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An improvement in the treatment of the isovector channel of relativistic mean field (RMF) models based on
effective field theory (E-RMF) is suggested, by adding an isovector scalar (δ) meson and using a similar procedure
to the one used by Horowitz and Piekarewicz to adjust the isovector-vector channel in order to achieve a softer
density dependent symmetry energy of the nuclear matter at high density. Their effects on the equation of state
(EOS) at high density and on the neutrino mean free path (NMFP) in neutron stars are discussed.
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I. INTRODUCTION

Neutrino transport in stellar matter plays an important role
in some phenomena such as the mechanism of supernovae
explosions, structure of protoneutron stars, etc. Theoretical
input needed for understanding the neutrino transport is the
neutrino mean free path (NMFP) and the equation of state
(EOS). A unified matter model used in calculating both
observables is a requirement for having a consistent neutrino
transport result. We note that considerable efforts have been
devoted to investigate the neutrino interaction in matter at
high density [2–15] with different matter models, variety of
approximation levels and purposes.

To this end, a kind of matter models that can be used is the
relativistic mean field (RMF) model. The original or standard
RMF models use the σ , ω, and ρ mesons with additional
cubic and quartic nonlinearities of σ meson to effectively
describe the interaction among nucleons. NL-3 parameter
set [16] belongs to this model. The parameter set has been
very successful in the description of a variety of ground state
properties of nuclei [17]. Details of the models as well as
their applications can be seen in Refs. [18–20]. The effects
of including δ meson in standard RMF models including
the corresponding linear responses have been studied for the
asymmetric nuclear matter at low densities in Refs. [21–23],
whereas for heavy ion collisions in Refs. [24–26] and on the
neutron star properties in Ref. [27]. It was found that the δ

field leads to a larger repulsion in the dense neutron rich matter
(stiffer symmetry energy that leads to a larger proton fraction
at high density), as well as a definite splitting of proton and
neutron effective masses. Both features are influencing the
stability conditions of a neutron star [27].

Inspired by the concept of effective field and density
functional theories for hadrons, Furnstahl, Serot, and Tang
[28] constructed a new RMF model (from now on, will be
denoted by E-RMF) that can be considered as an extension
of the standard RMF models. One of the parameter sets in
this model is G2. Besides yielding accurate predictions in
finite nuclei and normal nuclear matter [20,28,29], G2 has the
interesting features like a positive value of quartic σ meson
coupling constant that leads to the existing lower bound in
energy spectrum of this model [30,31] and to the missing
zero sound mode in the high density symmetric nuclear
matter [32]. Moreover, the agreement of the nuclear matter

and the neutron matter EOS at high density of G2 with the
Dirac-Brueckner-Hartree-Fock (DBHF) calculation [29,30] is
better than those of NL-3, NL-1, and TM1 models (the standard
RMF plus a quartic ω meson interaction). Nevertheless, from
the comparison between the neutron matter EOS of this model
and that of the DBHF result, the authors of Ref. [29] pointed
out that the present form of the E-RMF model still needs
a substantial improvement in the treatment of the isovector
sector. It has also been shown that the G2 parameters set of
the E-RMF model still predicts a too large proton fraction [4].
It is known that proton fraction correlates to the direct URCA
cooling process [33]. It is also known that this problem is
caused by the role of isovector terms. So far, the effects of
the δ meson inclusion on this model has not been studied
yet.

Therefore, in this work, first, we will study the effects of
adding an isovector-scalar (δ) meson in the E-RMF model and
the effects of the isovector-vector channel adjustment by using
a similar procedure to the one used in Ref. [1]. The aim of these
adjustments is to achieve a softer density dependent symmetry
energy of nuclear matter at high density. The symmetry
energy has a wide range of effects, such as from giant dipole
resonances to heavy ion collisions in nuclear physics and from
supernovae to neutron stars in astrophysics. In spite of its
diverse influences, its magnitude and density dependence are
not well understood [34]. More detail informations on the
role of symmetry energy and related topics can be consulted
to Ref. [34] and references therein. Second, we will also
extend the analysis of our previous report [4] to give a more
solid argument about the source of the possible appearance
of the anomalous behavior in the NMFP of neutron stars
predicted by RMF models. Here the anomalous behavior in
the NMFP means a contra intuitive NMFP results in a form
of the decreasing of the mean free path with respect to the
decreasing of the matter density [3]. It has been known that
this anomalous behavior exists in the NMFP predicted by
nonrelativistic nuclear models of the Skyrme type [2,3]. This
anomalous behavior is attributed to the dominating term at
high density that responsible to the appearance of the acausal
behavior (the speed of sound exceeds the speed of light) of the
model at high densities [2]. It has been reported in Refs. [2,3,8]
that relativistic models alleviate this problem. But we have
eventually found that not every parameter set of relativistic
models is free from this problem [4].
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In Sec. II we will briefly explain the formalism used in this
work. In Sec. III we discuss the results of our calculations. We
will give the summary of our findings in Sec. IV.

II. FORMALISM

This section contains a very brief description of the self-
consistent models for nucleons plus the standard noninteract-
ing Lagrangian densities for electron and muon as well as the
interaction between neutrino-electron with matter based on the
standard model of weak interaction. Here, a similar assumption
with that of Refs. [3,4] is used, i.e., the ground state of the
neutron star is reached once the temperature has decreased
below a few MeV. This state is gradually reached from the
later stages of the cooling phase. The system is then quite
dense and cool so that the zero temperature approximation is
valid. In this case the direct URCA neutrino-neutron scattering
is kinematically possible for low energy neutrinos at and above
the threshold density when the proton fraction exceeds 1/9
[33] or slightly larger if muons are present. Furthermore, the
absorption reaction is suppressed. For simplicity, we neglect
the RPA correlations.

A. E-RMF model

The calculation is done in the framework of the rela-
tivistic mean field approximation. The effective Lagrangian
density used to describe nucleons interactions is taken from
Refs. [28,29,35]. This Lagrangian is constructed with a
nonlinear realization of chiral symmetry [28]. The explicit
form of the E-RMF effective Lagrangian density reads

Lnuc = LN + LM. (1)

For nucleons, the Lagrangian density up to order ν = 3 is
given by

LN = ψ̄[iγ µ(∂µ + iν̄µ + igρb̄µ + igωVµ) + gAγ µγ 5āµ−M

+ gσ σ ]ψ − fρgρ

4M
ψ̄b̄µνσ

µνψ, (2)

where

ψ =
(p

n

)
, ν̄µ = − i

2
(ξ̄ †∂µξ̄ + ξ̄ ∂µξ̄ †) = ν̄†

µ, (3)

āµ = − i

2
(ξ̄ †∂µξ̄ − ξ̄ ∂µξ̄ †) = ā†

µ, (4)

ξ̄ = exp(iπ̄ (x)/fπ ), π̄ (x) = 1
2 �τ · �π(x), (5)

π̄ (x) = 1
2 �τ · �π (x), (6)

b̄µν = Dµb̄ν − Dνb̄µ + igρ[b̄µ, b̄ν], Dµ = ∂µ + iν̄µ,

(7)

Vµν = ∂µVν − ∂νVµ, (8)

σµν = 1
2 [γ µ, γ ν]. (9)

Here, p, n, and M are the proton-, neutron-field, and nucleon
mass, while σ, �π, V µ, and �bµ are the σ, π, ω, and ρ meson

fields, respectively. For mesons, the Lagrangian density up to
order ν = 4 reads

LM = 1

4
f 2

π Tr(∂µŪ∂µŪ †) + 1

4
f 2

π Tr(Ū Ū † − 2) + 1

2
∂µσ∂µσ

− 1

2
Tr(b̄µν b̄

µν) − 1

4
VµνV

µν − gρππ

2f 2
π

m2
ρ

Tr(b̄µν ν̄
µν)

+ 1

2

(
1 + η1

gσσ

M
+ η2

2

g2
σ σ 2

M2

)
m2

ωVµV µ

+ 1

4!
ζ0g

2
ω(VµV µ)2 +

(
1 + ηρ

gσσ

M

)
m2

ρTr(b̄µb̄
µ)

−m2
σ σ 2

(
1 + κ3

3!

gσσ

M
+ κ4

4!

g2
σ σ 2

M2

)
, (10)

where

Ū = ξ̄ 2, ν̄µν = ∂µν̄ν − ∂νν̄µ + i[ν̄µ, ν̄ν] = −i[āµ, āν].
(11)

In the mean field approximation, the π meson does not have
a contribution. If we set η1, η2, ζ0, ηρ , and fρ equal to zero,
in the Lagrangian density, the same equations of state for
nucleons and mesons of the standard RMF models [18–20]
can be obtained.

The density dependence of the modified nuclear matter
symmetry energy after including the isovector-vector nonlin-
ear term,

LHP = 4�V g2
ρg

2
ω

�bµ · �bµ V µVµ, (12)

in the Lagrangian density of the standard RMF model and
then followed by an adjustment of gρ and �V parameters
has been for the first time calculated by Horowitz and
Piekarewicz [1]. Motivated by a similar philosophy, other
additional nonlinear terms, but with different forms, have
also been studied in Ref. [36]. In this paper, we follow the
same procedure as given in Refs. [1,36], but since we use
the E-RMF model which already contains an isovector-vector
nonlinear term, the density dependence of the nuclear matter
symmetry energy can be modified without adding a new
nonlinear term, instead, it only needs an adjustment of the
gρ and ηρ parameters while keeping the symmetry energy at
the same value, i.e., Esym = 24.1 MeV at kF = 1.14 fm−1. The
argument behind this procedure is that the symmetry energy at
the saturation density (kF = 1.32 fm−1) is not well constrained
experimentally. However, an average of symmetry energy at
full density (the average density is less than saturation density)
and at surface symmetry energy is constrained by binding
energy of nuclei [1,36].

To study the effects of a δ meson addition in the E-RMF
model, we add to the Lagrangian density of that model the
following terms:

Lδ = 1
2 (∂µ

�δ · ∂µ�δ − m2
δ
�δ2) + ψ̄gδ �τ · �δψ. (13)

For electron and muon, the Lagrangian density reads∑
l=e−,˜µ−

l̄(γ µ∂µ − ml)l. (14)

All matter properties used in this work can be derived
from these Lagrangian densities. A more detail step of the
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TABLE I. Coupling constants of the parameter sets used in this
work.

Parameter G2 NL−3 NL−Z Z271

mS/M 0.554 0.541 0.520 0.495
gS/(4π ) 0.835 0.813 0.801 0.560
gV /(4π ) 1.016 1.024 1.028 0.670
gR/(4π ) 0.755 0.712 0.771 0.792
κ3 3.247 1.465 2.084 1.325
κ4 0.632 −5.668 −8.804 31.522
ζ0 2.642 0 0 4.241
η1 0.650 0 0 0
η2 0.110 0 0 0
ηρ 0.390 0 0 0

derivations can be seen in Refs. [1,28–30,35,36]. Coupling
constants for all parameter sets used in this work are displayed
in Table I. To determine the fraction of every constituent,
we imposed the requirement that in the neutron star at zero
temperature, the chemical potential is in equilibrium and the
charge is neutral.

B. Neutrino mean free path

For neutrino-electron matter interactions based on the
standard model of weak interaction, the Lagrangian density
for every constituent is

Lj
int = GF√

2
[ν̄γ µ(1 − γ5)ν]

(
ψ̄J j

µψ
)
, (15)

where J
j
µ = γµ(Cj

V − C
j

Aγ5) and j = n, p, e−, µ−. The values
of C

j

V and C
j

A can be seen in Table II.
The neutrino differential scattering cross section can be

derived from the Lagrangian density and has the form of

1

V

d3σ

d2�′dE′
ν

= − GF

32π2

E′
ν

Eν

Im(Lµν�
µν). (16)

Here Eν and E′
ν are the initial and final neutrino-electron

energies, respectively, GF = 1.023×10−5/M2 is the weak
coupling, and M is the nucleon mass. The neutrino-electron
tensor Lµν can be written as

Lµν = 8[2kµkν + (k.q)gµν − (kµqν + qµkν)

− iεµναβkαqβ ], (17)

where k is the initial neutrino-electron four-momentum and
q = (q0, �q) is the four-momentum transfer. The polarization

TABLE II. Coupling constants of neutrino-electron matter inter-
actions. Here we use sin2 θw = 0.223 and gA = 1.260 [2,3,9].

Target CV CA

n −0.5 −gA/2
p 0.5 − 2 sin2 θw gA/2
e 0.5 + 2 sin2 θw 1/2
µ −0.5 + 2 sin2 θw −1/2

tensor �µν , which defines the target particles, can be written
as

�j
µν(q) = −i

∫
d4p

(2π )4
Tr

[
Gj (p)J j

µGj (p + q)J j
ν

]
, (18)

where p = (p0, �p) is the corresponding initial four-
momentum, and G(p) is the target particle propagator. The
explicit form of the nucleon propagator is

Gn,p(p) = (p/∗ + M∗)

[
1

p∗2 − M∗˜2 + iε
+ iπ

E∗

× δ(p∗
0 − E∗)θ

(
p

p,n

F − | �p|)
]
, (19)

where E∗ = E + �0 is the nucleon effective energy and M∗ =
E + �S is the nucleon effective mass. The �0 and �S are
the scalar and time like self-energies, respectively. Electron
and muon propagators have similar expressions, except the
effective (starred) quantities in Eq. (19) are replaced by the
free ones.

The NMFP (symbolized by λ) as a function of the initial
neutrino energy at a certain density is obtained by integrating
the cross section over the time- and vector-component of the
neutrino momentum transfer, as [3,9]

1

λ(Eν)
=

∫ 2Eν−q0

q0

d|�q|
∫ 2Eν

0
dq0

|�q|
E′

νEν

2π
1

V

d3σ

d2�′dE′
ν

.

(20)

[Equation (20) is used to calculate the NMFP in the neutron
star matter of Figs. 3, 4, and 7.]

III. RESULTS AND DISCUSSIONS

In this section we study the effects of the isovector-
vector channel adjustment and the addition of δ meson in
E-RMF models on the corresponding nuclear matter properties
predictions. We also study the role of every factor involved in
the predicted NMFP in neutron stars of RMF models. We start
with considering the effects of isovector-vector channel of the
E-RMF model. Here we analyze the effects of different gρ and
ηρ combinations of the G2 parameter set. The value of various
coupling constant combinations can be seen in Table III. Their
effects on matter properties are shown in Fig. 1.

The symmetry energies of sets I–IV given in Table III are
shown in the upper left panel. Since it has been pointed out by
Lattimer et al. [33], that the crucial role of the proton fraction
value for the onset of the direct URCA process is to enhance
the neutron star cooling rate [43], we plot the corresponding

TABLE III. Isovector-vector channel adjustment in the G2
parameter set of E-RMF model.

Isovector Set
parameter

I II III IV

gρ 9.358 9.483 11.786 13.687
ηρ 0.190 0.390 4.490 8.490
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FIG. 1. Isovector-vector channel adjustment
in the E-RMF model. Effects of different com-
binations of gρ and ηρ on the symmetry energy
of the nuclear matter are shown in the upper left
panel, on the pressure and M∗ of the PNM are
in the lower left and right panels, respectively,
and on the proton fraction predictions in the
upper right panel. Shaded region in the upper
right panel corresponds to the proton fraction
threshold of the direct URCA process [33].

proton fractions in the upper right panel. To estimate their
effects on the EOS of neutron star, we plot the pressure as a
function of energy of the pure neutron matter (PNM) as the
dominant contributor in the EOS of a neutron star, in the lower
left panel. It is clear from the figure in the lower right panel
that the adjustments of gρ and ηρ have no effect on the PNM
effective mass (M∗).

In conclusion, for the E-RMF model, proton fraction
predictions depend strongly on the behavior of the density
dependent of Esym at high density. On the other hand, the
predicted neutron star EOS does not drastically depend on the
behavior of Esym at high density.

A similar analysis for the standard RMF plus an addi-
tional isovector-vector nonlinear term model of Horowitz
and Piekarewicz [1] with Z271∗ parameter set has been also
performed. The various sets of coupling constant combinations
are shown in Table IV, whereas their effects on matter
properties are shown in Fig. 2. Similar conclusion is obtained
both for proton fraction and M∗ in the PNM. Significant
dependency in the EOS of this model on Esym is found. The
different trend in Esym and EOS of this model compared to
the E-RMF one originates from the different form of the
isovector-vector nonlinear terms used in both models.

To investigate which factor dominantly controls the behav-
ior of the NMFP based on RMF models, we compare the EOS

TABLE IV. Isovector-vector channel adjustment in the Z271
parameter set of the Horowitz and Piekarewicz model [1].

Isovector Set
parameter

I II III IV

gρ 9.498 9.672 11.506 12.145
�V 0 0.01 0.03 0.035

and NMFP of both models with the one of the standard RMF
model, i.e., the NL-3 parameter set. The results are shown in
Fig. 3. In the upper left panel, we show the effects from the
variation of Esym in the G2∗ parameter sets (represented by
the variation of gρ and ηρ values) on the NMFP. Similarly,
for the Z271∗ and NL-3 parameter sets (represented by the
dots form), the results are shown in the upper right panel. The
EOS and M∗ in the PNM of the standard G2, Z271, and NL-3
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FIG. 2. Isovector-vector channel adjustment in the Horowitz and
Piekarewicz model (Z271) [1]. Effects of different combinations of
gρ and �V on the symmetry energy of SNM are shown in the upper
left panel, on pressure and M∗ of PNM in the lower left and right
panels, respectively, and on proton fraction predictions in the upper
right panel. Shaded region in the upper right panel corresponds to the
proton fraction threshold for the direct URCA process [33].
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FIG. 3. Effects of the isovector-vector channel adjustment on
NMFP predictions for G2, NL-3, and Z271 models. The upper left
panel is for the E-RMF model (G2) and the upper right panel is for
the Horowitz and Piekarewicz model (Z271). For comparison, the
result of NL-3 is given in the upper-right panel by the dots form. The
pressure as a function of the energy density and M∗ as a function of
the nucleon-saturation densities ratio are given in the lower left and
lower right panels, respectively.

parameter sets are displayed in the lower left and right panels,
respectively. Different from NL-3, which has an anomalous
behavior in its NMFP, it is found that G2∗ and Z271∗ parameter
sets predict the NMFP trends, which do not change with the
variation of Esym (in both models, the anomalous behavior
in the NMFP does not appear in every parameter set even
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FIG. 4. Effects of the M∗ variations on the proton fraction and on
the NMFP (upper left and upper right panels), and on the EOS (lower
left panel). Shaded region in the upper left panel corresponds to a
threshold of the proton fraction for the direct URCA process [33].
Variations of the M∗ as a function of the nucleon-saturation densities
ratio is shown in the lower right panel.
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FIG. 5. Effects of the δ meson addition in the E-RMF model for
ηρ = 0.39 on the symmetry energy and proton fraction (upper left
and right panels) and on the EOS and M∗ in the PNM (lower left and
right panels). Shaded region in the upper right panel corresponds to
the proton fraction threshold for the direct URCA process [33].

though they have different Esym values). This means that the
appearance of the anomalous behavior in the NMFP seems to
be insensitive to the value of the proton fraction. The NL-3
parameter set has PNM with a stiff EOS and a relatively small
M∗ value but, on the contrary, Z271 and G2 have PNM with a
soft EOS and large M∗ value at high density. This fact gives an
indication that a soft EOS and a normal behavior of the NMFP
are mostly determined by the relatively large M∗ value at high
density. On the other hand, finite nuclei calculations using the
standard RMF model [18–20,37] inform us that acceptable
shell structure predictions in finite nuclei regions require a
small M∗ value (∼0.6 M) in the saturation density which is
fulfilled by G2 [29] and NL-3 [18–20,37] parameter sets.
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FIG. 6. Same as in Fig. 5, but for ηρ = 4.49.
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TABLE V. M∗ variations in the NL-Z parameter set of the
standard RMF model. [37]

Parameter NL-Z P-070 P-080

gS/(4π ) 0.801 0.673 0.575
gV /(4π ) 1.028 0.817 0.632
κ3 2.084 2.463 2.899
κ4 −8.804 −7.595 12.779

Actually, the above results could be more clearly interpreted
by looking at the effects of different M∗ on the NMFP in the
same model. The difference in each parameter set is only in the
values of some adjusted coupling constants, while they should
have acceptable SNM and PNM predictions at saturation
density (more details about matter predictions of these models
can be seen in Ref. [37]), and for our purpose here, the proton
fraction predictions should be similar. The parameter sets of
Ref. [37] are suitable for this task. The coupling constants
variations of the models are shown in Table V, whereas the
results are shown in Fig. 4. The effects of the M∗ variation
on the proton fraction are shown in the upper left panel, while
the effects on the NMFP and EOS of PNM are shown in
the upper right and lower left panels, respectively. Clearly, if
M∗ becomes too low then the corresponding EOS becomes
too stiff and the anomalous behavior in the NMFP appears.
The P-070 and P-080 parameter sets have unacceptable shell
structure predictions in some nuclei [37] since these parameter
sets have a too large M∗ in the saturation density which,
as a consequence, leads to a too narrow spin-orbit splitting
prediction. Recently, “FSU GOLD” parameter set has been
introduced by Todd-Rutel and Piekarewicz [17] which yields
a soft EOS, while still accurately reproducing experimental
data of binding energies and charge radii of some magic
nuclei and also centroid energies for breathing mode of 208Pb
and 90Zr. Unfortunately the shell structure prediction of this
parameter set is not reported in that paper. Therefore, before
drawing any further conclusion, we should wait for their full
calculation, including the predicted shell structure properties
of some magic nuclei.

In conclusion, these results confirm previous findings
[29,30] about the wide range of applications of the E-RMF
model. In our view, the reason comes from the fact that the
E-RMF model has a relatively small M∗ (∼0.6M) in saturation
density (demanding feature for finite nuclei) but a relatively
large M∗ at high density (demanding feature for the neutron
star). Extra nonlinear and tensor terms of this model compared
to the standard one seem to be the source of this behavior (see
Table I). From the possibility that the density dependent Esym

TABLE VI. Effects of the δ meson on the G2 parameter set of the
E-RMF model. Case ηρ = 0.39.

Isovector Set
parameter

I II III

gρ 9.483 12.313 15.937
gδ 0 5.026 7.540

TABLE VII. Effects of the δ meson in the G2∗ parameter sets of
the E-RMF model. Case ηρ = 4.49.

Isovector Set
parameter

I II III

gρ 11.786 15.304 18.784
gδ 0 5.026 7.540

can be adjusted, the claim that RMF models predict relatively
lower threshold densities for the direct URCA process and this
fact can be considered as a weak point of the models [38–40],
now can be reexplored. A precise density dependent Esym at
high density experimentally determined and/or extracted from
the properties of the neutron star are needed in this case.

To study the effects of δ meson on the E-RMF model,
we start with the standard G2 with ηρ = 0.39 and generate
different gρ and gδ parameters combinations but we keep
the same Esym = 26.57 MeV at kF = 1.172 fm−1 (note:
There would be no change in the conclusion if we took
Esym = 24.1 MeV at kF = 1.14 fm−1). The combinations of
the coupling constants of the models can be seen in Table VI.
The matter properties predictions are shown in Fig. 5. It is
clearly seen that the presence of the δ meson results in a
higher Esym at high density. This fact leads to a higher proton
fraction. But, in the region ρB = (1.5 − 2)ρ0, the difference
between the Esym value of the E-RMF plus a δ and that without
a δ meson is not so significant. The presence of the δ meson
also makes the PNM EOS stiffer and reduces the value of the
PNM M∗. The reduction magnitude depends on the magnitude
of gδ . A similar trend is also found in the case of ηρ = 4.49.
The combinations of gρ and gδ coupling constant are shown in
Table VII and the corresponding results can be seen in Fig. 6.

In Fig. 7, it can be seen that the presence of the δ meson
removes the anomalous behavior in the predicted NMFP. The
effect appears more pronounce in the case of ηρ = 4.49, rather
than ηρ = 0.39. This fact is clearly depicted in Fig. 7.

In Fig. 8, we show the E/A ratio and the pressure, for the
SNM as well as the PNM of the four RMF parameter sets.
NL-3 is a parameter set with good predictions for observables
of finite nuclei and has a stiff EOS at high density. Z271 is a
parameter set that is specially constructed for the neutron star
and has a soft EOS at high density. G2 is a parameter set with
acceptable predictions for observables of finite nuclei and has a
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FIG. 7. Effects of the δ meson addition in the E-RMF model on
the corresponding NMFP prediction. Left panel is for ηρ = 0.39,
while right panel is for ηρ = 4.49.
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FIG. 8. Energy per nucleon (E/A) of the SNM (upper left)
and PNM (upper right) of G2, Z271, NL3 and G2∗ + δ parameter
sets. The corresponding pressures are given in the lower left and
lower right panels. For comparison, we also show the results from
variational calculation of Akmal et al. [41], DBHF calculation of
Li et al. [42], and BHF with AV14 potential plus 3BF of Baldo
et al. [43]. Shaded regions correspond to experimental data from
Danielewicz et al. [44].

relatively soft EOS at high density. Clearly, parameter sets with
soft EOS are consistent with experimental data of Danielewicz
et al. [44] and close to the results of the variational calculation

by Akmal et al. [41], BHF calculation with AV14 potential
plus 3BF of Baldo et al. [43], and DBHF calculation of Li
et al. [42]. It seems also from the results of G2∗ + δ, that the
enhancement in the isovector channel of G2 shifts the E/A

ratio and pressure predictions of that parameter set closer to
the result of variational calculation from Akmal et al. [41].

IV. SUMMARY

In summary, we find that by adjusting the parameters in the
isovector-vector sector of RMF models we can obtain a low
proton fraction at high densities in neutron star. The anomalous
behavior in the NMFP of RMF models would not appear, if
their M∗ predictions at high density were sufficiently large.
The presence of the δ meson in the E-RMF model increases the
proton fraction at high density but the change in the value of the
proton fraction is not significant in the region ρB = (1.5−2)ρ0.
For the PNM case, the presence of the δ meson has effects that
the EOS prediction becomes stiffer and M∗ becomes smaller
at high density. The presence of the δ meson in the E-RMF
model also removes the anomalous behavior in the NMFP. By
adjusting the isovector-vector sector and adding the δ meson
in the E-RMF model, the E/A ratio and the predicted pressure
of the PNM become much closer to the results of Akmal
et al. [41].
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