − p5) for A2.

Note that for γ = 1 the coefficients correspond to those in
Refs. [4,5]. As was already discussed in Ref. [4] and its
relativistic extension in Ref. [6], sandwiching the transition
operators between the two-pion and the N̄N wave functions,
and taking into account the parity properties of the particles,
shows that T̂R2(3P0) and T̂R2(3SL

1 ) act in �ππ even waves
whereas T̂R2(3ST

1 ) contributes only to �ππ odd waves. Hence,
one obtains p̄p → ππ annihilation for �ππ = 0, 1, 2, 3, . . . ,
that is, in S, P,D, F, . . . waves, provided both the 3P0 and 3S1

mechanisms are taken into account. A similar analysis of the
A2 diagrams yields exactly the same selections rules.

The conclusion is that selection rules do not discriminate
between the two topologies, R2 and A2, both of which describe
the annihilation. So, within a constituent quark model in a
nonperturbative regime, it is a more consistent approach to
consider all annihilation amplitudes equally as they represent
different aspects of QCD.

We mention another approach that sheds some light on the
question of dominance of either R2 or A2 topology, namely
the treatment of p̄p annihilation in the large-Nc limit of QCD.
This has already been done previously [8] and in the following
we summarize some salient results that underpin our previous
conclusion. Again, one wants to test, if not quantitatively then
at least qualitatively, whether a particular annihilation process
is dominant in any reaction N̄N −→ m1m2.

In his seminal paper [9], ’t Hooft suggested that one can
generalize QCD from three colors and an SU(3) gauge group
to Nc colors and an SU(Nc) gauge group. It was shown that
QCD simplifies in the limit of large Nc and g2Nc (g2 = 4παs)
fixed and that there exists a systematic expansion in powers
of 1/Nc. One crucial property of this limit is that at Nc = ∞
the meson and glue states are free, stable, and noninteracting.
Other important consequences are that mesons become pure
q̄q states, since the sea quarks and antiquarks vanish for
large Nc. Moreover, Zweig’s rule is exact in this limit. These
results are restricted to color-singlet glue states (glue balls)
and mesons, where a clear distinction between planar and
non-planar diagrams is possible. This follows from the Euler

index for each Feynman diagram, which determines the 1/Nc

counting.
The extension to baryons was carried out by Witten, who

treated the nucleon-nucleon interaction in large-Nc QCD [10].
The main result that emerged from his qualitative analysis
is the Nc order of elastic baryon-baryon and baryon-meson
scattering amplitudes. The former is of order Nc and the
latter of order N0

c . Since it is shown in Ref. [10] that all
energy contributions to the baryon mass M are of order Nc,
the (nonrelativistic) kinetic energy Mv2/2 is of the same
order Nc as the baryon-baryon interaction energy. Hence,
the scattering cross section for baryon-baryon scattering does
not vanish in the large-Nc limit. However, the baryon-meson
scattering amplitude, being of order N0

c according to Ref. [10],
is negligible compared with the baryon mass and to leading
order in 1/Nc the baryon propagates unperturbed by mesons.
The meson mass is of order N0

c ; it follows that its kinetic
energy is of the same order as the baryon-meson interaction
energy, which is therefore large enough to influence the motion
of the meson. For the dynamics of baryon-meson systems, this
means the meson is scattered off the baryon but the baryon
itself remains “free” for Nc → ∞.

Our aim is to verify whether these results can be applied to
antinucleon-nucleon annihilation into two mesons. To begin
with, it should be pointed out that for baryons the topological
denominations planar and non-planar are a misnomer in the
large-Nc context, as there exists no Euler index according to
which the diagrams could be ordered. It is clear from Fig. 1 that
it is awkward to generalize N̄N annihilation into two mesons
for Nc quarks and Nc antiquarks, for the simple reason that
mesons remain q̄q states for large Nc. Nevertheless, assume a
naive picture in which one first chooses out of the Nc quarks
and Nc antiquarks one quark and one antiquark that do not
end up in the same meson. This gives a factor of N2

c and the
color content of each of the two final mesons is fixed. Next, a
quark is rearranged with an antiquark and the two-meson final
state is then formed with the first quark and antiquark choice
as in Fig. 1. There is no additional color factor Nc arising from
this as the color neutrality of the mesons demands a unique
choice in the rearrangement. A gluon exchange between the
rearranged quark and antiquark does not alter the Nc counting
at this stage (since the colors in the two mesons were previously
fixed), however, it introduces an 1/Nc factor from the gluon
couplings, where each vertex carries a factor g/

√
Nc.

One can now proceed to annihilate all the remaining q̄q

pairs. In principle, the q̄q pairs need not form a color singlet
since a gluon from the annihilation vertex can be exchanged
with any other still remaining (anti)quark. Therefore, each
annihilation comes along with a factor Nc − k, where k =
2, 3, 4 . . . is the number of quarks that have been annihilated,
but each also involves a factor 1/Nc from the gluon vertices.
In our case, we start with k = 2 as two of the quarks (and
antiquarks) are not annihilated and therefore end up in the
final two mesons. An equivalent derivation is to think of the
Nc − k quarks and Nc − k antiquarks annihilated into vacuum
states, each of which can be treated as a q̄q state. Since any
permutation of pairing a quark with an antiquark is possible,
this gives a factor (Nc − k)! Using this result and the factor N2

c

derived in the previous paragraph, one obtains an Nc order for
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FIG. 2. (Color online) Quark-line diagram of meson-nucleon
scattering in the large-Nc limit. The quark-gluon vertices carry the
coupling constant g/

√
Nc. In principle, a gluon can be exchanged

between the spectator quark in the meson and any other Nc − 1
quarks in the nucleon without altering the Nc order of the scattering
amplitude.

p̄p annihilation into k mesons: N2
c (Nc − k)!/NNc−k

c . It follows
from this that for k = 2, the R2 diagram generalization to Nc

colors is of order

N2
c × 1

N
Nc−2
c

× (Nc − 2)! � Nc!

N
Nc
c

Nc→∞−→ e−Nc , (4)

where for large Nc one approximates Nc − 2 � Nc − 4 �
Nc. In the second step of Eq. (4), Stirling’s approximation
n! � √

2πnn+ 1
2 exp(−n) has been employed. Repeating this

procedure for the Nc generalization of the A2 diagram, one
finds it is suppressed by a factor 1/N2

c with respect to the
previously discussed R2 case. The origin of this lies in the
lack of quark-antiquark rearrangement, which contributes a
nonvanishing Nc factor without a canceling effect from the
gluon vertices. Instead, here a q̄q pair has to be created from
a gluon. One eventually arrives at an expression for the 1/Nc

order very similar to Eq. (4) except that the first factor is Nc

rather than N2
c , the denominator in Eq. (4) becomes NNc−1

c

since there is an additional factor from the gluon coupling
to the created q̄q pair, and for the same reason the last
factor is (Nc − 1)! instead of (Nc − 2)!. Given the effect of
the dominating pairwise q̄q annihilations in both types of
diagrams, it can be concluded that either way the annihilation
into two mesons is exponentially damped, which can also be
deduced from the quark model calculations in Ref. [8]. We
shall return to this shortly.

We allow ourselves a short digression at this point—in
the cross-channel reaction m1N → m2N one also encounters
a variety of processes contributing in the large-Nc limit to
the scattering amplitude. An example of such scattering is
illustrated in Fig. 2, where a nucleon quark is annihilated
with an antiquark of the initial meson. A q̄q pair is produced
in the final state and since color is transferred between the
annihilation and the creation vertex, one gets a factor Nc

from choosing a quark in the nucleon as well as a factor
1/Nc from the gluon couplings. The initial meson quark is
still contained in the final meson and acts as a spectator. The
scattering is therefore of order N0

c . If instead of annihilation
of a q̄q pair we resort to quark rearrangement, that is, a quark
of the nucleon ends up in the final meson while the quark of
the initial meson replaces this missing quark in the nucleon,
we find the scattering amplitude to be of the same order

N0
c , as discussed in Ref. [10]. This, in turn, differs from the

N̄N → m1m2 annihilation, where rearrangement was shown
to yield an additional factor Nc in the previous section.

Returning to N̄N annihilation in the large-Nc limit, we
recapitulate the results derived by Pirner [8]. In this approach,
overlap integrals of meson and N̄N wave functions generalized
to Nc quarks and Nc antiquarks are worked out. Including ap-
propriately normalized color wave functions introduces an Nc

dependence from the color matrix elements. Furthermore, to
obtain the annihilation cross section, one needs to calculate the
Nc-dependent phase-space integral. With all these ingredients
the cross section for N̄N annihilation into Nc − k mesons and
quark-antiquark rearrangement behaves in the large-Nc limit
as

σann.

Nc→∞−→ exp
(− 4Ncε0r

2
mm

)

× exp{[1/2 − 3/2 ln(3/2)]Nc}(ηNc)2k, (5)

where m is the mass, rm the size, and ε0 the kinetic energy
of the mesons. [Equation (5) holds only for same types of
mesons such as π±, π0, etc.] The nonperturbative annihilation
or creation probability is η2 � 0.25. The cross section for N̄N

annihilation into Nc − k + l mesons, where l is the number of
created quarks, is for large Nc

σann.

Nc→∞−→ exp
(− 4Ncε0r

2
mm

)

× exp{[1/2 − 3/2 ln(3/2)]Nc}(ηNc)2kη2l . (6)

Obviously, Eqs. (5) and (6) just differ by a factor η2l . As
η < 1, the pure annihilation diagram without rearrangement
is slightly more damped depending on the number l of created
quarks. This is in accordance with our previous remarks about
the combinatorial factors in large-Nc generalizations of R2
and A2 diagrams. In the “real world,” where Nc = 3, one can
at the most annihilate k = 3 quarks (thus violating Zweig’s
rule) and create l mesons. The more mesons are produced in
the final state, the more the rearrangement diagrams should
dominate, however slight this difference is.

In conclusion whether using a quark model calculation or a
qualitative analysis of the annihilation in the large-Nc limit of
QCD, there is no evidence for dominance of either diagram,
be it of the annihilation (A2) or rearrangement (R2) type. It
should be mentioned that similar findings were reported in
Refs. [5] and [7], where it was noted that the R2 diagrams
suffice (although both annihilation mechanisms 3P0 and 3S1

are needed) to reproduce the LEAR data on p̄p → π−π+
differential cross sections and analyzing powers [11]. This
contradicts the statements of Dover et al. [2], who based
their reasoning on SU(3) symmetry breaking and selection
rules. Moreover, the present discussion can be generalized to
annihilation of any two baryons or hyperons into two or more
mesons.
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