
PHYSICAL REVIEW C 72, 065210 (2005)

Soft-core meson-baryon interactions. I. One-hadron-exchange potentials
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The Nijmegen soft-core model for the pseudoscalar meson-baryon interaction is derived, analogous to the
Nijmegen NN and YN models. The interaction Hamiltonians are defined and the resulting amplitudes for one-
meson exchange and one-baryon exchange in momentum space are given for the general mass case. The partial
wave projection is carried through and explicit expressions for the momentum space partial wave meson-baryon
potentials are presented.
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I. INTRODUCTION

Strong interactions between mesons and baryons, in par-
ticular for pion-nucleon, kaon-nucleon, and antikaon-nucleon
interactions, have been the subject of investigation for some
decades, experimentally as well as theoretically.

Numerous scattering experiments have been performed to
investigate the pion-nucleon interaction. The empirical phase
shifts are obtained from a partial wave (PW) analysis of the
scattering observables, which judges the consistency with
general principles (unitarity, analyticity, crossing symmetry,
etc.) of the scattering data, and which provides a compact
representation of these data. Although at first sight in principle
an infinite number of phase shifts need to be determined from
the data, the strong interactions are short-ranged and only the
lower partial wave phase shifts will suffice. In constructing
theoretical models for these interactions, it is usually much
more economical to use the results of a PW analysis than the
scattering observables themselves. Different pion-nucleon PW
analyses [1–3] give quite accurate and consistent results. The
most recent pion-nucleon PW analysis has been performed by
Arndt et al. [2], to which we refer for more information on the
current pion-nucleon scattering database; see also Ref. [4].

However, the situation for the kaon-nucleon interaction is
different from that for the pion-nucleon interaction. The kaon-
nucleon scattering observables are known to less accuracy,
especially at low energies, owing to the relatively low flux
of the kaon beams. Consequently, the different kaon-nucleon
phase shift analyses give results that are not quite accurate and
may not be totally consistent. The most recent kaon-nucleon
PW analysis has been performed by Hyslop et al. [5], where
much information on the kaon-nucleon scattering database can
be found.

This lack of empirical knowledge makes it impossible to
construct realistic theoretical kaon-nucleon models by using
as input only information from KN data.

Recently there has been an increase of interest in the
kaon-nucleon and antikaon-nucleon interactions. An exotic
resonance, the so-called penta-quark, in the isospin-zero
kaon-nucleon system has been observed [6]; this experiment,
however, was not a simple scattering experiment and a
resonance has never been seen in the present kaon-nucleon
scattering data.

The construction of new K factories at the Japan Pro-
ton Accelerator Research Complex (J-PARC), and at GSI
(FAIR) in Germany, will hopefully change the experimental
situation drastically. One of the major beams of these new
accelerators will be kaon beams, having a much higher
intensity (∼10 times) than that of presently available kaon
beams at, for example, Brookhaven National Laboratory and
KEK. Therefore, in the near future much more and accurate
experimental data on the kaon-nucleon and antikaon-nucleon
interaction can be expected. Other new scattering data could
be delivered by the DA�NE facility at Frascati [7]. These
activities will give much stronger constraints on kaon-nucleon
models and a better understanding of the role of SUf (3)
in meson-baryon interactions. Akaishi and Yamazaki [8]
have investigated the possibility of nuclear antikaon bound
states in nuclei in the framework of the Brueckner-Hartree-
Fock theory using a simple phenomenological antikaon-
nucleon model. Such a state has indeed been observed
experimentally [9].

In view of these experimental and theoretical developments
it is rather timely to construct theoretical kaon-nucleon models
as realistically as possible, and this work is an attempt
to do so.

The subject of this work is the construction of a dynamical
model for the pion-nucleon (πN ) and kaon-nucleon (K+N )
interactions. In two papers we describe the so-called Nijmegen
soft-core meson-baryon model (NSC model) and report on the
results obtained so far. First a soft-core meson- and baryon-
exchange model for the πN interaction is derived, showing
that the soft-core approach of the Nijmegen group is not only
successful for baryon-baryon (NN and YN) interactions but
also for meson-baryon interactions. The rich and accurate
πN scattering database is used to determine the nonstrange
coupling constants. Several other πN models already exist
and the NSC πN model, besides having value in its own right,
mainly serves as a natural starting point for the construction
of the NSC K+N model. This K+N model is an SUf (3)
extension of the NSC πN model, similar to the successful
Nijmegen soft-core one-boson-exchange nucleon-nucleon and
hyperon-nucleon models [10]. In this way many parameters
in the NSC K+N model are determined by the NSC πN

model, and the lack of accurate K+N data can be overcome
partially.
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FIG. 1. Overview of the theoretical basis for soft-core meson-
baryon interactions.

In concept, the approach for the strong low- and
intermediate-energy hadron-hadron interactions [11], used by
the Nijmegen group, is schematically outlined in Fig. 1.
The starting point is the Standard Model, in which strong
interactions occur between the six quarks and the gluons.
Next, one can integrated out the heavier quarks, to arrive at
an effective QCD for the light quarks (u, d, s) only. As is
generally accepted, the vacuum of QCD becomes unstable
for momenta transfer q2 � �2

χSB � 1 GeV2 and the chiral
symmetry is broken spontaneously (χSB). The vacuum goes
through a phase transition and generates constituent quark
masses (mq ≈ 300 MeV) and reduces the strong coupling
constant αs . The pseudoscalar mesons are viewed as the
Nambu-Goldstone bosons originating from the χSB, which
makes it natural to assume the presence of a meson cloud
around the constituent quarks.

This framework provides a natural basis for an approach
to the interaction between mesons and baryons using effective
baryon-meson Lagrangians. At low and intermediate energies
we do not consider a mixed phase of hadrons and quarks,
as is done by others using the resonating-group method
(RGM) [12], but restrict ourselves to the hadronic phase only.
Furthermore, heavy baryons and mesons can be viewed as
being integrated out, using for example the renormalization
method in the manner of Wilson [13], and an effective field
theory, with meson and baryon masses with M � 1.5 GeV,
results. In this work, this general picture is invoked in the
construction of a soft-core meson-baryon model for low- and
intermediate-energy interactions.

In the NSC model the one-meson-exchange and one-
baryon-exchange potentials are obtained from field theoretical
Feynman diagrams in momentum space using effective inter-
action Hamiltonians; together with the meson-baryon Green’s
function they constitute the kernel of the two-particle integral
equation for the amplitude, which is a three-dimensional
reduction of the fully covariant (four-dimensional) Bethe-
Salpeter equation [14]. Alternatively, one could view this
work in the framework of the covariant perturbation theory
as formulated by Kadyshevsky [15]. Here the particles, also
in the intermediate states, remain on the mass shell, and
pair suppression can be implemented in a covariant way.
Moreover, the three-dimensional integral equation obtained
in the Kadyshevsky scheme has exactly the same form as used
in this work.

Form factors of the Gaussian type are introduced to take
into account the extended size of the hadrons and to make
the integral equation of the Fredholm type. The Coulomb
interaction, which plays a role at very low energies only
and is important in charge-symmetry-breaking (CSB) studies,
will be neglected in this work. The integral equation for the
amplitude is solved on the partial wave basis; in this way
only one-dimensional integrals need to be performed to find
the amplitude and the corresponding scattering observables or
phase shifts for each partial wave.

We present this work in two papers. In general, this first
paper, referred to as I, contains a description of the theory; the
second paper, referred to as paper II [16], gives the results for
πN and K+N .

The contents of this first paper are as follows. The definition
of the field theoretical one-meson-exchange and one-baryon-
exchange potentials in the context of a three-dimensional
integral equation, a relativistic generalization of the Lippmann-
Schwinger equation, is reviewed in Sec. II. We introduce
the usual potential forms in Pauli-spinor space, where we
include the central (C) and the spin-orbit (SO) potentials,
which are the only relevant potentials in case of spin-0
spin-1/2 interactions. The relations between the relativistic
and center-of-mass amplitudes are also given.

The integral equation for the amplitude is solved on the
partial wave basis to find the partial wave phase shifts,
which are compared with the empirical phase shifts. Therefore
we perform the basic partial wave projections, in particular
those for the spinor invariants, in Sec. III. And the relations
among the partial wave amplitudes, the phase shifts, and
the scattering observables—σ, dσ/d�, and P —for spin-0
spin-1/2 scattering are given. The partial wave basis is chosen
according to the convention of [17].

The effective baryon-baryon-meson and meson-meson-
meson interaction Hamiltonians, from which the one-meson-
exchange and one-baryon-exchange Feynman diagrams are
derived, are given in Sec. IV. The explicit expressions for
the momentum-space Feynman diagrams for scalar-meson,
vector-meson, tensor-meson, and baryon exchanges for gen-
eral baryon and meson masses as well as their partial wave
projections are also listed in this section.

In the appendices, details are given on the calculation of the
partial wave matrix elements (Appendix A), the one-particle-
exchange Feynman diagrams (Appendix B), and the expansion
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coefficients X, Y , and Z of the partial wave potentials in x =
cos θ for the different exchanges (Appendix C).

For results and a discussion, we refer to paper II.

II. THE MESON-BARYON POTENTIAL AND AMPLITUDE

The field theoretical one-particle-exchange meson-baryon
potentials in the context of a two-particle equation are defined
in this section for the case of J PC = 0−+ mesons and JP = 1/2
baryons. We approximate the Bethe-Salpeter equation by
assuming “dynamical pair suppression”; hence by neglecting
the propagation of negative-energy states and integrating out
the time variable, we end up with a three-dimensional integral
equation for the meson-baryon amplitude in the center-of-mass
(c.m.) system. The relations between the center of mass and the
relativistic amplitudes are given in the last part of this section.

A. Kinematics and relativistic amplitudes

We consider the meson-baryon or more specific the πN

and K+N reactions

Pi(q) + Bi(p, s) → Pf (q ′) + Bf (p′, s ′), (2.1)

where P stands for the pseudoscalar mesons, and B stands for
the baryons. We will refer to Pi and Pf as particles 1 and 3
and to Bi and Bf as particles 2 and 4. The four-momentum

of particle i is pi = (Ei, pi), where Ei =
√

p2
i + M2

i is the
energy and Mi is the mass of particle i. In our convention the
transition amplitude matrix M is related to the S matrix via

〈f |S|i〉 = 〈f |i〉 − i(2π )4δ4(Pf − Pi)〈f |M|i〉, (2.2)

in this convention a negative potential corresponds to attraction
and a positive potential to repulsion. Here Pi = p + q and
Pf = p′ + q ′ represent the total four-momenta for the initial
state |i〉 and the final state |f 〉. The latter refer to the two-
particle states, which we normalize in the following way (see,
e.g., Refs. [18,19]):

〈p′
1, p′

2|p1, p2〉 = (2π )32E(p1)δ3(p′
1 − p1)

× (2π )32E(p2)δ3(p′
2 − p2). (2.3)

With this normalization, the unpolarized differential cross
section in the c.m. system is given by(

dσ

d�

)
c.m.

= pf

pi

1

2

∑∣∣∣∣ 〈f |M|i〉
8π

√
s

∣∣∣∣
2

, (2.4)

where
∑

stands for the summation over the spin of the final
baryon.

In this work, the scattering particles are always on the
mass shell (i.e., p2

i = m2
i ), so parity conservation and Lorentz

invariance implies that the matrix elements of the M operator
for meson-baryon interactions, which is a 4 × 4 matrix
sandwiched between Dirac spinors, can be written in terms
of two independent amplitudes

〈f |M|i〉 = ūB ′ (p′, sf )

[
Af i(s, t, u)

+ 	q ′+ 	q
2

Bf i(s, t, u)

]
uB(p, si), (2.5)

where f and i stand for the two-particle channels πN,K+N ,
etc.... In the Dirac spinors sf , si are the magnetic spin variables,
which will be specified later. The functions Af i(s, t, u) and
Bf i(s, t, u) are Lorentz scalars and depend on the Mandelstam
invariants

s = (p + q)2 = (p′ + q ′)2,

t = (q ′ − q)2 = (p − p′)2, (2.6)

u = (p − q ′)2 = (p′ − q)2,

which satisfy the well-known (on-mass-shell) relation s + t +
u =∑4

i=1 m2
i . The total and relative four-momenta (Pc and

kc) of the initial, final, and intermediate channel (c = i, f, n)
are defined by

Pc = pc + qc, kc = µc,2 pc − µc,1qc, (2.7)

where the weights are arbitrary apart from the condition µc,1 +
µc,2 = 1. For each channel the four-momenta of the baryons
and pseudoscalar mesons (pc and qc) in terms of Pc and kc are

pc = µc,1Pc + kc, qc = µc,2 Pc − kc. (2.8)

In this work we will use µc,1 = µc,2 = 1/2. In the c.m. system
we have for on-mass-shell momenta

pc = (E(pc), pc) , qc = (E(pc),−pc),
(2.9)

Pc = (Wc, 0), kc = (µ2E(pc) − µ1E(pc), pc),

where the total energy is Wc = √
s = E(pc) + E(pc). Ob-

viously the relative three-momentum is equal to the c.m.
three-momentum of the baryon.

In general Feynman diagrams, in particular in the Green’s
functions, the particles are off the mass shell. In the following
the three-momenta for the initial and the final states are
denoted, respectively, by qi and qf . Because of translation
invariance Pi = Pf and so

√
s = Wi = Wf . As introduced

here, the total energies in the c.m. system are Wi = E(qi) +
E(qi) and Wf = E(qf ) + E(qf ).

B. Relativistic two-particle equations

The Bethe-Salpeter equation, a full two-particle relativistic
scattering equation, for the M amplitudes reads

Mf i(qf, qi ; P ) = Mirr
f i(qf , qi ; P ) +

∑
n

∫
d4kn

×Mirr
f n(qf,kn; P ) G(kn,P ) Mni(kn, qi ; P ),

(2.10)

where the interaction kernel is denoted by Mirr,G is the
two-particle Green’s function, and the summation

∑
n is over

all intermediate two-particle channels coupled to the initial and
final states. The contributions to the kernelMirr come from the
meson-baryon irreducible Feynman diagrams. The reducible
diagrams are generated by the integral equation. In deriving
Eq. (2.10) the integration over the momenta of the intermediate
particles can be replaced by an integration over the total
and relative momenta

∫ ∫
d4pnd

4qn → ∫ ∫
d4Pnd

4kn. Then,
using the conservation of the total four-momentum, one can
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perform
∫

d4Pc and separate an overall (2π )4δ4(Pf − Pi)
factor. The meson-baryon Green’s function is given in terms
of the one-particle Green’s functions

G(kn, P ) = i

(2π )4

[
1

γ (µn,1P + k) − Mn

]

×
[

1

(µn,2P − k)2 − m2
n

]
. (2.11)

It is instructive to separate the positive- and the negative-energy
components of the propagator. For that purpose, we rewrite the
one-particle propagators as follows. For the spin-1/2 baryons
the off-mass-shell propagator can be written in terms of the
Dirac spinors as

	p +M

p2 −M2 + iδ
= M

E(p)

[
�+(p)

p0 −E(p) + iδ
− �−(−p)

p0 +E(p) − iδ

]
,

(2.12)

where the projection operators �+(p) and �−(p) on the
positive- and negative-energy states are [20]

�+(p) =
∑

s

u(p, s) ⊗ ū(p, s)

2M
= 	p + M

2M
,

(2.13)

�−(p) = −
∑

s

v(p, s) ⊗ v̄(p, s)

2M
= −	p + M

2M
,

and u(p, s) and v(p, s) are the Dirac spinors for spin-1/2
particles, which are on the mass shell by definition. For the
meson propagator similar to Eq. (2.12) one has the identity

1

q2 − m2 + iδ
= 1

2E(q)

[
1

q0 − E(q) + iδ

− 1

q0 + E(q) − iδ

]
. (2.14)

Then, in the c.m. system, where P = 0 and P0 = W , the
meson-baryon Green’s function can be written as

G(kn, P ) = i

(2π )4

[
M

2E(kn)E(kn)

]

×
[

�+(kn)

µn,1W + k0
n − E(kn) + iδ

− �−(−kn)

µn,1W + k0
n + E(kn) − iδ

]

×
[

1

µn,2W − k0
n − E(kn) + iδ

− 1

µn,2W − k0
n + E(kn) − iδ

]
. (2.15)

By multiplying out Eq. (2.15) and writing the ensuing terms
using an obvious shorthand notation, the contribution of the
different propagating components is displayed fully:

G(kn, P ) = G+(kn,W ) + G−(kn,W ), (2.16)

where the superscripts (+) and (−) indicate the positive-
and negative-energy baryon states. Considering similarly the

amplitudes M
β,α

ij , one gets

M
+,+
ij = ūB ′ (pf , sf )Mij uB(pi , si),

(2.17)
M

+,−
ij = ūB ′ (pf , sf )Mij vB(pi , si), . . . ,

where the subscripts i and j refer to the different two-particle
channels. One obtains from Eqs. (2.10), (2.16), and (2.17) the
full relativistic scattering equation

M
β,α

f i (qf , qi ; P ) = (M irr)β,α

f i (qf , qi ; P )

+
∑

n

∫
d4kn(M irr)β,γ

f n (qf , kn; P )

×Gγ
n (kn, P )Mγ,α

ni (kn, qi ; P ). (2.18)

In all we have 22 = 4 amplitudes, which are coupled as
illustrated in Eq. (2.18).

The complexity of the previous equation can be reduced
considerably if we assume dynamical pair suppression, that is,
if we neglect the contribution of negative-energy states. Then
the full scattering equation, Eq. (2.18), for α = + and β = +,
reduces to the four-dimensional integral equation

M
+,+
f i (qf , qi ; P ) = (M irr)+,+

f i (qf , qi ; P )

+
∑

n

∫
d4kn(M irr)+,+

f n (qf , kn; P )

×G+
n (kn, P )M+,+

ni (kn, qi ; P ), (2.19)

with the positive-energy Green’s function

G+
n (kn, P ) ≈ i

(2π )4

[
1

4E(kn)E(kn)

]

× 1[
µ1W + k0

n − E(kn) + iδ
]

× 1[
µ2W − k0

n − E(kn) + iδ
] . (2.20)

We note that this simplification in principle brings about a
hopefully tolerable breach of relativistic invariance. However,
in Feynman diagrams particles go off the mass shell, and the
off-mass-shell behavior is not really known for mesons and
baryons, certainly not if a truncated kernel is used, which is
always the case. Then it might be better to allow positive-
energy states only.

C. Three-dimensional two-particle equations

Three-dimensional integral equations for the amplitudes
can be derived in various ways. The methods assume two-
particle unitarity as a basic ingredient. The derivation for
the meson-baryon systems follows the same procedure as
that for the baryon-baryon channels. For the latter see, for
example, Ref. [21–23]. In [24] the derivation is based entirely
on two-particle unitarity and the analyticity properties of the
amplitudes, using the N/D formalism. In the latter approach,
in essence, the Regge pole nature of meson exchange can be
apprehended most easily.
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1. On-mass-shell approximation

The simplest way to reduce the four-dimensional integral
equation, Eq. (2.19), to a three-dimensional one is to put
the intermediate particles on the mass shell [i.e., p0

n =
E(kn) = √k2

n + M2
n . q0

n = E(kn) = √k2
n + m2

n]. It can readily
be shown from Eq. (2.8) that the zero components of the
relative and total momenta kn and Pn are given by

k0
n = µn,2E(kn) − µn,1E(kn),

(2.21)
P 0

n = E(kn) + E(kn).

If we neglect the k0
n dependence of the amplitudes, and evaluate

them at the value given by Eq. (2.21), the dependence of the
four-dimensional equation on k0

n only occurs in the Green’s
function, and the k0

n integration of the Green’s function can be
done. We can define the k0

n-independent amplitudes

Tni(kn, qi ; W ) = M
+,+
ni (k̃n, qi ; P ),

Vf n(qf , kn; W ) = (M irr)+,+
f n (qf , k̃n; P ), (2.22)

where k̃0
n = µn,2E(kn) − µn,1E(kn). Now, the k0

n integration
in Eq. (2.19) can be carried through, which leads to

G0(kn; W ) =
∫ ∞

−∞
dkn0G

+
n (kn; P )

= 1

(2π )3

1

4E(kn)E(kn)

× 1

W − E(kn) − E(kn) + iδ
. (2.23)

The four-dimensional integral equation, Eq. (2.19), now results
in the three-dimensional integral equation, which is also
derived in [23],

Tf i(qf , qi ; W ) = Vf i(qf , qi ; W ) +
∑

n

∫
d3kn

(2π )3

×Vf n(qf , kn; W )G0(kn,W )Tni(kn, qi ; W ).

(2.24)

The integral equation for the T matrix, Eq. (2.24), is schemat-
ically given in Fig. 2.

We remark that the three-dimensional integral equation for
the amplitude, Eq. (2.24), is here obtained as an approximation
of the Bethe-Salpeter equation, but in the formulation of
quantum field theory (QFT) as developed by Kadyshevsky [15]
this integral equation is obtained without making any approx-
imation. In this formulation of QFT all particles, in particular
the intermediate particles, are always on the mass shell, in
contrast to the formalism of Feynman. Hence a covariant form
of pair suppression can be introduced phenomenologically.

Until this subsection the intermediate particles were in
principle off the mass shell and the total four-momentum was

T = V + V G0 T

FIG. 2. Diagrammatic representation of the meson-baryon scat-
tering equation (2.24). The solid line denotes the baryon and the
dashed line denotes the meson.

conserved. Now we have put the intermediate particles on the
mass shell, but now in principle they are off the energy shell,
which means that W 	= E(kn) + E(kn). And the total four-
momentum is not conserved, but the total three-momentum is
conserved.

Note that if the intermediate state is on the energy shell [i.e.,
W = E(kn) + E(kn)], the two poles of the Green’s function,
Eq. (2.20), coincide. The value of k0

n at which this “pinching”
occurs is given by the on-mass-shell value, Eq. (2.21),

k0
n = µn,2E(kn) − µn,1E(kn) ± iδ. (2.25)

The contribution to the integral around this value of k0
n will

be dominant, owing to the pinching of the poles. This is the
rationale for the “on-mass-shell approximation.”

2. Potentials for the three-dimensional integral equation

To calculate cross sections or phase shifts we need to
solve Eq. (2.24), which is a complex integral equation for the
T matrix, even for physical momenta. It is possible to transform
Eq. (2.24) into a Lippmann-Schwinger equation (which can be
Fourier-transformed into coordinate space). However, we do
our calculations always in momentum space, so we do not
need to solve the Lippmann-Schwinger equation but we will
always solve Eq. (2.24).

Using rotational invariance and parity conservation we
expand the T matrix, which is a 2 × 2-matrix in Pauli-
spinor space, into a complete set of Pauli-spinor invariants.
Introducing the momentum vectors

q = 1
2 (qf + qi), k = qf − qi , n̂ = q̂i × q̂f , (2.26)

where qf and qi are the final and initial c.m. three-momenta,
respectively, there are only two independent spinor invariants,
Pα , rotational invariant and invariant under parity transforma-
tions. We choose for the operators Pα in spin space

P1 = 1, P2 = σ · qi × qf , (2.27)

corresponding to the central and spin-orbit piece of the
amplitude. Now the expansion of the T matrix in spinor
invariants reads

T =
2∑
1

Tα

(
q2

f , q2
i , qf · qi

)
Pα

= f (qf , qi) + ig(qf , qi) (σ · n̂). (2.28)

For the partial wave projection we found it convenient to
rewrite the T matrix in terms of the amplitudes F and G:

T = F (qf , qi) + (σ · q̂f )G(qf , qi)(σ · q̂i). (2.29)

The relation between the “spin-nonflip” and “spin-flip” ampli-
tudes f, g and the amplitudes F,G is readily found to be

F = f + (q̂f · q̂i)g, G = −g. (2.30)

The connection between the nonrelativistic amplitudes F and
G defined in Eq. (2.29) and the relativistic amplitudes A and B
defined in Eq. (2.5) can be obtained in a straightforward way
using the explicit representation of the Dirac spinors, as will
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be shown in Sec. II D. Similar to Eq. (2.28) we expand the
potentials V, so

V =
2∑
1

Vα

(
q2

f , q2
i , qf · qi

)
Pα

= VC(qf , qi) + iVSO (qf , qi) (σ · n). (2.31)

3. Lippmann-Schwinger equation

To arrive at a Lippmann-Schwinger equation, one chooses
a new Green’s function g(k,W ) that satisfies a dispersion
relation in p2(s) rather than in s [21]. Then one obtains

g(kn,W ) = −1

2[E(kn) + E(kn)]

(
k2

n − q2
n − iδ

)−1
, (2.32)

where qn is the on-energy-shell momentum. This Green’s
function is then used in the integral equation (2.24) instead
of the Green’s function G0(kn,W ). So the corrections to
〈f |W |i〉 owing to the transformation of the Green’s functions
are neglected here; they are of higher order in the couplings
and are usually discarded in a one-boson-exchange approach.
With the substitution of g for G0, Eq. (2.23) becomes identical
to Eq. (2.19) of [21]. From now on we follow Sec. II of [21] in
detail. The transformation to the nonrelativistic normalization
of the two-particle states leads to states with

(p′
1, s

′
1; p′

2, s
′
2|p1, s1; p2, s2) = (2π )6δ3(p′

1 − p1)δs ′
1,s1

× δ3(p′
2 − p2)δs ′

2,s2 . (2.33)

For these states we define the nonrelativistic T matrix

(f |T |i) = 1√
4µ34(E3 + E4)

〈f |T |i〉 1√
4µ12(E1 + E2)

,

(2.34)

where µ12 and µ34 are the reduced masses for, respectively,
the initial and final states. Then we get from Eq. (2.24) the
Lippmann-Schwinger equation

(3, 4|T |1, 2) = (3, 4|V|1, 2) +
∑

n

∫
d3kn

(2π )3
(3, 4|V|n1, n2)

× 2µn1,n2

q2
n − k2

n + iδ
(n1, n2|T |1, 2), (2.35)

where the potential V is defined analogously to the T matrix,
Eq. (2.34). If, in the low-energy approximation, the energies
are expanded in terms of the momenta squared, the Lippmann-
Schwinger equation in momentum space can in principle be
Fourier-transformed into the equivalent Schrödinger equation
in configuration space. However, our calculations are always
in momentum space, so we always solve Eq. (2.24).

D. Relation between relativistic and c.m. amplitudes

The relation between the relativistic amplitudes A and B
and the nonrelativistic amplitudes F and G is found by making
use of the representation of the Dirac spinors [20]. Since in the
three-dimensional integral equation, Eq. (2.24), off-energy-
shell amplitudes appear, we now distinguish between the c.m.

energies of the final and initial states, defined by

W 2
f ≡ sf = (p′ + q ′)2, W 2

i ≡ si = (p + q)2. (2.36)

Then, a straightforward calculation of the operators 1 and
	Q between Dirac spinors gives the corresponding operators
between Pauli spinors:

ū(pf , sf )u(pi , si) = √
(Ef + Mf )(Ei + Mi)χ

†
f

×
[

1 − σ · pf σ · pi

(Ef + Mf )(Ei + Mi)

]
χi,

(2.37)

ū(pf , sf ) 	Qu(pi , si) = √
(Ef + Mf )(Ei + Mi)χ

†
f

×
[

1

2
[(Wf − Mf ) + (Wi − Mi)]

+ 1

2
[(Wf + Mf ) + (Wi + Mi)]

× σ · pf σ · pi

(Ef + Mf )(Ei + Mi)

]
χi,

with

Qµ = 1
2 (qf + qi)µ. (2.38)

In Eq. (2.37) we used the shorthand notations Ef = E(pf ) etc.
for the baryon variables. The meson variables were eliminated
using q0 = W − E etc. From the expressions in Eqs. (2.37),
(2.5), and (2.29) we immediately obtain the relations between
the amplitudes F,G and A,B:

F (pf , pi) = √
(Ef + Mf )(Ei + Mi)

[
A(s, t, u)

+ Wf − Mf + Wi − Mi

2
B(s, t, u)

]
,

(2.39)

G(pf , pi) = √
(Ef − Mf )(Ei − Mi)

[
− A(s, t, u)

+ Wf + Mf + Wi + Mi

2
B(s, t, u)

]
.

III. THE PARTIAL WAVE EQUATION

The NSC model is fitted to the partial wave analyses
of the πN and K+N scattering data; for this purpose the
integral equation for the meson-baryon amplitude must be
solved on the partial wave basis. This section deals with the
transformation of the integral equation on the plane wave basis
to the integral equation on the partial wave (LSJ) basis. From
the unitarity of the scattering matrix, the relation between the
partial wave amplitude and the partial wave phase shifts is
derived.
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A. Partial wave analysis1

The states for the meson-baryon system are characterized
by J,L, where J is the total angular momentum and L is
the orbital angular momentum. The latter, for fixed J value,
can assume the values L = J ∓ 1/2, since the spin of the
baryons is S = 1/2. Distinguishing between the partial waves
with parity P = (−)J−1/2 and P = (−)J+1/2, using rotational
invariance, we can write the potential matrix elements on the
LSJ basis in the following way:

(i) P = (−)L+ , L+ = J − 1/2:

(qf ; L′J ′M ′|V |qi ; LJM) = 4πV J,L+ (L′, L)δJ ′J δM ′MδL′L,

(3.1)
(ii) P = (−)L− , L− = J + 1/2:

(qf ; L′J ′M ′|V |qi ; LJM) = 4πV J,L− (L′, L) δJ ′J δM ′MδL′L.

(3.2)
Because of parity conservation in strong interactions, the
L+ = J − 1/2 and the L− = J + 1/2 waves obviously are
decoupled. So mixing between states with different angular
momenta never occurs.

The spherical wave functions in momentum space with
quantum numbers J,M,L, S = 1/2 are

YM
JL(p̂, s) =

∑
m,µ

C
L 1

2 J

mµMYL
m (p̂)χ ( 1

2 )
µ (s), (3.3)

where s is a spin variable for the baryons. For example, s
denotes the helicity of the baryon, or the projection of the spin
along the normal n̂ to the scattering plane, or the projection of
the spin along the z axis. In this work, we will use the latter
spin variable. Then, in Eq. (3.3) we have χ

(1/2)
µ (s) = δs,µ. The

central and noncentral potential matrix elements on the LSJ
basis are derived in detail in Appendix A1; the results are as
follows:

(1) CentralP1 = 1:

(qf ; L′J ′M ′|F (qf , qi)|qi ; LJM)

= 4πFL(qf , qi)δL′LδJ ′,J δM ′,M, (3.4)

(2) NoncentralP ′
2 = (σ · q̂f )(σ · q̂i):

(qf ; L′J ′M ′|G(qf , qi)|qi ; LJM)

= 4π
∑
L′′

aL′,L′′GL′′(qf , qi)aL′′,LδJ ′,J δM ′,M, (3.5)

where the partial wave projections FL and GL as well as the
matrix aL′,L are defined in Appendix A. The partial wave
potentials V J,L+ and V J,L− in Eqs. (3.1) and (3.2) can be
expressed in terms of the partial wave expansions of F and G.
As expected from parity conservation, the partial wave
potentials are diagonal in L = (J ± 1/2) space:

V J,L± = FL± + GL±±1. (3.6)

1In this section we use the nonrelativistic normalization given by
Eq. (2.33) of the two-particle states.

The partial wave potentials can also be expressed in terms
of the partial wave projections of the central and spin-orbit
potentials. The relation between F and G and the central and
spin-orbit potentials is given by Eq. (2.30),

F = V C + cos θV SO, G = −V SO. (3.7)

The partial wave potentials in terms of the partial wave
projections of the central and spin-orbit potentials becomes

V J,Lpm =
{

V C
L+ , L+ = 0,

V C
L± + L±+1

2L±+1V SO
L±+1

+ L±
2L± + 1

V SO
L±−1 − V SO

L±±1, L±�1. (3.8)

B. Partial wave integral equations and the unitarity relations

1. Partial wave integral equations

First, we write explicitly the integral equation (2.24) in
terms of the plane wave states

(qf , sf |T (
√

s)|qi , si)

= (qf , sf |V (
√

s)|qi , s) +
∑

n

∫
d3kn

(2π )3
(qf , sf |V (

√
s)

× |kn, sn)G0(kn,
√

s)(kn, sn|T (
√

s)|qi , si), (3.9)

where, apart from spin space, the amplitude T, the Green’s
function G0, and the potential V are matrices in the two-particle
channel space. The partial wave T matrix for L = Li = Lf

defined by

TJ,L(qf , qi ;
√

s) = (qf ; LJM|T (
√

s)|qi ; LJM), (3.10)

which is independent of Jz = M owing to rotation invariance,
is related to the T matrix on the plane wave basis by

TJ,L(qf , qi ;
√

s) =
∑
sf ,si

∫
d3q ′

f

(2π )3

∫
d3q ′

i

(2π )3
(qf ; LJM|q′

f , sf )

× (q′
f , sf |T (

√
s)|q′

i , si)(q′
i , si |qi ; LJM).

(3.11)

The integral equation for the partial wave amplitude now
becomes

TJ,L(qf, qi ;
√

s) = VJ,L(qf , qi ;
√

s) +
∑

n

∫ ∞

0

k2
ndkn

(2π )3

×VJ,L(qf, qn;
√

s)G0(kn,
√

s)TJ,L(qn, qi;
√

s).

(3.12)

2. Partial wave unitarity relations and phase shifts

From the unitarity of the S matrix, S†S = 1, the M matrix
in Eq. (2.2) satisfies the condition

2�〈f |M|i〉 = −(2π )4
∑

n

δ4(Pf − Pn)

×〈f |M†|n〉〈n|M|i〉. (3.13)

In deriving Eq. (3.13) one factors out δ4(Pf − Pi). The
previous equation for the c.m. amplitudes can be written more
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explicitly (see, e.g., Eq. (II.1.14) of [23]) as

2�(qf , sf |T |qi , si)

= − 1

(2π )2

∑
n

∫
d3kn

4E(kn)E(kn)
(qf , sf |T †|kn, sn)

× δ(
√

s − E(kn) − E(kn))(kn, sn|T |qi , si), (3.14)

where the summation
∑

n is over all intermediate two-particle
channels coupled to the initial and final states. Here, si, sf ,
and sn are the spin labels for the initial, final, and intermediate
states, respectively. The momentum of the intermediate state
kn is such that E(kn) + E(kn) = √

s. The unitarity relation for
the partial wave amplitude then becomes

2�TJ,L(qf , qi) = −
∑

n

qn

16π2
√

s
T

†
J,L(qf , qn)TJ,L(qn, qi),

(3.15)

where qn is the on-energy-shell momentum of the intermediate
state. Introducing the partial wave amplitudes FJ,L by the
definition

TJ,L = −32π2√sFJ,L, (3.16)

we find the simple unitarity relation for these amplitudes:

�FJ,L(qf , qi) =
∑

c

qcFJ,L(qf , qc)†FJ,L(qc, qi). (3.17)

For the single-channel case qc = qi = qf = q, phase shifts
can be defined for the partial wave amplitude FJ,L in the usual
way:

FJ,L = 1

q
sin δJ,L(q) exp(iδJ,L(q)). (3.18)

The relation of FJ,L with the partial wave S matrix is

SJ,L = e2iδJ,L = 1 + 2iqFJ,L. (3.19)

Now the expression for the differential cross section becomes

dσ

d�
= |f̃ |2 + |g̃|2, (3.20)

where the commonly used spin-nonflip and spin-flip ampli-
tudes f̃ and g̃ are given by

f̃ = f

8π
√

s
=
∑
L

[
(L + 1)FL+ 1

2 ,L + LFL− 1
2 ,L

]
PL(cos θ ),

(3.21)

g̃ = g

8π
√

s
=
∑
L

[
FL+ 1

2 ,L − FL− 1
2 ,L

]
sin θ

dPL(cos θ )

d cos θ
.

The expressions for the total cross section, which is found by
integrating the differential cross section, and the polarization
are

σ = 4π
∑

J

2J + 1

2
(|FJ,L+|2 + |FJ,L−|2),

(3.22)

P (θ ) = 2�(f̃ g̃∗)

|f̃ |2 + |g̃|2 .

IV. BARYON- AND MESON-EXCHANGE POTENTIALS

The effective local interaction Hamiltonians that are
used to calculate the one-hadron-exchange potentials are
defined in this section. The Lorentz structure of the in-
teraction is given and the SUf (3) structure is reviewed
in paper II, since we extend the NSC πN model to the
NSC K+N model. The amplitudes of the one-hadron-
exchange Feynman diagrams are given and a partial
wave projection is made to find the partial wave potentials.

A. The interaction Hamiltonians

The potentials we use are obtained from the t-channel
one-boson-exchange (OBE) and the u- and s-channel
baryon-exchange Feynman diagrams. In the t channel
we consider the exchange of vector, scalar and tensor
mesons and in the u and s channel we consider the ex-
change of JP = 1/2+, 3/2+, and 1/2− baryons. In this
work we also include Pomeron-exchange diagrams, where
the physical nature of the Pomeron can be understood
in the light of QCD as a two-gluon-exchange effect; see
[25]. The contribution of the Pomeron will almost completely
cancel the contribution of the isoscalar scalar meson σ .

The OBE Feynman diagrams for meson-baryon interactions
contain a meson-baryon-baryon vertex and a meson-meson-
meson vertex. These vertices are determined by the effective
local interaction Hamiltonian densities. The Lorentz structures
of the local interaction densities for the meson-baryon-baryon
(MBB) vertices we use are listed in the following:

(i) J PC = 0−+ pseudoscalar mesons: For the pseudoscalar
mesons we use the pseudovector interaction Hamiltonian

HPV = f

mπ+
ψ̄f γ5γµψi ∂µφP , (4.1)

which is scaled with the charged-pion mass to have a
dimensionless pseudovector coupling constant.

(ii) J PC = 1− vector mesons: The interaction Hamiltonian is
given in terms of the electric and magnetic interaction:

HV = gV ψ̄f γµψiφ
µ

V + fV

4M ψ̄f σµνψi

(
∂µφν

V − ∂νφ
µ

V

)
,

(4.2)

where usually the proton mass is used for M to scale
the magnetic part of the interaction Hamiltonian. The
antisymmetric tensor operator used here is defined as
σµν = i

2 [γµ, γν].
(iii) J PC = 0++ scalar mesons: The interaction Hamiltonian

is

HS = gSψ̄f ψiφS. (4.3)

Since we include Pomeron exchange in the NSC model,
scalar-meson exchange is canceled for the greater part;
hence it is possible to satisfy the soft-pion theorem while
including scalar-meson exchange.
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(iv) J PC = 2++ tensor mesons: For the tensor mesons we use
the interaction Hamiltonian

HT =
[

i

4
ψ̄f (γµ

↔
∂ν +γν

↔
∂µ)ψiF1

− 1

4
(ψ̄f

↔
∂µ

↔
∂ν ψi)F2

]
φ

µν

T , (4.4)

where the coupling constants F1 and F2 are related to the
dimensionless Pauli coupling constants by GT,1 = MF1

and GT,2 = M2F2. By using the Gordon decomposition,
the Pauli coupling constants are related to the Dirac cou-
pling constants by gT = GT,1 + GT,2 and fT = −GT,2.

(v) JP = 3/2+ resonance-baryon-pseudoscalar meson: The
local interaction density for the JP = 3/2+ resonance
-nucleon-pseudoscalar meson (Y ∗NP ) interaction is

HY ∗NP = −i
f ∗

mπ+
ψ̄N ψY ∗,µ∂µφP , (4.5)

where the charged-pion mass makes the coupling dimen-
sionless. We use the Rarita-Schwinger formalism for the
spin-3/2 resonances (see, e.g., Refs. [19,26]).

(vi) JP = 1/2− resonance-baryon-pseudoscalar meson: The
local interaction Hamiltonian for the JP = 1/2−
resonance-nucleon-pseudoscalar meson (RNP) interac-
tion is

HRNP = f ∗(v)

mπ+
ψ̄NγµψR ∂µφP , (4.6)

where ψR denotes the JP = 1/2− resonance, which
has opposite parity to the nucleon. The JP = 1/2−
resonances we consider in this work are the S11(1555)
in the πN system and the �(1405) in the KN system.

Here φ denotes the pseudoscalar-, vector-, scalar-, and
tensor-meson fields, respectively, and ψ denotes the baryon
fields. The Pomeron-baryon-baryon interaction density we use
has the same Lorentz structure as the scalar mesons.

We note that, by making use of the Dirac equation
(γ µ∂µ + M)ψ = 0, the pseudovector interaction Hamiltonian
density in Eq. (4.1) is “equivalent” to the pseudoscalar
density HPS = igψ̄f γ5ψiφP for on-mass-shell particles. The
coupling constants are then related according to g/(MBf

+
MBi

) = f/mπ+ . Analogously, we find that the vector coupling
Hamiltonian density in Eq. (4.6) is “equivalent” to the scalar
density HS = ig∗(s)ψ̄NψRφP for on-mass-shell particles. The
coupling constants are in this case related according to
g∗(s)/(MN − MR) = f ∗(v)/mπ+ .

The Lorentz structure of the local interaction density for
triple-meson (MMM) vertices is schematically given in the
following and are discussed in more detail in paper II:

(i) J PC = 1− vector mesons:

HPPV = gPPV φ
µ

V (φP

↔
∂ µ φP ). (4.7)

(ii) J PC = 0++ scalar mesons:

HPPS = gPPSφS(φP φP ). (4.8)

(iii) J PC = 2++ tensor mesons:

HPPT = 2gPPT

mπ+
φ

µν

T (∂µφP )(∂νφP ). (4.9)

Concerning the flavor structure of the interaction densities,
we assume that the coupling constants are related via SUf (3)
symmetry, as outlined in paper II, here the relevant isoscalar
and isospin factors are given. However, the potentials will
break SUf (3) symmetry dynamically, since we use the
physical masses of the particles.

B. The relativistic invariant amplitudes

Using the previously defined interaction Hamiltonians, we
give, except for the isospin and isoscalar factors, the contri-
butions to the relativistic invariant amplitudes A(s, t, u) and
B(s, t, u) in Eq. (2.5) for the elastic (e.g., πN and K+N ) chan-
nels, that is, Mi = Mf ≡ M,mi = mf = m, where Mf and
MI are the final and initial baryon masses and mf and mi are
the final and initial pseudoscalar-meson masses, respectively.
Amplitudes for the general mass case are listed in
Appendix B.

1. Baryon-exchange amplitudes

For JP = 1/2+ baryon exchange the relativistic amplitudes
are

Aps(s, t, u) = − g14g23

u − M2
B + iε

[MB − M],

Bps(s, t, u) = − g14g23

u − M2
B + iε

,

(4.10)

Apv(s, t, u) = − f14f23
/
m2

π+

u − M2
B + iε

[u(M + MB)

− M3 − M2MB],

Bpv(s, t, u) = − f14f23
/
m2

π+

u − M2
B + iε

[u + 2MMB + M2],

for pseudoscalar (ps) and pseudovector (pv) coupling, re-
spectively; MB is the mass of the exchanged baryon. The
JP = 1/2+ baryon direct pole gives rise to the relativistic
amplitudes

Aps(s, t, u) = − g12g34

s − M2
B + iε

[MB − M],

Bps(s, t, u) = g12g34

s − M2
B + iε

,

(4.11)

Apv(s, t, u) = − f12f34
/
m2

π+

s − M2
B + iε

[s(M + MB)

− M3 − M2MB],

Bpv(s, t, u) = f12f34
/
m2

π+

s − M2
B + iε

[s + 2MMB + M2],
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for pseudoscalar and pseudovector coupling, respectively. For
JP = 1/2− baryon exchange the relativistic amplitudes are

As(s, t, u) = g
∗(s)
14 g

∗(s)
23

u − M2
B + iε

[MB + M],

Bs(s, t, u) = − g
∗(s)
14 g

∗(s)
23

u − M2
B + iε

,

(4.12)

Av(s, t, u) = f
∗(v)
14 f

∗(v)
23

/
m2

π+

u − M2
B + iε

[u(−M + MB)

+ M3 − M2MB],

Bv(s, t, u) = f
∗(v)
14 f

∗(v)
23

/
m2

π+

u − M2
B + iε

[−u + 2MMB − M2],

for scalar (s) and vector (v) coupling, respectively; MB is the
mass of the exchanged baryon. The JP = 1/2− baryon direct
pole gives rise to the relativistic amplitudes

As(s, t, u) = g
∗(s)
12 g

∗(s)
34

s − M2
B + iε

[MB + M],

Bs(s, t, u) = g
∗(s)
12 g

∗(s)
34

s − M2
B + iε

,

(4.13)

Av(s, t, u) = f
∗(v)
12 f

∗(v)
34

/
m2

π+

s − M2
B + iε

[s(−M + MB)

+M3 − M2MB],

Bv(s, t, u) = −f
∗(v)
12 f

∗(v)
34

/
m2

π+

s − M2
B + iε

[−s + 2MMB − M2],

for scalar and vector coupling, respectively. The JP = 3/2+
resonance-exchange relativistic amplitudes are more compli-
cated:

AY ∗ (s, t, u) = f ∗
14f

∗
23/m2

π+

u − M2
Y ∗ + iε

[
[t − 2m2]

2
(M + MY ∗ )

+ MY ∗

3
[u − M2] + 1

6MY ∗
[ − u2 + 2Mu

×(M + MY ∗ ) − 2M3MY ∗ − M4 + m4]

+ 1

6M2
Y ∗

[M2 − m2 − u]2(M + MY ∗ )

]
,

(4.14)

BY ∗ (s, t, u) = f ∗
14f

∗
23

/
m2

π+

u − M2
Y ∗ + iε

[
− [t − 2m2]

2
+ 1

3MY ∗

× [(M + MY ∗ )(2MMY ∗ − m2) − uM + M3]

− 1

6M2
Y ∗

[u − M2 + m2]2

]
,

where MY ∗ is the mass of the exchanged resonance. The
JP = 3/2+ resonance direct pole gives rise to the relativistic

amplitudes

AY ∗ (s, t, u) = f ∗
12f

∗
34

/
m2

π+

s − M2
Y ∗ + iε

[
[t − 2m2]

2
(M + MY ∗ )

+ MY ∗

3
[s − M2] + 1

6MY ∗
[ − s2 + 2Ms

× (M + MY ∗ ) − 2M3MY ∗ − M4 + m4]

+ 1

6M2
Y ∗

[M2 − m2 − s]2(M + MY ∗ )

]
,

(4.15)

BY ∗ (s, t, u) = − f ∗
12f

∗
34

/
m2

π+

s − M2
Y ∗ + iε

[
− [t − 2m2]

2
+ 1

3MY ∗

× [(M + MY ∗ )(2MMY ∗ − m2) − sM + M3]

− 1

6M2
Y ∗

[s − M2 + m2]2

]
.

2. Meson- and Pomeron-exchange amplitudes

The relativistic amplitudes for the t-channel Pomeron
exchange, scalar-meson exchange, vector-meson exchange,
and tensor-meson exchange are

AP (s, t, u) = gPPP gP

M , BP (s, t, u) = 0,

AS(s, t, u) = gPPSgS

t − m2
S + iε

, BS(s, t, u) = 0,

AV (s, t, u) = gPPV

t − m2
V + iε

fV

2M [s − u],

(4.16)

BV (s, t, u) = −2
gPPV

t − m2
V + iε

[
gV + M

MfV

]
,

AT (s, t, u) = gPPT /mπ+

t − m2
T + iε

[
1

4
(s − u)2F2 − 1

6
[4m2 − t]

×
[

2MF1 + 1

2
(4M2 − t)F2

] ]
,

BT (s, t, u) = gPPT /mπ+

t − m2
T + iε

[s − u]F1,

where mS,mV , and mT are the masses of the exchanged scalar
meson, vector meson, and tensor meson, respectively.

Here we notice that for the meson-exchange and Pomeron-
exchange amplitudes an extra factor of 2 must be added to the
amplitudes if both the initial and final state contain a π or η;
this is not the case for any other combination of pseudoscalar
mesons in the initial and final states. For elastic πN scattering,
for example, an extra factor of 2 is added to the ρ exchange,
Pomeron-exchange, and σ exchange amplitudes.

C. Partial wave potentials

As discussed in Sec. III we solve the integral equation for
the T matrix on the partial wave basis, Eq. (3.12). And in
paper II we fit the NSC model to the πN partial wave
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analysis [1] and the K+N partial wave analysis [5]. For this
purpose we need to calculate the partial wave projection of
the potentials, Eq. (3.6). In our approximation, the potentials
are given by the invariant amplitudes A and B, Eqs. (4.10)–
(4.16), of the one-meson-exchange and one-baryon-exchange
Feynman diagrams.

Until this point, we did not mention the need for form factors
to regulate the high-energy behavior (i.e., the short distance
behavior) of the potentials, but in fact the kernel of the integral
equation without form factors does not satisfy the Fredholm
condition,

∫∫
dpdk|K(p, k)|2 < ∞, in general. Furthermore

we have derived our one-meson-exchange and one-baryon-
exchange potentials from QFT, which is in principle only valid
for point particles, whereas mesons and baryons have internal
structure. Therefore we need to take into account the extended
size of the mesons and baryons by means of a form factor. Since
the ground-state wave functions of the quarks are Gaussian in
many quark models, form factors of the Gaussian type are used
in the NSC model. For t-channel exchanges we multiply the
potentials by the form factor

F (�) = e−(pf −pi )2/�2
, (4.17)

where pi and pf are the c.m. three-momenta for the initial and
final states, respectively; that is, at both vertices we have used
the difference between the final and initial three-momenta. �

is a cutoff mass, which will be determined in the fit to the
experimental phases.

For u- and s-channel exchanges, the difference between the
final and initial three-momenta of the baryon is used, giving
the form factor

F (�) = e−(p2
f +p2

i )/2�2
. (4.18)

This form factor obviously does not depend on the scattering
angle θ , which simplifies the partial wave projection. For the
u and t channel we rewrite the denominators of the potentials
in the form

1

t − m2
= −1

2pf pi

1

zt − x
,

(4.19)
1

u − m2
= −1

2pf pi

1

zu + x
,

where x = cos(θ ) and θ is the angle between the final and
initial three-momenta pf and pi . Here we have defined the zt

and zu factors as

zt = 1

2pf pi

[
m2 + p2

f + p2
i − 1

4
[Ei − Ef − ωi + ωf ]2

]
,

zu = 1

2pf pi

[
m2 + p2

f + p2
i − 1

4
[Ei + Ef − ωi − ωf ]2

]
,

(4.20)

where Ef,i are the baryon energies, ωf,i are the meson energies,
and m is the mass of the exchanged particle. For positive and
real momenta (i.e., for open channels), we have z > 1. Now it
is clear that the potentials V (α) of Eq. (2.31), where α stands

for central or spin orbit, can be expanded in x as2

V (α)(pf , pi) = 1

2pf pi

[X(α) + xY (α) + x2Z(α)]
F (�t )

zt − x
,

V (α)(pf , pi) = 1

2pf pi

[X(α) + xY (α) + x2Z(α)]
F (�u)

zu + x
,

V (α)(pf , pi) = [X(α) + xY (α)]
F (�s)

s − M2
B

,

(4.21)

for t-, u- and s-channel exchanges, respectively, for all particles
that are exchanged. The coefficients X(α), Y (α) and Z(α) can be
found easily by writing out the x dependence of the invariant
amplitudes A and B; these are listed in Appendix C for each
type of exchange.

The partial wave potentials V
(α)
L are found by inverting the

partial wave expansion Eq. (A2), giving

V
(α)
L (pf , pi) = 1

2

∫ 1

−1
dxPL(x)V (α)(pf , pi). (4.22)

The partial wave potentials now take the form

V
(α)
L (pf , pi) =

[
X(α) F (�s)

s − M2
B

δL,0 + Y (α) F (�s)

s − M2
B

δL,1

3

]

V
(α)
L (pf , pi) = 1

2pf pi

[(
X(α) + ztY

(α) + z2
t Z

(α)
)

× UL(�t, zt ) − (Y (α) + ztZ
(α))RL(�t, zt )

− Z(α)SL(�t, zt )
]
, (4.23)

V
(α)
L (pf , pi) = (−1)L

2pf pi

[(
X(α) − zuY

(α) + z2
uZ

(α))
× UL(�u, zu) − (−Y (α) + zuZ

(α))RL(�u, zu)

− Z(α)SL(�u, zu)
]
,

for s-, t-, and u-channel exchanges, respectively. We have
defined the basic partial wave projections UL,RL, SL, and
TL in terms of the Legendre polynomials PL(x) and the form
factors

UL(�, z) = 1

2

∫ 1

−1
dx

PL(x)F (�)

z − x
,

RL(�, z) = 1

2

∫ 1

−1
dxPL(x)F (�),

(4.24)

SL(�, z) = 1

2

∫ 1

−1
dxPL(x)xF (�),

TL(�, z) = 1

2

∫ 1

−1
dxPL(x)x2F (�).

2For more complicated exchanges (e.g., J PC = 3/2+ resonance),
the expansions of the potentials have an additional term of higher
order in x, for the t- and u-channel x3U (α), and for the s-channel
x2Z(α).

We notice that a similar expansion for F and G instead of V (C)

and V (SO) would be a little simpler. However, we will use the central
and spin-orbit potentials in light of a momentum space version of the
NSC model.
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The factor (−)L appearing in the u-channel partial wave
potentials, which is the result of changing the integration
variable x → −x in the Legendre polynomial, is typical for
exchange forces. In this way it can be seen that the total partial
wave potential is a linear combination of a direct and an
exchange potential, V (±) = Vd ± Ve, and the corresponding
T matrix is T (±) = Td ± Te. The amplitudes Td and Te do not
satisfy an integral equation, but the two linear combinations
T (±) = Td ± Te do.

We notice that if the form factor does not depend on x
(in case of u-channel potentials) or if we consider the limit
� → ∞ [i.e., F (�) → 1], the basic partial wave projections
defined in Eq. (4.24) are proportional to the simple functions

UL(�, z) ∝ QL(z),

RL(�, z) ∝ δL,0,
(4.25)

SL(�, z) ∝ 1
3δL,1,

TL(�, z) ∝ 1
3δL,0 + 2

15δL,2,

where QL(z) is the Legendre function of the second kind,
which is an analytic function of its argument except for a cut
on the real axis running from –1 to 1, as is clear from Eq. (4.24).
In view of Eq. (4.20), the cut is entered only for on-energy-
shell potentials below threshold, but we always calculate the
on-energy-shell potentials above threshold, so we will never
reach the cut.

In the NSC πN model we will include s-channel baryon-
exchange diagrams, which are in principle separable diagrams,
having the form

V (pf , pi) = �(pf )�(pi)√
s ± M0

. (4.26)

Writing out the partial wave potential for the � pole (P33 wave)
explicitly, using Eq. (3.6) and Eq. (4.23),

V33 = f 2
πN�

m2
π+

1

3

√
(Ei + Mi)(Ef + Mf )

×pf pi

1√
s − M0

, (4.27)

we see that this potential is of the separable kind indeed.
We need to be careful in including the s-channel diagrams

in a model that has been renormalized, that is, in which
(renormalized) physical coupling constants and masses are
used. It is not possible to simply add the s-channel diagrams
to the other ones, because iterations of s-channel diagrams
will give contributions to the vertex and self-energy. The way
these diagrams are included in the NSC model is described in
paper II; here we show that bare masses and coupling constants
should be used in the s-channel diagrams and that these bare
parameters are determined by requiring that (i) the T matrix
has a pole at the physical mass

√
s = Me and (ii) the residue

at the pole is given by the physical coupling constant.

V. SUMMARY

Analogous to the Nijmegen soft-core one-boson-exchange
NN and YN models, we have derived the NSC model for

the interaction between pseudoscalar mesons and baryons
(πN,K+N , etc.).

For the general mass case the meson-baryon potentials in
the context of a relativistic two-particle equation, the Bethe-
Salpeter equation, are defined in Sec. II. The potentials consist
of one-meson-exchange and one-baryon-exchange Feynman
diagrams. The Bethe-Salpeter equation is approximated by
assuming dynamical pair suppression, hence by neglecting the
propagation of negative-energy states, and by integrating over
the time variable, giving a three-dimensional integral equation
for the scattering amplitude, which is a generalization of the
Lippmann-Schwinger equation.

A transformation of this equation on the plane wave basis
to the partial wave (LSJ) basis is described in Sec. III. A one-
dimensional integral equation for the partial wave scattering
amplitude is derived, which is decoupled for each partial wave,
because of parity conservation in strong interactions.

In Sec. IV the interaction Hamiltonians are given and
the resulting one-baryon-exchange and one-meson-exchange
invariant amplitudes have been derived; these amplitudes
define the partial wave potentials used in the calculations.
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APPENDIX A: MATRIX ELEMENTS ON THE LSJ BASIS

1. Partial wave amplitudes

Here we derive the central and noncentral potential matrix
elements on the LSJ basis in Eqs. (3.4) and (3.5).

(i) CentralP1 = 1:

(qf ; L′J ′M ′|F (qf , qi)|qi ; LJM)

=
∑
sf ,si

∫
d3q ′

f

(2π )3

∫
d3q ′

i

(2π )3
(qf ; L′J ′M ′|q′

f , sf )

× (q′
f , sf |Fop|q′

i , si) (q′
i , si |qi, LJM). (A1)

We now use the matrix elements

(q′
f , sf |Fop|q′

i , si) = F (q′
f , q′

i)δsf ,si

= 4π

∞∑
l=0

Fl(q
′
f , q ′

i)

×
l∑

n=−l

Y l
n(q̂′

f )Y l
n(q̂′

i)
∗δsf ,si

,

(A2)

(q′, s|q, LJM) = (2π )3 δ(q ′ − q)

q2
YM

JL(q̂′, s).

Then, substituting Eq. (A2) into Eq. (A1) and performing the
momentum and angular integrals and summations, we find

(qf ; L′J ′M ′|F (qf , qi)|qi ; LJM)

= 4πFL(qf , qi)δL′,LδJ ′,J δM ′,M . (A3)
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(ii) NoncentralP ′
2 = (σ · q̂f )(σ · q̂i):

(qf ; L′J ′M ′|G(qf , qi)|qi ; LJM)

=
∑
sf ,si

∫
d3q ′

f

(2π )3

∫
d3q ′

i

(2π )3
(q ′

f ; L′J ′M ′|q′
f , sf )

× (q′
f , sf |Gop|q′

i , si) (q′
i , si |qi, LJM), (A4)

where, analogously to Eq. (A2),

(q′
f , sf |Gop|q′

i , si)

= 4π

∞∑
l=0

Gl(q
′
f , q ′

i)
l∑

n=−l

Y l
n(q̂′

f )Y l
n(q̂′

i)
∗

·
∑

s

(sf |(σ · q̂′
f )|s)(s|(σ · q̂′

i)|si). (A5)

Using Eq. (A2) and substituting Eq. (A5) into Eq. (A4), and
performing the momentum integrals, we find

(qf ; L′J ′M ′|Gop|qi ; LJM)

= 4π
∑

sf ,si ,s

∑
l

Gl(qf , qi)
l∑

n=−l

∫
d�̂qf

YM ′
J ′L′(q̂f , sf )∗

× (sf |(σ · q̂f )|s)Y l
n(q̂f )

∫
d�̂qi

Y l
n(q̂i)

∗

× (s|(σ · q̂i)|si)YM
JL(q̂i , si). (A6)

In the two-dimensional L = J ∓ 1/2 space, the (σ · q̂) opera-
tor has the matrix elements (see Appendix A2),∑

s ′
(s|(σ · q̂)|s ′)YM

JL(q̂, s ′)

=
∑
L′

YM
JL′ (q̂, s)aL′,L, where aL′,L =

(
0 −1

−1 0

)
. (A7)

The angular integrals in Eq. (A6) can now be performed easily.
Then, the result for the noncentral amplitude is

(qf ; L′J ′M ′|G|qi ; LJM)

= 4π
∑
L′′

aL′,L′′GL′′ (qf , qi)aL′′,LδJ ′,J δM ′,M . (A8)

2. LSJ representation operator

Next we derive Eq. (A7). The spherical wave functions in
momentum space with quantum numbers J,L, S are for spin-0
spin-1/2 given by [27]

YM
JL(p̂, s) =

∑
m,µ

C
L 1

2 J

m µ MYL
m (p̂)χ

( 1
2 )

µ (s), (A9)

where χ is the baryon spin wave function. Using the definition
for YM

JL, Eq. (A9), we have∑
s

(s ′|(σ · p̂)|s)YM
JL(p̂, s)

= (−)mp̂m(s ′|σ−m|s)C
L 1

2 J

ml µ MYL
ml

(p̂)χ
( 1

2 )
µ (s)

= (−)mp̂m(s ′|σ−m|s)C
L 1

2 J

ml s MYL
ml

(p̂), (A10)

where we used the convention of summation over repeated
indices and quantization along the z axis, which defines the
spin variables s, s ′. Now, we use the expressions

p̂mYL
ml

(p̂) =
√

4π

3
Y 1

m(p̂)YL
ml

(p̂)

=
√

4π

3

[
3(2L + 1)

4π (2L′ + 1)

]1/2

CL 1 L′
0 0 0 CL 1 L′

ml m m′
l
Y L′

m′
l
(p̂),

(s ′|σ−m|s) =
√

3C
1
2 1 1

2
s −m s ′ , (A11)

(−)m = −
√

3C1 1 0
m −m 0.

From the definition of the 9j coefficient [28], these formulas
give for Eq. (A10) the result∑

s

(s ′| (σ · p̂) |s)YM
JL(p̂, s)

= −3
∑
L′

[
(2L + 1)

(2L′ + 1)

]1/2

CL 1 L′
0 0 0




L 1
2 J

1 1 0

L′ 1
2 J


YM

JL′(p̂, s ′).

(A12)

Evaluating Eq. (A12), one finds for the matrix a in Eq. (A7),

a =
(

0 −1

−1 0

)
.

APPENDIX B: RELATIVISTIC INVARIANT AMPLITUDES

In this appendix the contributions from the various
Feynman diagrams to the relativistic invariant amplitudes
Af i(s, t, u) and Bf i(s, t, u), defined in Eq. (2.5), are given.
The results are valid for elastic as well as inelastic reactions.
For details of the derivation we refer to [29].

1. Momentum-space baryon-exchange diagrams

(a). JP = 1/2+ baryon exchange.

(i) For pseudoscalar coupling

Aps = − g14g23

u − M2
B + iε

[
−Mf + Mi

2
+ MB

]
,

(B1)

Bps = − g14g23

u − M2
B + iε

.
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(ii) For pseudovector coupling

Apv = − f14f23
/
m2

π+

u − M2
B + iε

[
u

(
Mf + Mi

2
+ MB

)

− Mf + Mi

2
Mf Mi − M2

f + M2
i

2
MB

]
,

(B2)

Bpv = − f14f23
/
m2

π+

u − M2
B + iε

× [u + (Mf + Mi)MB + Mf Mi].

(b). JP = 1/2+ pole diagram. Using crossing symmetry
[30], we can cross the results of the u-channel baryon
exchange into the s channel and obtain the invariant amplitudes
Af i(s, t, u) and Bf i(s, t, u) for the pole diagram. We have to
replace q → −q ′ and q ′ → −q, which means that we have
to make the substitutions u ↔ s,m2

f ↔ m2
i and add a minus

sign to the amplitude B because of Eq. (2.5). The JP = 1/2+
pole amplitudes are given by the following:

(i) For pseudoscalar coupling

Aps = − g12g34

s − M2
B + iε

[
−Mf + Mi

2
+ MB

]
,

(B3)

Bps = g12g34

s − M2
B + iε

.

(ii) For pseudovector coupling:

Apv = − f12f34
/
m2

π+

s − M2
B + iε

[
s

(
Mf + Mi

2
+ MB

)

−Mf + Mi

2
Mf Mi − M2

f + M2
i

2
MB

]
,

(B4)

Bpv = f12f34
/
m2

π+

s − M2
B + iε

[s + (Mf + Mi)MB + Mf Mi].

(c). JP = 1/2− baryon exchange.

(i) For scalar coupling

As = − g
∗(s)
14 g

∗(s)
23

u − M2
B + iε

[
−Mf + Mi

2
− MB

]
,

(B5)

Bs = − g
∗(s)
14 g

∗(s)
23

u − M2
B + iε

.

(ii) For vector coupling

Av = −f
∗(v)
14 f

∗(v)
23

/
m2

π+

u − M2
B + iε

[
u

(
Mf + Mi

2
− MB

)

− Mf + Mi

2
Mf Mi + M2

f + M2
i

2
MB

]
,

(B6)

Bv = −f
∗(v)
14 f

∗(v)
23

/
m2

π+

u − M2
B + iε

× [u − (Mf + Mi)MB + Mf Mi].

(d). JP = 1/2− pole diagram. Applying crossing sym-
metry again we find, similar to the JP = 1/2+ baryon pole
diagram, the invariant amplitudes for the JP = 1/2− baryon
pole diagram.

(i) For scalar coupling

As = − g
∗(s)
12 g

∗(s)
34

s − M2
B + iε

[
−Mf + Mi

2
− MB

]
,

(B7)

Bs = g
∗(s)
12 g

∗(s)
34

s − M2
B + iε

.

(ii) For vector coupling

Av = −f
∗(v)
12 f

∗(v)
34

/
m2

π+

s − M2
B + iε

[
s

(
Mf + Mi

2
− MB

)

− Mf + Mi

2
Mf Mi + M2

f + M2
i

2
MB

]
,

(B8)

Bv = f
∗(v)
12 f

∗(v)
34

/
m2

π+

s − M2
B + iε

× [s − (Mf + Mi)MB + Mf Mi].

(e). JP = 3/2+ baryon exchange.

AY ∗ = f ∗
14f

∗
23

/
m2

π+

u − M2
Y ∗ + iε

×
[

t − m2
f − m2

i

2

[
Mf + Mi

2
+ MY ∗

]

+ 1

6M2
Y ∗

[
M2

f − m2
i − u

] [
M2

i − m2
f − u

]

× Mf + Mi

2
+ MY ∗

3

[
u − M2

f + M2
i

2

]

+ 1

3

[
Mf + Mi

2
u −

(
M2

f + M2
i

)
(Mf + Mi)

4

+
(
m2

i − m2
f

)
(Mf − Mi)

4

]
+ 1

6MY ∗

×
[(

M2
f − m2

i − u
) (Mi

2
(Mi − Mf ) − m2

f

)

− (
M2

i − m2
f − u

) (Mf

2
(Mi − Mf ) + m2

i

)]]
,

(B9)

BY ∗ = f ∗
14f

∗
23

/
m2

π+

u − M2
Y ∗ + iε

[
− t − m2

f − m2
i

2

− 1

6M2
Y ∗

[
u − M2

f + m2
i

] [
u − M2

i + m2
f

]

+ MY ∗

3
(Mf + Mi) − m2

f + m2
i − (Mf + Mi)2

6
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+ 1

6MY ∗

[
Mf

(
M2

i − m2
f − u

)

+ Mi

(
M2

f − m2
i − u

)] ]
.

(f). JP = 3/2+ pole diagram. Applying crossing symme-
try again we find, similar to the JP = 1/2+ baryon pole
diagram, the following invariant amplitudes for the JP = 3/2+
baryon pole diagram:

AY ∗ = f ∗
12f

∗
34

/
m2

π+

s − M2
Y ∗ + iε

×
[

t − m2
f − m2

i

2

[
Mf + Mi

2
+ MY ∗

]

+ 1

6M2
Y ∗

[
M2

f − m2
f − s

] [
M2

i − m2
i − s

]

×Mf + Mi

2
+ MY ∗

3

[
s − M2

f + M2
i

2

]

+ 1

3

[
Mf + Mi

2
s −

(
M2

f + M2
i

)
(Mf + Mi)

4

+
(
m2

f − m2
i

)
(Mf − Mi)

4

]
+ 1

6MY ∗

×
[(

M2
f − m2

f − s
) (Mi

2
(Mi − Mf ) − m2

i

)

− (M2
i − m2

i − s
) (Mf

2
(Mi − Mf ) + m2

f

)]]
,

(B10)

BY ∗ = − f ∗
12f

∗
34

/
m2

π+

s − M2
Y ∗ + iε

[
− t − m2

f − m2
i

2

− 1

6M2
Y

[
s − M2

f + m2
f

] [
s − M2

i + m2
i

]

+ MY ∗

3
(Mf + Mi) − m2

f + m2
i − (Mf + Mi)2

6

+ 1

6MY ∗

[
Mf

(
M2

i − m2
i − s

)

+ Mi

(
M2

f − m2
f − s

)] ]
.

2. Momentum-space meson-exchange diagrams

(a). JP = 0++ scalar-meson exchange.

AS = gPPSgS

t − m2
S + iε

,

(B11)
BS = 0.

(b). JP = 1−− vector-meson exchange.

AV = gPPV

t − m2
V + iε

[
gV

m2
f − m2

i

m2
V

× (Mi − Mf ) + s − u

2M fV

]
,

(B12)

BV = −2
gPPV

t − m2
V + iε

[
fV

Mf + Mi

2M + gV

]
.

(c). JP = 2++ tensor-meson exchange.

AT = gPPT /mπ+

�2 − m2
T + iε

[(
s − u

2

)2

F2

− 1

2m2
T

(
m2

f − m2
i

)
(s − u)

[
(Mi − Mf )F1

+ (M2
i − M2

f

)
F2
]+ 1

2m4
T

(
m2

f − m2
i

)2

× (M2
i − M2

f

) [
(Mi − Mf )F1 + M2

i − M2
f

2
F2

]

− 4

3

[
−Q2 + 1

4m2
T

(
m2

f − m2
i

)2]

×
[

− 1

2

(
(Mf + Mi)F1 + 1

2
(p′ + p)2F2

)

+ M2
i − M2

f

2m2
T

(
(Mi − Mf )F1

+ 1

2

(
M2

i − M2
f

)
F2

)] ]
,

(B13)

BT = gPPT /mπ+

�2 − m2
T + iε

[
(s − u) F1

−
(
m2

f − m2
i

)(
M2

i − M2
f

)
m2

T

F1

]
.

3. Momentum-space Pomeron exchange

AP = gPPP gP

M ,

(B14)
BP = 0.

APPENDIX C: X, Y, Z COEFFICIENTS

Here we list the explicit expressions for the expansion
coefficients X(α), Y (α), Z(α), and U (α) of the partial wave
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potentials, Eq. (4.23), for each type of exchange in the
s, u, and t channels. We have introduced the notation N±

f i =√
(Ei ± Mi)(Ef ± Mf ).

1. Baryon-exchange

(a). JP = 1/2+ baryon exchange.

(i) For pseudoscalar coupling

X
(C)
B = g14g23N

+
f i

[
MB + Wf + Wi

2
− Mf − Mi

]
,

Y
(C)
B = g14g23N

−
f i

[
−MB + Wf + Wi

2
+ Mf + Mi

]
, (C1)

X
(SO)
B = −g14g23N

−
f i

[
−MB + Wf + Wi

2
+ Mf + Mi

]
.

(ii) For pseudovector coupling

X
(C)
B = −f14f23

m2
π+

N+
f i

[(
−Mf + Mi

2
− MB

)

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)

+ Mf + Mi

2
Mf Mi + M2

f + M2
i

2
MB

− Wf + Wi − Mf − Mi

2

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

+ (Mf + Mi)MB + Mf Mi

)]
,

Y
(C)
B = −f14f23

m2
π+

[
N+

f i

[
−
(

−Mf + Mi

2
− MB

)

+ Wf + Wi − Mf − Mi

2

]
2pf pi + N−

f i

×
[

−
(

−Mf + Mi

2
− MB

)

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)

− Mf + Mi

2
Mf Mi − M2

f + M2
i

2
MB

− Wf + Wi + Mf + Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i + (Mf + Mi)MB + Mf Mi

)]]
,

Z
(C)
B = −f14f23

m2
π+

N−
f i

[
− Mf + Mi

2

− MB + Wf + Wi + Mf + Mi

2

]
2pf pi,

X
(SO)
B = f14f23

m2
π+

N−
f i

[
−
(

− Mf + Mi

2
− MB

)

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)

− Mf + Mi

2
Mf Mi − M2

f + M2
i

2
MB

−Wf + Wi + Mf + Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i + (Mf + Mi)MB + Mf Mi

)]
,

Y
(SO)
B = f14f23

m2
π+

N−
f i

[
− Mf + Mi

2
− MB

+ Wf + Wi + Mf + Mi

2

]
2pf pi. (C2)

(b). JP = 1/2+ pole term.

(i) For pseudoscalar coupling

X
(C)
B = −g12g34N

+
f i

[
MB − Wf + Wi

2

]
,

Y
(C)
B = g12g34N

−
f i

[
MB + Wf + Wi

2

]
, (C3)

X
(SO)
B = −g12g34N

−
f i

[
MB + Wf + Wi

2

]
.

(ii) For pseudovector coupling

X
(C)
B = f12f34

m2
π+

N+
f i

[(
−Mf + Mi

2
− MB

)
s

+ Mf + Mi

2
Mf Mi + Wf + Wi − Mf − Mi

2
× [s + (Mf + Mi)MB + Mf Mi]

+ M2
f + M2

i

2
MB

]
,

Y
(C)
B = f12f34

m2
π+

N−
f i

[
−
(

−Mf + Mi

2
− MB

)
s

− Mf + Mi

2
Mf Mi + Wf + Wi − Mf − Mi

2
× [s + (Mf + Mi)MB + Mf Mi]

− M2
f + M2

i

2
MB

]
, (C4)

X
(SO)
B = −f12f34

m2
π+

N−
f i

[
−
(

−Mf + Mi

2
− MB

)
s

− Mf + Mi

2
Mf Mi + Wf + Wi − Mf − Mi

2
× [s + (Mf + Mi)MB + Mf Mi]

− M2
f + M2

i

2
MB

]
.
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(c). JP = 1/2− baryon exchange.

(i) For scalar coupling

X
(C)
B = g

∗(s)
14 g

∗(s)
23 N+

f i

[
−MB + Wf + Wi

2
− Mf − Mi

]
,

Y
(C)
B = g

∗(s)
14 g

∗(s)
23 N−

f i

[
MB + Wf + Wi

2
+ Mf + Mi

]
, (C5)

X
(SO)
B = −g

∗(s)
14 g

∗(s)
23 N−

f i

[
MB + Wf + Wi

2
+ Mf + Mi

]
.

(ii) For vector coupling

X
(C)
B = −f

∗(v)
14 f

∗(v)
23

m2
π+

N+
f i

[(
− Mf + Mi

2
+ MB

)

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)

+ Mf + Mi

2
Mf Mi − M2

f + M2
i

2
MB

− Wf + Wi − Mf − Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i − (Mf + Mi)MB + Mf Mi

)]
,

Y
(C)
B = −f

∗(v)
14 f

∗(v)
23

m2
π+

[
N+

f i

[
−
(

− Mf + Mi

2
+ MB

)

+ Wf + Wi − Mf − Mi

2

]
2pf pi + N−

f i

×
[

−
(

− Mf + Mi

2
+ MB

)

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)

− Mf + Mi

2
Mf Mi + M2

f + M2
i

2
MB

− Wf + Wi + Mf + Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i − (Mf + Mi)MB + Mf Mi

)]]
,

Z
(C)
B = −f

∗(v)
14 f

∗(v)
23

m2
π+

N−
f i

[
− Mf + Mi

2
+ MB

+ Wf + Wi + Mf + Mi

2

]
2pf pi, (C6)

X
(SO)
B = f

∗(v)
14 f

∗(v)
23

m2
π+

N−
f i

[
−
(

− Mf + Mi

2
+ MB

)

×
((

Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i

)

− Mf + Mi

2
Mf Mi +

M2
f + M2

i

2
MB

− Wf + Wi + Mf + Mi

2

((
Ef + Ei − ωf − ωi

2

)2

− p2
f − p2

i − (Mf + Mi)MB + Mf Mi

)]
,

Y
(SO)
B = f

∗(v)
14 f

∗(v)
23

m2
π+

N−
f i

[
− Mf + Mi

2
+ MB

+ Wf + Wi + Mf + Mi

2

]
2pf pi.

(d). JP = 1/2− pole term.

(i) For scalar coupling

X
(C)
B = g

∗(v)
12 g

∗(v)
34 N+

f i

[
MB + Wf + Wi

2

]
,

Y
(C)
B = g

∗(v)
12 g

∗(v)
34 N−

f i

[
−MB + Wf + Wi

2

]
, (C7)

X
(SO)
B = −g

∗(v)
12 g

∗(v)
34 N−

f i

[
−MB + Wf + Wi

2

]
.

(ii) For vector coupling

X
(C)
B = f

∗(v)
12 f

∗(v)
34

m2
π+

N+
f i

[(
− Mf + Mi

2
+ MB

)
s

+ Mf + Mi

2
Mf Mi + Wf + Wi − Mf − Mi

2
× [s − (Mf + Mi)MB + Mf Mi]

− M2
f + M2

i

2
MB

]
,

Y
(C)
B = f

∗(v)
12 f

∗(v)
34

m2
π+

N−
f i

[
−
(

− Mf + Mi

2
+ MB

)
s

− Mf + Mi

2
Mf Mi + Wf + Wi − Mf − Mi

2
× [s − (Mf + Mi)MB + Mf Mi]

+ M2
f + M2

i

2
MB

]
, (C8)

X
(SO)
B = −f

∗(v)
12 f

∗(v)
34

m2
π+

N−
f i

[
−
(

− Mf + Mi

2
+ MB

)
s

− Mf + Mi

2
Mf Mi + Wf + Wi − Mf − Mi

2
× [s − (Mf + Mi)MB + Mf Mi]

+ M2
f + M2

i

2
MB

]
.

(e). JP = 3/2+ baryon exchange.

X
(C)
Y ∗ = −f ∗

14f
∗
23

m2
π+

N+
f i

[
A0 + B0

2
(Wf + Wi − Mi − Mf )

]
,
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Y
(C)
Y ∗ = −f ∗

14f
∗
23

m2
π+

[
N+

f i

[
A1 + B1

2
(Wf + Wi − Mf − Mi)

]

+ N−
f i

[
−A0 + B0

2
(Wf + Wi + Mf + Mi)

] ]
,

Z
(C)
Y ∗ = −f ∗

14f
∗
23

m2
π+

[
N+

f i

[
A2 + B2

2
(Wf + Wi − Mf − Mi)

]

+ N−
f i

[
−A1 + B1

2
(Wf + Wi + Mf + Mi)

] ]
,

U
(C)
Y ∗ = f ∗

14f
∗
23

m2
π+

N−
f i

[
− A2 + B2

2
(Wf + Wi + Mf + Mi)

]
,

X
(SO)
Y ∗ = f ∗

14f
∗
23

m2
π+

N−
f i

[
−A0 + B0

2
(Wf + Wi + Mi + Mf )

]
,

Y
(SO)
Y ∗ = f ∗

14f
∗
23

m2
π+

N−
f i

[
−A1 + B1

2
(Wf + Wi + Mi + Mf )

]
,

Z
(SO)
Y ∗ = f ∗

14f
∗
23

m2
π+

N−
f i

[
−A2 + B0

2
(Wf + Wi − Mf − Mi)

]
,

(C9)

where A0, A1, A2, B0, B1, and B2 depend on the mass and
momentum of the particles as follows:

A0 = 1

12M2
Y ∗

(Mf + Mi)
(−2pf pizu + M2

Y ∗
)2

+
(

− 1

6M2
Y ∗

(
M2

f + M2
i − m2

f − m2
i

) Mf + Mi

2

+ MY ∗

3
+ Mf + Mi

6
− 1

6MY ∗

(
Mi

2
(Mi − Mf )

− m2
f + Mf

2
(Mf − Mi) − m2

i

)) (−2pf pizu + M2
Y ∗
)

+ 1

2

(
Mf + Mi

2
+ MY ∗

)(
(Ef − Ei)2 + (ωf − ωi)2

2

− p2
f − p2

i

)
− m2

f + m2
i

2

(
Mf + Mi

2
+ MY ∗

)

+ 1

12M2
Y ∗

(Mf + Mi)
(
M2

f − m2
i

) (
M2

i − m2
f

)

− MY ∗

6

(
M2

f + M2
i

)+ 1

12

((
m2

i − m2
f

)
(Mf − Mi)

− (M2
f + M2

i

)
(Mf + Mi)

)+ 1

6MY ∗

( (
M2

f − m2
i

)

×
(

Mi

2
(Mi − Mf ) − m2

f

)
+ (M2

i − m2
f

)

×
(

Mf

2
(Mf − Mi) − m2

i

))
,

A1 =
[

− 1

12M2
Y ∗

(Mf + Mi)2
(−2pf pizu + M2

Y ∗
)

+ 1

6M2
Y ∗

(
M2

f + M2
i − m2

f − m2
i

) Mf + Mi

2

− MY ∗

3
− Mf + Mi

6
+ 1

6MY ∗

(
Mi

2
(Mi − Mf )

− m2
f + Mf

2
(Mf − Mi) − m2

i

)

+ 1

2

(
Mf + Mi

2
+ MY ∗

)]
2pf pi,

A2 = 1

12M2
Y ∗

(Mf + Mi)(2pf pi)
2,

(C10)

B0 = m2
f + m2

i

2
− 1

6M2
Y ∗

(
M2

f − m2
i

) (
M2

i − m2
f

)

+ MY ∗

3
(Mf + Mi) − m2

f + m2
i − (Mf + Mi)2

6

+ 1

6MY ∗

(
Mf

(
M2

i − m2
f

)+ Mi

(
M2

f − m2
i

))
− 1

2

(
(Ef − Ei)2 + (ωf − ωi)2

2
− p2

f − p2
i

)

− 1

6M2
Y ∗

(−2pf pizu + M2
Y ∗
)2

+
(

1

6M2
Y ∗

(
M2

f + M2
i − m2

f − m2
i

)

− 1

6MY ∗
(Mf + Mi)

) (−2pf pizu + M2
Y ∗
)
,

B1 =
[

1

3M2
Y ∗

(−2pf pizu + M2
Y ∗
)

− 1

6MY ∗

(
1

MY ∗

(
M2

f + M2
i − m2

f − m2
i

)
− (Mf + Mi)

)
− 1

2

]
2pf pi,

B2 = − 1

6M2
Y ∗

(2pf pi)
2.

(f). JP = 3/2+ pole term.

X
(C)
Y ∗ = f ∗

12f
∗
34

m2
π+

N+
f i

[
A0 + B0

2
(Wf + Wi − Mi − Mf )

]
,

Y
(C)
Y ∗ = f ∗

12f
∗
34

m2
π+

[
N+

f i

[
A1 + B1

2
(Wf + Wi − Mf − Mi)

]

+ N−
f i

[
−A0 + B0

2
(Wf + Wi + Mf + Mi)

] ]
,

Z
(C)
Y ∗ = f ∗

12f
∗
34

m2
π+

N−
f i

[
− A1 + B1

2

×(Wf + Wi + Mf + Mi)

]
, (C11)
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X
(SO)
Y ∗ = −f ∗

12f
∗
34

m2
π+

N−
f i

[
−A0 + B0

2
(Wf + Wi + Mi + Mf )

]
,

Y
(SO)
Y ∗ = −f ∗

12f
∗
34

m2
π+

N−
f i

[
−A1 + B1

2
(Wf + Wi + Mi + Mf )

]
.

where A0, A1, B0, and B1 depend on the mass and momentum
of the particles as follows:

A0 = 1

2

(
(Ef − Ei)2 + (ωf − ωi)2

2
− p2

f − p2
i − m2

f − m2
i

)

×
(

Mf + Mi

2
+ MY ∗

)
+ 1

6M2
Y ∗

(
M2

f − m2
f − s

)
× (M2

i − m2
i − s

) Mf + Mi

2

+ 1

3MY ∗

(
s − 1

2

(
M2

f + M2
i

))+ 1

3

(
Mf + Mi

2
s

−
(
M2

f + M2
i

)
(Mf + Mi)

4
+ m2

f − m2
i

4

(
Mf − Mi

))

+ 1

6MY ∗

((
M2

f − m2
f − s

) (Mi

2
(Mi − Mf ) − m2

i

)

− (M2
i − m2

i − s
) (Mf

2
(Mi − Mf ) + m2

f

))
,

A1 = 1

2

[
Mf + Mi

2
+ MY ∗

]
2pf pi,

(C12)

B0 = 1

2

(
(Ef − Ei)2 + (ωf − ωi)2

2
−p2

f − p2
i − m2

f − m2
i

)

− 1

6M2
Y ∗

(
s − M2

f + m2
f

) (
s − M2

i + m2
i

)

−MY ∗

3
(Mf + Mi) + m2

f + m2
i − (Mf + Mi)2

6

− 1

6MY ∗

(
Mf

(
M2

i − m2
i − s

)+ Mi

(
M2

f − m2
f − s

))
,

B1 = pf pi.

2. Meson exchange

(a). JP = 0++ scalar-meson exchange.

X
(C)
S = −gPPSgSN

+
f i,

Y
(C)
S = gPPSgSN

−
f i, (C13)

X
(SO)
S = −gPPSgSN

−
f i .

(b). JP = 1− vector-meson exchange.

X
(C)
V = −gPPV gV N+

f i

[(
m2

f − m2
i

)
(Mi − Mf )

m2
V

− (Wf + Wi − Mi − Mf )

]
− gPPV fV N+

f i

×
[

− Mf + Mi

2M (Wf + Wi − Mi − Mf )

+ (ωf + ωi)(Ef + Ei) + p2
f + p2

i

2M

]
,

Y
(C)
V = −gPPV gV N−

f i

[
−
(
m2

f − m2
i

)
(Mi − Mf )

m2
V

− (Wf + Wi + Mi + Mf )
]− gPPV fV

[
N+

f i

pf pi

M

+N−
f i

[
−Mf + Mi

2M (Wf + Wi + Mi + Mf )

− (ωf + ωi)(Ef + Ei) + p2
f + p2

i

2M

]]
,

Z
(C)
V = gPPV fV N−

f i

pf pi

M , (C14)

X
(SO)
V = gPPV gV N−

f i

[
−
(
m2

f − m2
i

)
(Mi − Mf )

m2
V

−(Wf + Wi + Mf + Mi)

]
+ gPPV fV N−

f i

×
[

− Mf + Mi

2M (Wf + Wi + Mf + Mi)

− (ωf + ωi)(Ef + Ei) + p2
f + p2

i

2M

]
,

Y
(SO)
V = −gPPV fV N−

f i

pf pi

M .

(c). JP = 2++ tensor-meson exchange.

X
(C)
T = −gPPT F1

mπ+
N+

f i

[
A0 + B0

2
(Wf + Wi − Mi − Mf )

]
,

Y
(C)
T = −gPPT F1

mπ+

[
N+

f i

[
A1 + B1

2
(Wf + Wi − Mf − Mi)

]

+ N−
f i

[
−A0 + B0

2
(Wf + Wi + Mf + Mi)

]]
,

Z
(C)
T = −gPPT F1

mπ+

[
N+

f iA2 + N−
f i

[
−A1 + B1

2

× (Wf + Wi + Mf + Mi)

] ]
,

U
(C)
T = gPPT F1

mπ+
N−

f iA2, (C15)

X
(SO)
T = gPPT F1

mπ+
N−

f i

[
−A0 + B0

2
(Wf + Wi + Mi + Mf )

]
,

Y
(SO)
T = gPPT F1

mπ+
N−

f i

[
−A1 + B1

2
(Wf + Wi + Mi + Mf )

]
,

Z
(SO)
T = −gPPT F1

mπ+
N−

f iA2.
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where A0, A1, A2, B0, and B1 depend on the mass and
momentum of the particles as follows:

A0 = F2

F1


( (ωi + ωf )(Ef + Ei) + p2

f + p2
i

2

)2

+ 1

4m4
T

(
m2

f − m2
i

)2(
M2

i − M2
f

)2
− (ωi + ωf )(Ef + Ei) + p2

f + p2
i

2m2
T

(
m2

f − m2
i

)

× (M2
i − M2

f

)− 1

3

(
−2
(
m2

f + m2
i

)+
(
m2

f − m2
i

)2
m2

T

+ (Ef − Ei)2 + (ωf − ωi)2

2
− p2

f − p2
i

)

×
((

M2
i − M2

f

)2
4m2

T

− M2
f + M2

i

2
+ 1

4

(
− p2

f − p2
i

+ (Ef − Ei)2 + (ωf − ωi)2

2

))]

+
[

− (ωi + ωf )(Ef + Ei) + p2
f + p2

i

2m2
T

(
m2

f − m2
i

)

× (
Mi − Mf

)+ 1

2m4
T

(
m2

f − m2
i

)2(
M2

i − M2
f

)

× (Mi − Mf ) − 1

3

(
−2
(
m2

f + m2
i

)+
(
m2

f − m2
i

)2
m2

T

−p2
f − p2

i + (Ef − Ei)2 + (ωf − ωi)2

2

)

×
((

M2
i − M2

f

)
2m2

T

(Mi − Mf ) − 1

2
(Mf + Mi)

)]
,

A1 = F2

F1

[
(ωi + ωf )(Ef + Ei) + p2

f + p2
i

−
(
m2

f − m2
i

)(
M2

i − M2
f

)
m2

T

− 1

6

(
− 2
(
m2

f + m2
i

)

+
(
m2

f − m2
i

)2
m2

T

+ (Ef − Ei)2 + (ωf − ωi)2

2

−p2
f − p2

i

)
−
(
M2

i − M2
f

)2
6m2

T

+ M2
f + M2

i

3

− 1

6

(
(Ef − Ei)2 + (ωf − ωi)2

2
− p2

f − p2
i

)]
pf pi

+
[
−
(
m2

f − m2
i

)
(Mi − Mf )

m2
T

−
(
M2

i − M2
f

)
(Mi − Mf )

3m2
T

+ Mf + Mi

3

]
pf pi,

(C16)
A2 = −1

3
p2

f p2
i

F2

F1
,

B0 = (ωi + ωf )(Ef + Ei) + p2
f + p2

i

−
(
m2

f − m2
i

)(
M2

i − M2
f

)
m2

T

,

B1 = 2pf pi.

3. Pomeron exchange

X
(C)
P = gPPP gP N+

f i,

Y
(C)
P = −gPPP gP N−

f i, (C17)

X
(SO)
P = gPPP gP N−

f i .
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