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Properties of symmetric and asymmetric nuclear matter have been investigated in the relativistic Dirac-
Brueckner-Hartree-Fock approach based on projection techniques using the Bonn A potential. The momentum,
density, and isospin dependence of the optical potentials and nucleon effective masses are studied. It turns out
that the isovector optical potential depends sensitively on density and momentum, but is almost insensitive to the
isospin asymmetry. Furthermore, the Dirac mass m∗

D and the nonrelativistic mass m∗
NR which parametrizes the

energy dependence of the single particle spectrum, are both determined from relativistic Dirac-Brueckner-Hartree-
Fock calculations. The nonrelativistic mass shows a characteristic peak structure at momenta slightly above the
Fermi momentum kF. The relativistic Dirac mass shows a proton-neutron mass splitting of m∗

D,n < m∗
D,p in isospin

asymmetric nuclear matter. However, the nonrelativistic mass has a reversed mass splitting m∗
NR,n > m∗

NR,p which
is in agreement with the results from nonrelativistic calculations.
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I. INTRODUCTION

A highly discussed topic is the isovector dependence of the
nuclear force. This isovector dependence of the nuclear force
can be found in the symmetry energy, the proton-neutron mass
splitting, and the isovector optical potential.

The behavior of the nuclear symmetry energy at high
densities is an important issue in astrophysics, because the
proton fraction inside a neutron star is strongly dependent
on the nuclear symmetry energy. Therefore, a stiff nuclear
symmetry energy leads to a relative proton-rich neutron star,
whereas a soft one results in a neutron star with only a
very small proton fraction. The proton-richness of a neutron
star has consequences for the chemical composition and
cooling mechanism of protoneutron stars [1–3], mass-radius
correlations [4,5], critical densities for kaon condensation in
dense stellar matter [6,7], and the possibility of a mixed
quark-hadron phase in neutron stars [8]. For example, consider
the crucial role of the proton-richness in the thermal evolution
of neutron stars. In fact, if the proton fraction in the core of
a neutron star is above a critical value, the so-called direct
Urca processes can occur [1–3]. If they occur, the direct Urca
processes will enhance the neutrino emission and neutron
star cooling rate by a large factor compared to the standard
cooling scenario, in which the relatively slow modified
Urca and two-body neutrino bremsstrahlung processes play a
role [9–13].

The interest for the isospin dependence of the nuclear forces
at its extremes is of recent date, because data for neutron-rich
nuclei were rather scarce in the past. However, the forthcoming
new generation of radioactive beam facilities, e.g., the future
GSI facility FAIR in Germany, the Rare Isotope Accelerator
planned in the United States of America, or SPIRAL2 at
GANIL/France, will produce huge amounts of new data for
neutron-rich nuclei.

Currently, the isovector dependence of the nuclear force
has been investigated in the heavy ion experiments. For
a recent review see Ref. [14]. The observables in these

experiments are the n/p flow [15,16], isospin tracing [17],
isoscaling of intermediate mass fragments (IMF) [18], and
π+/π− production [19,20]. Heavy ion reactions have the
advantage that they allow us to test the nuclear forces at
supranormal densities since in intermediate energy reactions
compressions of two to three times nuclear saturation density
n0 are reached. However, the asymmetry of the colliding
systems is moderate and therefore the isospin effects on the
corresponding observables are generally moderate as well. The
interpretation of the various data by transport calculations
supports at present a value of the symmetry energy around
Esym ∼ 32 MeV at saturation density with a not too soft
increase with density.

However, the theoretical predictions for the isospin de-
pendence of nuclear interactions are still very different.
The symmetry energy in relativistic Dirac-Brueckner-Hartree-
Fock (DBHF) calculations is found to be significantly stiffer
than in nonrelativistic Brueckner-Hartree-Fock (BHF) ap-
proaches [21]. At moderate densities the DBHF dependence
of Esym is qualitatively similar to density dependent relativis-
tic mean-field parametrizations using a4 = 32–34 MeV [22].
However, the density dependence of Esym is generally more
complex than in RMF theory. In particular at high densities
Esym shows a nonlinear and more pronounced increase. In
addition, the present predictions for the isospin dependence of
the effective masses differ substantially [14]. BHF calculations
[23–26], a nonrelativistic ab initio approach, predict a proton-
neutron mass splitting of m∗

NR,n > m∗
NR,p in isospin asym-

metric nuclear matter. This prediction stands in contrast to the
one from relativistic mean-field (RMF) theory. When only a
vector isovector ρ-meson is included in RMF theory, Dirac
phenomenology predicts equal masses m∗

D,n = m∗
D,p. The

inclusion of the scalar isovector δ-meson, i.e., ρ + δ, in this
theory leads even to m∗

D,n < m∗
D,p [14,27]. The nonrelativistic

mass derived from RMF theory shows the same behavior as its
Dirac mass, namely m∗

NR,n < m∗
NR,p [14]. The various Skyrme

forces give opposite predictions for the neutron-proton mass
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splitting and also for the energy slope of the isovector optical
potential.

Relativistic ab initio calculations which are based on realis-
tic nucleon-nucleon interactions, such as the DBHF approach,
are the proper tool to answer these questions. Therefore, in
the present paper, which is an extension of the work done in
Ref. [28], the DBHF approach based on projection techniques
is used to determine properties of symmetric and asymmetric
nuclear matter. The momentum, density, and isospin depen-
dence of these properties are investigated. The DBHF results
for the symmetry energy are compared to results from some
phenomenological approaches. The application of the DBHF
approach allows one to determine the Dirac mass and the
nonrelativistic mass from the same approach. The results are
compared to nonrelativistic BHF and RMF approaches. In
addition, the isovector optical nucleon potential, which is of
importance for transport models in relation with the collisions
of radioactive nuclei, is investigated.

The present paper is organized as follows. In Sec. II we
give a short description of the relativistic DBHF approach.
In Sec. III, we survey the different definitions and physical
concepts of the effective nucleon mass. In Sec. IV, we present
the results derived from the DBHF approach, which is based on
projection techniques, in isospin symmetric and asymmetric
nuclear matter and investigate the momentum, density, and
isospin dependence of the nucleon effective masses and the
optical potentials. Section V contains a summary and the
conclusions of our work.

II. RELATIVISTIC BRUECKNER APPROACH

In the relativistic Brueckner approach nucleons are dressed
inside nuclear matter as a consequence of their two-
body interactions with the surrounding particles. The starting
point is the in-medium interaction, i.e., the T matrix. It is
treated in the ladder approximation of the relativistic Bethe-
Salpeter (BS) equation

T = V + i

∫
V QGGT, (1)

where V denotes the bare nucleon-nucleon interaction and
G the intermediate off-shell nucleon. The Pauli operator Q
accounts for the Pauli principle preventing the scattering
to occupied states. The Green’s function G describes the
propagation of dressed nucleons in the medium and fulfills
the Dyson equation

G = G0 + G0�G. (2)

G0 denotes the free nucleon propagator, whereas the influence
of the nuclear medium is expressed by the self-energy �. In
the Brueckner formalism this self-energy � is determined by
summing up the interactions with all the nucleons inside the
Fermi sea F in Hartree-Fock approximation

� = −i

∫
F

(Tr[GT ] − GT ). (3)

The coupled set of Eqs. (1)–(3) represents a self-consistency
problem and has to be solved by iteration. The self-energy

consists of scalar �s and vector �µ = (�o, k �v) components

�(k, kF) = �s(k, kF) − γ0�o(k, kF) + γ · k �v(k, kF). (4)

The DBHF approach is the proper tool to investigate the
properties of nuclear matter, but results from DBHF calcula-
tions are still controversial. These results depend strongly on
approximation schemes and techniques used to determine the
Lorentz and the isovector structure of the nucleon self-energy.
In the present paper, the projection technique method is
used, which requires the knowledge of the Lorentz structure
of the T-matrix in Eq. (3). For this purpose the T-matrix
has to be projected onto covariant amplitudes. Hence, the
scalar and vector components of the self-energies can directly
be determined from the projection onto Lorentz invariant
amplitudes. We use the subtracted T-matrix representation
scheme for the projection method described in detail in
Refs. [29,30]. Projection techniques are rather complicated,
but are accurate. For example, they have been used in
Refs. [29,31,32].

Another frequently used approach, which is called fit
method in the following, was originally proposed by Brock-
mann and Machleidt [33]. In this approach, one extracts
the scalar and vector self-energy components directly from
the single particle potential. Hence, mean values for the
self-energy components are obtained where the explicit
momentum-dependence has already been averaged out. In
symmetric nuclear matter this method is relatively reliable.
However, the extrapolation to asymmetric matter introduces
two new parameters in order to fix the isovector dependencies
of the self-energy components. This makes this procedure
ambiguous [34].

The quantity which characterizes the isospin dependence
of the nuclear equation of state (EoS) is the symmetry energy.
The energy functional of nuclear matter can be expanded in
terms of the asymmetry parameter β = (nn − np)/nB (nn and
np are the neutron and proton densities, respectively) which
leads to a parabolic dependence on β

E(nB, β) = E(nB) + Esym(nB)β2 + O(β4). (5)

In Fig. 1 the symmetry energy from the DBHF approach
using the Bonn A potential [30] is compared to the phe-
nomenological models NL3, DD, and D3C. NL3 is a nonlinear
parametrization [35] that is widely used in RMF calculations.
The DD model is based on a Lagrangian density of standard
relativistic mean-field models with density dependent meson-
nucleon coupling vertices. The D3C model, in addition,
introduces couplings of the meson fields to derivative nucleon
densities in the Lagrangian density [36]. The NL3 model
has the stiffest EoS and the symmetry energy rises almost
linearly with the density. In contrast, the DD and D3C model
exhibit a considerable flattening. The DBHF results are more
complex and have a nonlinear increase at high densities. At
high densities the symmetry energy lies between the stiff
NL3 model and the soft DD and D3C models. It is worth
noting that the symmetry energies in the models are rather
similar at a density near 0.1 fm−3. In phenomenological models
the symmetry energy is constrained by the skin thickness of
heavy nuclei which, due to surface effects, seems to fix the
symmetry energy at an average density of about 0.1 fm−3.
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FIG. 1. Symmetry energy as a function of the nucleon density
nB . The DBHF result is compared to various phenomenological RMF
models.

That the DBHF result coincides at this density with RMF
phenomenology shows that the low density behavior of the
microscopic calculation is in agreement with the constraints
from finite nuclei.

III. EFFECTIVE MASSES

In the field of nuclear physics, the introduction of an effec-
tive mass is a common concept to characterize the quasiparticle
properties of a particle inside a strongly interacting medium.
A well-established fact is that the effective nucleon mass in
nuclear matter or finite nuclei deviates substantially from its
vacuum value [37–39]. However, the expression of an effective
nucleon mass has been used to denote different quantities,
which are sometimes even mixed up: the nonrelativistic
effective mass m∗

NR and the relativistic Dirac mass m∗
D .

Although these different definitions of the effective mass
are related, they are based on completely different physical
concepts. Hence, one has to be careful when relativistic
and nonrelativistic approaches are compared on the basis of
effective masses. Whereas the nonrelativistic mass m∗

NR can
be determined from both, relativistic as well as nonrelativistic
approaches, the Dirac mass is a genuine relativistic quantity.
Therefore, the definitions of the relativistic Dirac mass and of
the nonrelativistic mass are given below.

A. Dirac mass

The relativistic Dirac mass is defined through the scalar part
of the nucleon self-energy in the Dirac field equation which is
absorbed into the effective mass

m∗
D(k, kF) = M + ��s(k, kF)

1 + ��v(k, kF)
, (6)

where �s and �v are, respectively, the scalar part and the
spatial vector part of the nucleon self-energy (4). The Dirac
mass accounts for medium effects through the scalar part of
the self-energy. The correction through the spatial vector part
of the self-energy is generally small [29–31]. Furthermore, the
Dirac mass is a smooth function of the momentum.

B. Nonrelativistic mass

The effective nonrelativistic mass, which is usually consid-
ered in order to characterize the quasiparticle properties of the
nucleon within nonrelativistic frameworks, is defined as

m∗
NR = |k|[dE/d|k|]−1, (7)

where E is the quasiparticle’s energy and k its momentum.
When evaluated at k = kF , Eq. (7) yields the Landau mass
m∗

L = M(1 + f1/3) related to the f1 Landau parameter of a
Fermi liquid [14,40]. In the quasiparticle approximation, i.e.,
the zero width limit of the in-medium spectral function, the
quantities E and m∗

NR are connected by the dispersion relation

E = k2

2M
+ �U (|k|, kF). (8)

Therefore, Eqs. (7) and (8) yield the following expression for
the nonrelativistic effective mass:

m∗
NR =

[
1

M
+ 1

|k|
d

d|k|�U

]−1

. (9)

In a relativistic framework m∗
NR is then obtained from the

corresponding Schrödinger equivalent single particle potential

U (|k|, kF) = �s − 1

M
(E�o − k2�v) + �2

s − �2
µ

2M
. (10)

An alternative would be to derive the effective mass from
Eq. (7) via the relativistic single particle energy

E = (1 + ��v)
√

k2 + m∗2
D − ��o. (11)

However, the single particle energy contains relativistic cor-
rections to the kinetic energy. These kind of corrections should
be avoided in a comparison to nonrelativistic approaches.
Hence, the effective mass should be based on the Schrödinger
equivalent potential (10) [40].

The nonrelativistic effective mass parametrizes the momen-
tum dependence of the single particle potential. Therefore, it is
a measure of the nonlocality of the single particle potential U.
The nonlocality of U can be due to nonlocalities in space
or in time. The spatial nonlocalities result in a momentum
dependence, whereas nonlocalities in time result in an energy
dependence. In order to separate both effects, one has to
distinguish between the so-called k-mass, which is obtained
from Eq. (9) at fixed energy, and the E-mass, which is given
by the derivative of U with respect to the energy at fixed mo-
mentum [40]. Knowledge of the off-shell behavior of the single
particle potential U is needed for a rigorous distinction between
these two masses. The spatial nonlocalities of U are mainly
generated by exchange Fock terms [24,25] and the resulting
k-mass is a smooth function of the momentum. Nonlocalities in
time are generated by Brueckner ladder correlations due to the
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scattering to intermediate off-shell states. These correlations
are mainly short-range correlations which generate a strong
momentum dependence with a characteristic enhancement of
the E-mass slightly above the Fermi surface [24,25,39,40].
The effective nonrelativistic mass defined by Eqs. (7) and (9)
is given by the product of k-mass and E-mass [40]. Thus,
it contains both, nonlocalities in space and time. Therefore,
it should also show a typical peak structure around kF. This
peak structure reflects—as a model independent result—the
increase of the level density due to the vanishing imaginary part
of the optical potential at kF, which for example is seen in shell
model calculations [38–40]. However, one should account for
correlations beyond mean-field or Hartree-Fock in order to
reproduce this behavior.

IV. RESULTS AND DISCUSSION

In the following we present the results for the properties of
symmetric and asymmetric nuclear matter obtained from the
DBHF approach based on projection techniques. The nucleon-
nucleon potential used is Bonn A. However, the presented
results and the following discussion do not strongly depend on
the particular choice of the interaction.

A. Symmetric nuclear matter

In Fig. 2 the nucleon optical potential, which is closely
related to the nonrelativistic mass, is plotted as a func-
tion of the momentum k = |k| at different Fermi mo-
menta of kF = 1.07, 1.35, and 1.7 fm−1 which corresponds to
nuclear densities nB = 4k3

F/6π2 = 0.5n0, n0, and 2n0 with
n0 = 0.166 fm−3. The depth of the nucleon optical potential at
k = 0 is larger at higher densities. Furthermore, the potential
increases with momentum at all three densities. However, the
slope of the optical potential is steeper at higher densities.

In Fig. 3 the nonrelativistic effective mass and the Dirac
mass are shown as a function of momentum k at nuclear
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FIG. 2. The nucleon optical potential in isospin symmetric
nuclear matter as a function of the momentum k = |k| at different
densities.

0 1 2 3

k [fm 
  -1

]

300

400

500

600

700

800

900

1000

E
ff

ec
tiv

e 
m

as
s 

[M
eV

 c
  -
2 ] 

0 1 2 3 4

k [fm 
 -1

]

n 
 B  

= 0.083 fm 
 -3  

n 
 B 

 = 0.166 fm 
 -3

n 
 B 

 = 0.332 fm 
 -3

Dirac massnonrelativistic mass

Fermi momentum

FIG. 3. The effective mass in isospin symmetric nuclear matter
as a function of the momentum k = |k| at different densities.

densities nB = 4k3
F/6π2 = 0.5n0, n0, and 2n0. Both, Dirac

and nonrelativistic mass, decrease in average with increasing
nuclear density. The decrease of the nonrelativistic mass
could already be expected on the basis of the slope of the
optical potential in Fig. 2. The projection method reproduces
a pronounced peak of the nonrelativistic mass slightly above
the Fermi momentum kF, as it is also seen in nonrelativistic
BHF calculations [40]. This peak is shifted to higher momenta
and slightly broadened with increasing density. On the other
hand, the Dirac mass is a smooth function of k with only
a moderate momentum dependence. This behavior is in
agreement with the “reference spectrum approximation” used
in the self-consistency scheme of the DBHF approach [30].

The nonrelativistic mass, plotted in Fig. 4, is derived from
Eq. (7) via the single particle energy instead of from Eq. (10)
via the potential. The results are very similar to the ones
in Fig. 3. Again the pronounced peak of the nonrelativistic
mass slightly above the Fermi momentum kF is reproduced,
although it is more broadened and as a result it is more a
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FIG. 4. The nonrelativistic effective mass in isospin symmetric
nuclear matter extracted from the single particle energy (7) as a
function of the momentum k = |k| at different densities.
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broad bump at high densities. The important difference is the
strong increase of the effective nonrelativistic mass at high
momentum compared to the nonrelativistic mass extracted
from the potential. Relativistic corrections to the kinetic energy
are responsible for this high momentum behavior. Hence, a
comparison to nonrelativistic approaches should be based on
the Schrödinger equivalent potential (10) [40].

Relativistically, the single particle potential and the cor-
responding peak structure of the nonrelativistic mass are the
result of subtle cancellation effects of the scalar and vector
self-energy components. Therefore, this requires a very precise
method in order to determine variations of the self-energies
� which are small compared to their absolute scale. The
applied projection techniques are the adequate tool for this
purpose. Less precise methods yield only a small enhancement,
i.e., a broad bump around the Fermi momentum kF [31,40]. The
extraction of mean scalar and vector self-energy components
from a fit to the single particle potential, is not able to resolve
such a structure at all.

The density dependence of the two effective masses is
compared in Fig. 5. Both, the nonrelativistic (Landau) and
the Dirac mass are determined at k = |k| = kF and shown
as a function of kF. The Dirac mass decreases continously
with increasing Fermi momentum kF. Initially, the Landau
mass decreases with increasing Fermi momentum kF like the
Dirac mass. However, it starts to rise again at high values
of the Fermi momentum kF. In addition, also results from
nonrelativistic BHF calculations [41], which are based on
the same Bonn A interaction, are plotted. The agreement
between the nonrelativistic and the relativistic Brueckner
approach is quite good. This demonstrates that the often
discussed difference between effective masses obtained in the
various approaches is mainly due to different definitions, i.e.,
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nonrelativistic mass versus Dirac mass. If the same quantity
is determined from DBHF and BHF, this leads to results
which are very close. Furthermore, also results from the NL3,
DD, and D3C model are shown. They qualitatively show the
same behavior as the Brueckner approaches, i.e., the Landau
mass and the Dirac mass decrease with increasing Fermi
momentum. However, the Landau mass starts to rise again
at high values of the Fermi momentum kF. But quantitatively
these masses are lower compared to the ones in the Brueckner
approaches.

B. Asymmetric nuclear matter

In Fig. 6 the neutron and proton optical potentials in
isospin asymmetric nuclear matter are plotted as a function
of the momentum k = |k| for various values of the asymmetry
parameter β = (nn − np)/nB at fixed nuclear density nB =
0.166 fm−3. The proton optical potential decreases with in-
creasing asymmetry. The neutron optical potential, in contrast,
shows an opposite behavior. In addition, the steepness of the
neutron optical potential decreases with increasing asymmetry
parameter β, whereas the opposite behavior is found in the
proton case.

The isovector optical potential

Uiso = Un − Up

2β
(12)

can be obtained from the neutron and proton optical potential.
In Fig. 7 the isovector optical potential is displayed as a
function of momentum k for three densities and several isospin
asymmetries. It is seen that the isovector optical potential
depends strongly on density and momentum. The optical
potential in neutron-rich matter stays roughly constant up to a
momentum between 1 to 2 fm−1, depending on the density, and
then decreases strongly with increasing momentum. Figure 7
shows that the isovector optical potential is almost independent
of the asymmetry parameter β. The optical isovector potential
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FIG. 7. The isovector optical potential as a function of momentum
k for three densities and several isospin asymmetries.

at nuclear density nB = 0.166 fm−3 at k = 0 is in good
agreement with the empirical value of 22–34 MeV [16].

Figure 8 compares the predictions from our DBHF calcu-
lation to the nonrelativistic BHF [26] and to the phenomeno-
logical Gogny [42] and Skyrme [43] forces and a relativistic
T − ρ approximation [44] based on empirical relativistic NN
amplitudes [45]. Our results are in good agreement with
the nonrelativistic BHF results of Ref. [26], except for the
negative sign of the potential at high momenta in their work. In
addition, at large momenta our DBHF calculation agrees with
the tree-level results of Ref. [44]. This is to be expected since
Pauli blocking of intermediate states in the Bethe-Salpeter
equation play then a less important role. First order medium
effects such as a density of the effective mass are included in
both approaches, in Ref. [44] within the framework of RMF
theory.

While the dependence of Uiso on the asymmetry parameter
β is found to be weak, the predicted energy and density
dependences are quite different, in particular between the mi-
croscopic and the phenomenological approaches. In mean field
models, i.e., assuming momentum independent self-energy
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FIG. 9. Neutron effective mass as a function of the momentum
k = |k| for various values of the asymmetry parameter β at fixed
nuclear density nB = 0.166 fm−3.

components, the energy dependence of Uiso is linear, i.e.,
quadratic in momentum. Relativisitc mean field models show
throughout a positive slope [14] while Skyrme functionals can
have positive slopes, e.g., some of the recent Skyrme-Lyon
parametrizations [43] (SkLya), or negative ones (SkM∗). In
the former cases this leads to a continously increasing optical
isovector potential. SkM∗ decreases, however, with a much
stronger slope than the microscopic approaches which tend
to saturate at high momenta. Qualitatively such a behavior is
reproduced by the Gogny force. In the DBHF case the decrease
is caused by a pronounced explicit momentum dependence of
the scalar and vector self-energy components.

However, the energy dependence of Uiso is very little
constrained by data. The old analysis of Lane [46] is consistent
with a decreasing potential as predicted by DBHF/BHF, while
more recent analyses based on Dirac phenomenology [47]
come to the opposite conclusions. Certainly more experimental
efforts are necessary to clarify this question.

In Fig. 9 the neutron nonrelativistic and Dirac mass are
plotted for various values of the asymmetry parameter β at
nuclear density nB = 0.166 fm−3. An increase of β enhances
the neutron density and has for the density of states the same
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effect as an increase of the density in symmetric matter.
Therefore, a pronounced peak of the nonrelativistic mass
slightly above kFn is observed.

Another interesting issue is the proton-neutron mass split-
ting in isospin asymmetric nuclear matter. In Fig. 10 the
neutron and proton effective mass are compared for β = 1, i.e.,
neutron matter. Our DBHF calculations based on projection
techniques predict a mass splitting of m∗

D,n < m∗
D,p in isospin

asymmetric nuclear matter. However, the predicted mass
splitting based on the fit method is m∗

D,n > m∗
D,p [48,49]. In

the fit method, the mean values for the self-energy components
are obtained where the explicit momentum-dependence has
already been averaged out. In symmetric nuclear matter this
method is relatively reliable. However, the extrapolation to
asymmetric matter introduces two new parameters in order to
fix the isovector dependencies of the self-energy components.
This makes the fit procedure ambiguous [34]. Other DBHF
calculations based on projection techniques predict a mass
splitting of m∗

D,n < m∗
D,p in isospin asymmetric nuclear

matter [30,34,50] in agreement with our results. Although
the relativistic Dirac mass derived from the DBHF approach
based on projection techniques has a proton-neutron mass
splitting of m∗

D,n < m∗
D,p, as can be seen from Fig. 10, the

nonrelativistic mass derived from the DBHF approach shows
the opposite behavior, except around the peak slightly above
the proton Fermi momentum kFp. This opposite behavior to the
relativistic Dirac mass, i.e., m∗

NR,n > m∗
NR,p, is in agreement

with the results from nonrelativistic BHF calculations [23–25].
This opposite behavior between the Dirac mass splitting and
the nonrelativistic mass splitting is not surprising, since these
masses are based on completely different physical concepts.
The nonrelativistic mass parametrizes the momentum de-
pendence of the single particle potential. It is the result of
a quadratic parametrization of the single particle spectrum.
On the other hand, the relativistic Dirac mass is defined
through the scalar part of the nucleon self-energy in the
Dirac field equation which is absorbed into the effective
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mass (6). In Fig. 11 the neutron nonrelativistic and the neutron
Dirac mass in symmetric nuclear matter and in pure neutron
matter are plotted at nuclear densities nB = 0.083 fm−3 and
nB = 0.166 fm−3. The difference between the two masses
is reduced as the density gets lower, if one excludes the
momentum region at the peak structure of the nonrelativistic
mass. This peak structure reflects the increase of the level
density due to the vanishing imaginary part of the optical
potential at kF. In addition, with decreasing density the neutron
Dirac mass difference in symmetric nuclear and in pure matter
gets smaller, i.e., the proton-neutron mass splitting decreases.
The same picture can be observed for the nonrelativistic mass,
if one does not consider the peak structure of the nonrelativistic
mass.

A demonstration of the influence of the explicit momentum
dependence of the DBHF self-energy is shown in Fig. 12.
In RMF theory the relativistic Dirac mass and the vector self-
energy are momentum independent. The nonrelativistic mass is
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FIG. 12. Neutron effective mass obtained in the RMF approxima-
tion as a function of the momentum k = |k| at fixed nuclear density
nB = 0.166 fm−3.
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determined from the RMF approximation to the single particle
potential, i.e., neglecting the momentum dependence of the
scalar �s and vector fields �o and �v in Eqs. (6) and (10). The
single particle energy is now given by

ERMF = (1 + ��v(kF))
√

|k|2 + m∗2
D (kF) + ��o(kF). (13)

In Fig. 12 this “RMF” nonrelativistic mass is plotted for
various values of the asymmetry parameter β at fixed nuclear
density nB = 0.166 fm−3. For comparison the full DBHF
nonrelativistic mass for symmetric nuclear matter is shown
as well. Because of the parabolic momentum dependence of
the RMF single particle energy ERMF, the corresponding RMF
mass has no bump or peak structure but is a continuously
rising function with momentum. The nonrelativistic RMF
mass at k = kF corresponds to the RMF Landau mass [40,51].
The RMF nonrelativistic mass decreases with increasing
asymmetry. In isospin asymmetric matter RMF theory predicts
the same proton-neutron mass splitting for the Dirac and the
nonrelativistic mass, i.e., m∗

D,n < m∗
D,p and m∗

NR,n < m∗
NR,p.

This behavior is a general feature of the RMF approach [14].
Concerning the Dirac mass full DBHF theory is in agreement
with the prediction of RMF theory. However, the mass splitting
of the nonrelativistic mass is reversed due to the momentum
dependence of the self-energies, which is neglected in RMF
theory.

V. SUMMARY AND CONCLUSIONS

In summary, we present calculations of isospin symmetric
and asymmetric nuclear matter in the DBHF approach based on
projection techniques. We compared the momentum, density,
and isospin dependence of the relativistic Dirac mass and the
nonrelativistic mass. Furthermore, we also investigated these

dependencies of the isovector optical potential. Firstly, the
nonrelativistic mass derived from the DBHF approach should
be based on the Schröndinger equivalent potential (10) [40]
to be able to compare it to nonrelativistic approaches. The
alternative, to derive it directly from Eq. (7) via the relativistic
single particle energy E = (1 + ��v)

√
k2 + m∗2

D − ��o, con-
tains relativistic corrections to the kinetic energy. Secondly,
the nonrelativistic effective mass shows a characteristic peak
structure at momenta slightly above the Fermi momentum kF

as it is also seen in nonrelativistic BHF calculations, e.g.,
Ref. [40]. This peak structure reflects the increase of the level
density at Fermi momentum k = kF. In contrast, the Dirac mass
is a smooth function of k with a weak momentum dependence.
Thirdly, a strong momentum dependence on both effective
masses, the nonrelativistic mass and the Dirac mass, is ob-
served. Fourthly, it turns out that the isovector optical potential
depends sensitively on density and momentum, but is almost
insensitive to the isospin asymmetry. In addition, the empirical
isovector potential extracted from proton-nucleus scattering is
well reproduced by our calculation. Finally, the controversy
between relativistic and nonrelativistic approaches concerning
the proton-neutron mass splitting in asymmetric nuclear matter
has been resolved. The relativistic Dirac mass shows a proton-
neutron mass splitting of m∗

D,n < m∗
D,p, in line with RMF

theory. However, the nonrelativistic mass derived from the
DBHF approach has a reversed mass splitting m∗

NR,n > m∗
NR,p

which is in agreement with the results from nonrelativistic
BHF calculations.
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