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Distribution functions for partons in nuclei
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We suggest that a previously conjectured relation between structure functions (SF) for nuclei and nucleons
also links distribution functions (df) for partons in a nucleus and in nucleons. The above proposal ensures in
principle identical results for SF F A

2 , whether computed with effective hadronic or partonic degrees of freedom.
In practice there are differences, because of different input for F n

2 . We show that the thus-defined nuclear parton
distribution functions (pdf) respect standard sum rules. We observe close agreement between moments of nuclear
SF, computed in the hadronic and partonic descriptions. Despite substantial differences in the participating SF, we
nevertheless find approximately the same EMC ratios in the two representations, as well as reasonable agreement
with data. The apparent correlation between the above deviations is ascribed to a sum rule for FA

2 . We conclude
with a discussion of alternative approaches to nuclear pdf.
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I. INTRODUCTION

A large body of data are presently available on cross
sections for inclusive lepton scattering from nuclei and
subsequently on extracted nuclear structure functions (SF) FA

k .
Standard descriptions of those data used hadron degrees of
freedom throughout. A prototype, and possible first example
of such an appraoch, is the description of inclusive scattering
on a D by Atwood and West. Using the plane wave impulse
approximation (PWIA), the authors proved a generalized
convolution of the type [1]:

FA
k = fN/A FN

k , (1)

with fN/A related to the nucleon momentum distribution in the
target A.

Much later, in one of first articles on EMC ratios,
Akulinichev et al., related distribution functions (df) for quarks
in a nucleon, nucleons in nuclei, and quarks in nuclei through
a similar convolution of seemingly different, but obviously
related, content [2]:

fq/A = fN/A fq/N . (2)

Both above-mentioned descriptions are effective ones, using
specific dynamics in terms of the chosen degrees of freedom.

A host of variations of the above basic ideas have since
been proposed for the direct computation of nuclear SF as
well as for an indirect analysis of EMC ratios in either the
hadron or the parton representation. For instance, Frankfurt
and Strikman mention nuclear parton distribution functions
(pdf), but do not relate those to the pdf of a nucleon as in
Eq. (1) [3]. Other approaches parametrize information on
SF for Q2

0. Borrowing perturbative quantum chromodynamics
(pQCD) notions, a parametrized form for FA

2 at a given Q2
0 is

evolved to desired Q2 values. With knowledge of FD
2 , EMC

ratios can be constructed. A comparison with data ultimately
determines the parameters in FA

2 for Q2
0 [4,5].

Next we mention quark models for nuclei, which have
been used in direct calculations of df [6]. Finally, there are
approaches where the effect of a nuclear medium on a nucleon
or a quark is replaced by mean fields [7–9].

In the present article we suggest a simple, nearly natural
choice for effective nuclear pdf, which are free of adjustable
parameters, satisfy sum rules either exactly or accurately, and
produce the SF FA

2 , as computed in a hadronic base. The Q2

dependence of those nuclear pdf is prescribed by the right-hand
side of Eq. (2) and bears as yet no relation to pQCD and
evolution from a given scale Q2

0. In the conclusion we compare
some of the above-mentioned alternative proposals with our
choice. We also emphasize the need for a QCD foundation
of effective descriptions, simultaneously pointing out their
simplicity and accuracy of the latter.

II. A FEW ESSENTAILS

We start with the cross section per nucleon for the
scattering of unpolarized electrons with energy E over an
angle θ :

d2σA(E; θ, ν)

d�dν
= σM (E; θ, ν)

[
2xM

Q2
FA

2 (x,Q2)

+ 2

M
FA

1 (x,Q2)tan2(θ/2)

]
, (3)

where σM is the Mott cross section and FA
1,2(x,Q2) are

nuclear SFs per nucleon. Those depend on the squared
four-momentum transfer q2 = −Q2 = −(|q|2 − ν2) and on
the Bjorken variable 0 � x = Q2/2Mν � A in terms of the
nucleon mass M.

Next we make explicit the specific relation [Eq. (1)]
between nuclear and nucleonic SF [10]

FA
k (x,Q2) =

∫ A

x

dz

z2−k
f PN,A(z,Q2)F 〈N〉

k

(
x

z
,Q2

)
(4)

F
〈N〉
k = (

ZF
p

k + NFn
k

)/
2A

=
(

1 − δN

A

)
F

p

k +
(

1 + δN

A

)
Fn

k , (5)
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with F
〈N〉
k a nucleon SF, obtained by weighting F

p,n

k with
Z,N . δN/A denotes the relative neutron excess. We already
mentioned that Eq. (4) can be proved in the PWIA.

Our approach draws on the Gersch-Rodriguez-Smith (GRS)
theory for inclusive scattering of nonrelativistic projectiles
[11], in which case the linking f PN,A is the SF of a fictitious
nucleus composed of, in principle, fully interacting pointlike
nucleons. Figures 1–5 in Ref. [12] show shapes of f PN,A

for various targets and a range of Q2. Eq. (4) formulates a
nonperturbative theory with on-mass shell-nucleon SFs FN

k

and a covariant generalization of the GRS theory for f [13].
All are in terms of hadronic degrees of freedom and their
dynamics.

Equation (4), which is postulated to hold for finite Q2 >

Q2
0 [10], misses contributions coming from virtual mesons

[14] and (anti-)screening effects [15]. Those are negligible for
x >∼ 0.2, to which range we limit our discussion. An extensive
body of data in the ranges x >∼ 0.2 ; Q2 >∼ 2.5 GeV2 appears
accounted for by the relation in Eq. (4) [16–20].

We shall need below the separation of the nucleon SF
FN

k = F
N,NE
k + F

N,NI
k into nucleon elastic and inelastic

components, which correspond to absorption processes of
a virtual photon on a N, γ ∗ + N → N , (NE), or γ ∗ +
N → (hadrons,partons) (NI). Elastic components for a N
are proportional to the standard combinations of squared
electromagnetic form factors GN

E,M (Q2) and vanish, unless
x = 1. With [G̃〈N〉]2 = [Z(Gp)2 + N (Gn)2]/A, one has the
following:

F
N,NE
1 (x,Q2) = 1

2
δ(1 − x)

[
G̃

〈N〉
M (Q2)

]2
(6)

F
N,NE
2 (x,Q2) = δ(1 − x)

×
[
G̃

〈N〉
E (Q2)

]2 + η
[
G̃

〈N〉
M (Q2)

]2

1 + η
. (7)

The corresponding nuclear NE (QE) components from Eq. (4)
are as follows:

F
A,NE
1 (x,Q2) = f PN,A(x,Q2)

2

[
G̃

〈N〉
M (Q2)

]2]
(8)

F
A,NE
2 (x,Q2) = xf PN,A(x,Q2)

×
[
G̃

〈N〉
E (Q2)

]2 + η
[
G̃

〈N〉
M (Q2)

]2

1 + η
. (9)

In particular for the lightest nuclei the normalized f PN,A peak
sharply around x ≈ 1, and the same holds for the above QE
components F

A,NE
k (x,Q2). The above summarizes elements

of a hadronic description of nuclear SF: we now turn to a
partonic representation.

III. A SIMPLE CHOICE FOR NUCLEAR PARTON
DISTRIBUTION FUNCTIONS

We start with the leading-order twist contributions to the
dominant NI components of nucleon SF for finite Q2. For
simplicity we occasionally omit one or both arguments x,Q2.
Decomposing quark df q = qv + q̄ into valence and sea quarks

parts, one has upon neglect of heavy quark contributions the
following:

F
p

2 = x

9
(4uv + dv + 8ū + 2d̄ + 2s)

(10)
Fn

2 = x

9
(uv + 4dv + 2ū + 8d̄ + 2s).

Similarly for the “average” nucleon, defined as the Z,N

weighted p, n we obtain:

F
〈N〉
2 ≡ x

∑
i

aiqi = 5x

18

[
uv + dv + 2ū + 2d̄ + 4

5
s

− 3δN

5A
(uv − dv + 2ū − 2d̄)

]
, (11)

Next we turn to effective nuclear pdf, which ought to reproduce
nuclear SF FA

k , just as proton pdf do for F
p

k , Eq. (10). That
demand is insufficient for a unique determination, and we
exploit apparent freedom. First we choose FA

2 (qA) to be the
same combination of df of partons in a nucleus, as the above
F

〈N〉
2 , Eq. (11) for a nucleus

FA
2 = x

∑
i

aiq
A
i = 5x

18

[
uA

v + dA
v + 2ūA + 2d̄A + 4

5
sA

− 3δN

5A

(
uA

v − dA
v + 2ūA − 2d̄A

)]
. (12)

Upon substitution into Eq. (4), and using Eq. (11), one finds

FA
2 = x

∑
i

ai

(
f PN,AqA

i

)
. (13)

Comparison with Eq. (12) does still not define a unique
expressions for each individual pdf qA

i . Guided by Eq. (4),
we make the following second choice, which does not mix
valence nor sea quarks

xqA
i (x,Q2) ≡

∫ A

x

dzf PN,A(z,Q2)

(
x

z

)
qi

(
x

z
,Q2

)

xq̄A
i (x,Q2) ≡

∫ A

x

dzf PN,A(z,Q2)

(
x

z

)
q̄i

(
x

z
,Q2

)
(14)

xgA(x,Q2) ≡
∫ A

x

dzf PN,A(z,Q2)

(
x

z

)
g

(
x

z
,Q2

)
.

Equations (14) in the PWIA with one f for all partons had
already be suggested before Ref. [21]. We are aware that
the above equations mix partonic notions with f, which is
computed in a hadronic representation.

In view of the meager experimental information on nonva-
lence parton distributions in nuclei, we shall also investigate
changes when nonvalence df are not affected by the nuclear
medium (cf. [4,5]), thus

q̄A ≡ q̄; sA = s̄A = s; gA = gN, (15)

Equations (12) and (14) manifestly produce the same FA
2 in

the parton and the hadronic representation, provided one uses
exactly the same input f PN,A and F

〈N〉
2 in both.

This is actually not the case, in particular not for Fn
2

in F
〈N〉
2 . In the absence of direct information, the Coor-

dinated Theoretical-Experimental Project on QCD (CTEQ)
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FIG. 1. The ratio F n
2 (x,Q2)/F p

2 (x, Q2) in
the hadronic (drawn lines) and the pdf represen-
tation (dashes); upper and lower curves corre-
spond to Q2 = 3.5 GeV2 and Q2 = 5.0 GeV2.

parametrizations exploit data on FD
2 , using the “primitive”

estimate Fn
2 (x) = 2FD

2 (x) − F
p

2 (x). However, that approxi-
mation increasingly deteriorates for x >∼ (0.25 − 0.30) and its
use for larger x leads to misfits with data.

As to the options in the version CTEQ6 [22] we selected
the one, with F

p

2 , closest to the Arneodo parametrization of
resonance-averaged data [23]. This appears possible for x <∼
0.6–0.7. SU3 provides Fn

2 in terms of qi, q̄i .
In contrast, in the hadronic approach to Fn

2 , one stays as
close as possible to data, which contain F

p

2 and additional
SFs. For the former there are available parametrizations of
actual data [24]. Unfortunately, the range Q2 >∼ 3.5 GeV2

of our interest borders the limits of validity of the above
parametrizations, and one has no choice but to use the
above-mentioned Arneodo representation of F

p

2 [23]. As to
Fn

2 , it has been obtained for all x by an indirect extraction
method, which also requires the currently accepted FF of the
p [25] (see for instance Ref. [26]). Figure 1 for C = Fn

2 /F
p

2
in the two representations, Q2 = 3.5, 5.0 GeV2, displays the
above-mentioned differences, which increase with x. Still
lacking accurate experimental information on separate proton
form factors causes uncertainties, whereas absence of data on
Gn

E for even medium Q2 forces one to use extrapolations of
low Q2 parametrizations [25].

A second subtle difference between the representations is
the validity of Eq. (4) and (14). The former one is explicitly
limited to the nucleonic part of FA

2 , i.e., roughly for x >∼
0.2, whereas the latter is conceivably valid out to lower x
(cf. Ref. [27]).

Despite the fact that our nuclear pdf are effective ones that
are as yet not related to pQCD, pdf are constrained by sum
rules. We first check those, that are directly related to the
normalization of f PN,A:

(i) For any linear combination C of df for valence quarks one
has the following:

∫ A

0
dxCA =

∫ 1

0
dxCN (16)

∫ A

0
dx

(
uA

v + dA
v

) =
∫ 1

0
dx(uv + dv) = 3 (17)

∫ A

0
dx

2uA
v − dA

v

3
=

∫ 1

0
dx

2uv − dv

3
= 1. (18)

Equations (17) and (18) are for CA = uA
v + dA

v = uA −
ūA + dA − d̄A, respectively CA = (2uA

v − dA
v )/3. Those

express the conservation (per nucleon) of the number of
valence quarks in nuclei (baryon number) and of charge.

(ii) For any linear combination C = αuuv + αddv of nuclear
pdf one has the following:

CA(0,Q2) = CN (0,Q2)

(19)

CA(x0,Q
2) ≈ CN (x0,Q

2).

By construction, Eq. (4) holds only for the contribution of
partons in nucleons (i.e. not including to those in virtual
mesons, etc.), and somehow the same is the case for
Eq. (14). For those parts one proves the above equality for
x = 0, whereas for 0.18 >∼ x0 >∼ 0, Eq. (19) is an accurate
approximation [26].

(iii) For any combination xC(x) = x
∑

i αiqi(x, ) or x
∑

i

αi q̄i(x)
∫ A

0
dxxCA(x) =

∫ A

0
dzzf PN,A(z)

∫ 1

0
dttCN (t) (20)

∫ A

0
dxx

(
uA

v + dA
v + 2ūA + 2d̄A + 2sA + gA

)
x

=
∫ A

0
dzzf PN,A(z)

∫ 1

0
dtt(uv + dv + 2ū

+ 2d̄ + 2s + g)t

≈
∫ 1

0
dtt(uv + dv + 2ū + 2d̄ + 2s + g)t . (21)
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Equation (21) is a special case, related to the momentum
sum rule, which does not exactly carry over to the nuclear
case. However, the peaking of the normalized f PN,A

causes the z integral in Eq. (20) to be very close to 1.
In the case of the nuclear momentum sum rule Eq. (21),
the deviations are really minute. We emphasize that those
are largely the result of imperfect calculations of f PN,A

(see Ref. [28] for an entirely different way to mend the
momentum sumrule violation in the PWIA).

The incompleteness of the above-mentioned Eq. (4) for
x <∼ 0.2 does not constitute a problem in practice. For one, the
conservation of the number of valence quarks per nucleon is
guaranteed by the normalization of f PN,A, i.e., by unitarity. As
the momentum sum rule Eq. (21) illustrates, more is required
than unitarity, in case the fact that the widths 	x(Q2) of the
peaked f are appreciably less than the support of x. Comparing
the two sides of the expressions in Eq. (21) for four targets
and Q2 = 3.5, 5.0 GeV2, we find differences of no more
than ≈1%.

The above sum rules involve pdf in a nucleus and in a
nucleon. Other sum rules hold for moments of nuclear SF (or,
equivalently, for Mellin transforms of the latter):

MA(n,Q2) =
∫

dxxn−2FA
2 (x,Q2),

and one may compare numerical results in the hadronic
representation (see, for instance, Refs. [17,29,30]) and in the
partonic one. For instance, Eqs. (12) and (21) hint that there
exists a sum rule for MA

−1[= MA(1)] = ∑
aiq

A
i .

The contributions of valence quarks to MA
−1 is 5/6, but all

other parts diverge (see, for instance, Refs. [31,32]). Those
divergences cancel in differences of any pair of those ratios.
Thus from Eqs. (12), (15) (for simplicity we disregard δN/A

corrections) we have the following:

MA
−1 − MA′

−1 =
∫ A

0

dx

x
F

A;NI
2 −

∫ A′

0

dx

x
F

A′;NI
2

= 5

18

[ ∫ A

0
dx

(
uA

v + dA
v

)

−
∫ A′

0
dx

(
uA′

v + dA′
v

)] ≈ 0. (22)

For all A′ 	= A (including A′ = 1), the upper integration
limits in Eq. (22) differ. Again, for the above-mentioned
reason, one may neglect the contributions to the integrals in
Eq. (22) for x <∼ 0.20 and x >∼ 0.95. Hence effectively there is
an approximate common upper limit xU ≈ 1 
 A,A′, beyond
which the difference (FA

2 − FA′
2 ) is negligible and the same

holds for xL <∼ 0.18. For the pair D, Fe and the chosen three Q2

values, the above difference of the integrals in the hadron and
pdf representations is ≈ −0.03. Special cases are isodoublets
A = A′, for which Eq. (22) is a generalized Gottfried sum. For
a recent discussion for A = 3 we refer to Ref. [33].

Of particular interest is the zeroth moment of nuclear SF,
which is related to the momentum sum rule. Using Eq. (4)

MA
0 = MA(2) =

∫ A

0
dxF

A;NI
2 (x)

=
∫ A

0
dx

∫ A

x

dzf PN,A(z)F 〈N〉
2 (x/z)

= M
〈N〉
0

∫ A

0
dzzf PN,A(z) ≈ M

〈N〉
0 , (23)

which result we could check numerically.
From Eqs. (12), (15), and (17) one shows that the same

moment of isosinglet NI parts in the pdf representation reads
as follows:

MA
0 =

∫ A

0
dxF

A;NI
2 (x)

= 5

18

∫ A

0
dxx

[
uA

v + dA
v + 2(ūA + d̄A) + 4

5
sA

]
x

≈ 5

18

[
1 −

∫ A

0
dxx

(
6

5
sA + gA

)
x

]
(24)

≈ 5

18

{
1 −

∫ 1

0
dxx

[
6

5
s(x) + g(x)

]}

=
∫ 1

0
dxF

〈N〉
2 (x). (25)

NE parts are small for the considered Q2. When included, the
normalization of f PN,A guarantees M

A,NE
0 = M

N,NE
0 , i.e., NE

parts of MA
0 are also A independent.

In Figs. 2(a)–2(e) we show differences of valence, sea
quark, and gluon distributions functions in a nucleus and for
the p. We chose five targets and display results only for Q2 =
5 GeV2, because for the Q2 range considered there is hardly
any Q2 dependence. Differences increase with increasing mass
number and change sign at roughly x = 0.2 and 0.8.

To the extent that nuclear sea and gluon distributions
are close to the nucleonic ones, Eq. (25) shows that in
the pdf representation, MA

0 is practically A independent.
Emphasis is on the standard ≈50% reduction of the nucleon
valence contributions 5/18 because of gluons (see, for instance,
Ref. [31]), which result carries over to nuclear df.

Present data are for x >∼ xm ≈ 0.3 for the lowest Q2 [for
which Eq. (23) is not accurate] and x >∼ xm ≈ (0.5–0.6) for
medium Q2. For both, the missing information for x <∼ 0.5
contains the major contribution to MA

0 . It is thus not feasible
to directly verify the hadronic result [Eq. (23)], which requires
FA

2 to be known over the entire relevant x range.
We thus turn to an indirect method and exploit knowledge

on FA
k for all but the smallest x, and the smoothness of the

same in the region x >∼ xm [34,35]. One then interpolates FA
2

in the intermediate region, where data are missing [26] and
subsequently calculates the lowest moments MA

0 . Although
the small x region contributes the major part to the integrals
[Eq. (23)], the moments from the extrapolation procedure turn
out to be surprisingly close to the ones computed above.
Forthcoming data from JLab experiment E03–103 [36] will
enable a sharpening of the above method.

065209-4



DISTRIBUTION FUNCTIONS FOR PARTONS IN NUCLEI PHYSICAL REVIEW C 72, 065209 (2005)

-0.1

-0.05

0.0

0.05

0.1
x(

u v
A

-u
v)

(a)

-0.1

-0.05

0.0

0.05

0.1

x(
d v

A
-d

v)

(b)

|

|

-0.01

-0.005

0.0

0.005

0.01

x[
u v

A
-

u v
] (c)

|

|

-0.01

-0.005

0.0

0.005

0.01

x[
d v

A
-

d v
] (d)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

-0.1

-0.05

0.0

0.05

0.1

x(
g v

A
-g

v)

(e)

FIG. 2. Differences x(qA − q) for D (drawn line), 4He (dots),
C (spaced dots), Fe (short dashes), and Au (long dashes) and for a
p; Q2 = 5 GeV2. (a) q = uv; (b) q = dv; (c) q = ū; (d) q = d̄; and
(e) q = g.

Table I displays the zeroth moments MA
0 , A =

{D, He, C, Fe}, computed in the hadronic and the partonic
representations [Eqs. (23), (24), and (25), respectively].
Comparison of columns 2 and 3 clearly shows that the shape
f PN,A effectively cuts the upper limit of long-range integrals
at xU ≈ 1.0.

The above moments MA
0 (Q2) have a nonsmooth, weak

A dependence. Going from D to Fe, those moments are
3–4%, respectively 8% smaller than the same for the averaged
nucleon M

〈N〉
0 (Q2): D and He clearly do not follow the smooth

behavior of all other nuclei. One also notices that MA
0 are

weakly descending functions of Q2: The SF f PN,A reach their
asymptotic limit only for large Q2 ≈ 35 GeV2 and so will FA

and their moments.
It is of interest to compare the entries of Table I in their

dependence on A and Q2 with the QCD description of the
lowest moment for a p in the Bjorken limit in terms of the
number of favors Nf [31]

M
p

0 = 5Nf

6(3Nf + 16)
= 0.1471,

TABLE I. Zeroth moments of F A
2 in the hadron (h) and a parton

( p) representation, with upper limits A approximated by 1 and 2. The
set of three columns correspond to Q2 = 3.5 GeV, Q2 = 5.0 GeV,
and Q2 = 10.0 GeV2.

Target
∫ 1

0 dxF A
2 (x,Q2)

∫ 2
0 dxF A

2 (x, Q2)

D h 0.1492, 0.1484, 0.1409 0.1493, 0.1484, 0.1409
p 0.1505, 0.1470, 0.1413 0.1506, 0.1470, 0.1413

4He h 0.1455, 0.1450, 0.1378 0.1459, 0.1453, 0.1379
p 0.1464, 0.1433, 0.1378 0.1467, 0.1435, 0.1379

C h 0.1434, 0.1434, 0.1370 0.1440, 0.1439, 0.1372
p 0.1430, 0.1403, 0.1353 0.1434, 0.1408, 0.1383

Fe h 0.1402, 0.1403, 0.1338 0.1406, 0.1406, 0.1339
p 0.1447, 0.1403, 0.1353 0.1433, 0.1405, 0.1351

〈N〉 h 0.1554, 0.1510, 0.1438
p 0.1510, 0.1475, 0.1420

where the numerical value corresponds to Nf = 6. The nuclear
medium apparently mildly quenches the free p moment to a
measure increasing with A: For the averaged N and the D the
quenching seems minimal.

The approximate A independence of the above zeroth
moments of any pair of SF implies the following:

MA
0 − MA′

0 =
∫ A

0
dxF

A;NI
2 −

∫ A′

0
dxF

A′;NI
2

≈
∫ xU

x0

dx
(
F

A;NI
2 − F

A′;NI
2

) ≈ 0. (26)

The vanishing of the above differences is attributed to similar
effective x ranges (x0, xU ) ≈ (0.15, 0.85), which replace actual
unequal supports [37]. Equation (26) implies that in the above
common interval, the difference of two SF has to change
sign at least once or in different terms: the generalized EMC
ratios µA,A′

(x,Q2) = FA
2 (x,Q2)/FA′

2 (x,Q2) pass the value 1
in the above x interval, as is indeed observed for all A,Q2

(see Ref. [13] for a discussion in an entirely different
context) (Fig. 3).

The simplest cause for approximate A independence of MA
0

would be the same for FA
2 , but that appears not to be the case. In

the dominant classical region x <∼ 0.90, differences FA
2 − FA′

2
in both representations grow with x beyond ≈ 0.18 and may
become as large as 50–60 %, which is far larger than the spread
in MA

0 (cf. Table I). We return to this point below.

IV. EMC RATIOS IN THE PARTON DISTRIBUTION
FUNCTIONS REPRESENTATION

We have computed F
A,NI
2 in the pdf representations,

using Eqs. (12), (14), and (15). To those we added the
NE components [Eq. (9)], which are only relevant for x >∼
0.95. The total EMC ratios FA

2 /FD
2 are then compared with

recently determined counterparts in the hadron representation
[13]. For the range 0.2 <∼ x <∼ 1.2 and Q2 = 3.5 GeV2 and
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FIG. 3. Hadronic and pdf representations of
EMC ratios µA (drawn and dotted lines), A = He,
C, and Fe for 0.2 <∼ x <∼ 1, 2 , Q2 = 3.5 GeV2.
Data are from Refs. [38–40].

Q2 = 5.0 GeV2 we show in Figs. 4(a) and (b) numerical results
as well as available data for He, Fe, and Au [38–40].

Up to x <∼ 0.65 there is close agreement among the
computed ratios. Beyond that point growing deviations set
in, with pdf values in excess of the same in the hadron
representation. That situation is reversed for x >∼ 0.90. Both
representations overestimate the relative maxima in µA around
x = 0.9, but over the entire x range, the hadronic results are
closer to the data than those for the pdf. We attribute this to
inferior Fn

2 pdf input for larger x, which Eq. (4) shows to
propagate into FA

2 . Also of interest are the slightly lower pdf
results for x <∼ 0.65 and the much higher ones beyond and up
to x ≈ 0.9.

The apparent insensitivity of EMC ratios µA to the
representation, despite the large differences in the participating

FA
2 , combined with points (a) and (b) in Sec. III, suggests

the following: Irrespective of the cause of the dependence
of nuclear SF on A and/or representation, the approximate
independence of the zeroth moments [Eq. (23)] on both
forces the differences in FA

2 in the regions x <∼ 0.18 and
0.18 <∼ x <∼ 0.90 to be nearly balanced. Consequently, if EMC
ratios in one area have some order in A, that ordering must be
inverted in the second one. It almost seems that deviations of
EMC ratios from 1 can be generated by an integral-preserving,
affine transformation with x ≈ 0.18, 0, 90 as fixed points,
having a characteristic A dependence, in particular for A <∼ 12
(see also Ref. [41]).

Finally, out of sheer curiosity we followed pdf predictions
down to x = 10−5. Results for FA

2 hardly change from their
A-independent values around x = 0.15, causing EMC ratios to
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FIG. 4. Same as defined in the legend to
Fig. 3 but for Q2 = 5 GeV2.
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stay close to 1 for decreasing x. The above is actually observed
down to x ≈ 10−3. Only for the smallest x do screening effects
deplete df and cause µA to slowly reach values ≈0.6–0.7.

V. COMPARISON AND CONCLUSIONS

In this note we defined df for partons in a nucleus,
suggesting a relation between nucleonic and nuclear hadron
SF without adjustable parameters. We showed that, either
exactly or very closely, those nuclear pdf respect basic sum
rules. Observables such as FA

2 may be expressed in either
representation and by construction produce in principle the
same FA

2 for identical input F
p,n

2 .
In practice this is not the case for Fn

2 . The pdf choice
rests on the “primitive” approximation Fn

2 = 2FD
2 − F

p

2 ,
which approximately holds for x <∼ 0.3, but deteriorates with
increasing x, whereas a well-founded extraction method has
been used in the hadronic representation. Consequently, EMC
ratios, computed in both versions, practically coincide for
x <∼ 0.65 but deviate for larger x. Those reflect deviations of
Fn

2 from the same in better founded extracted function: The
hadronic representation of EMC ratios produces the better fits
to the data. The above, and the fact that deviations of EMC
ratios from 1 appear in distinct areas to be balanced for all A,
seems linked to the lowest moment MA

0 of FA
2 : Those are for

any Q2 practically independent of A.
We have computed pdf down to the smallest x, which is the

region were the above criticism does not hold. However, there
Eq. (14) misses primarily (anti-)screening effects. Neverthe-
less, down to x ≈ 10−3 the agreement with data persists, but
the pdf results cannot describe antiscreening depletion of df in
µA for the smallest measured x.

Our almost natural choice of distribution functions of
partons in a nucleus is clearly one out of many possible
ones, and we mention a few suggested alternatives. For
instance, Eskola et al., address participating nuclear SF in
EMC ratios, which are generated from parametrized input for
a reference Q2

0. Those are subsequently evolved to the desired
Q2 [4]. Parameters are constrained, for instance, by fixing the
average position of minima of EMC ratios and are ultimately
determined by data.

Next we mention Kumano and coworkers, who, despite
different x support for FA and FN , assume a linear relation
between df for partons in a nucleus and in a nucleon [5].
The species-dependent, relating weight functions wi(x,Z,A)
contain parameters for a scale Q2

0 and the resulting df of
partons in a nucleus are again evolved to any Q2, ultimately
producing parametrized nuclear SF and EMC ratios. A large
number of adjustable parameters leads to fits from the smallest
x up to x � 1. With the connecting weight function having no

meaning beyond x = 1, the interesting region x � 1 is out of
reach in that approach. A serious drawback of the method may
be the lack of physical meaning of the weight functions wi and
its parameters.

Finally we discuss approaches, where df of partons in a
nucleus are those for a nucleon bound in scalar and vector
mean fields [7,8], which couple to quarks in a nucleon [42].
Offhand, the above and our phenomenological approach seem
to have little in common. This is actually not the case, and it is
instructive to trace the connection. We recall that the original
proposal Eq. (4) was inspired by a model where valence quarks
in a nucleus cluster in bags [10]. Total interactions between
quarks in two different bags have there been replaced by
phenomenological NN forces, acting on the centers of those
bags, thus replacing quark dynamics by those for hadrons. The
recalled treatment of a nucleus partially reintroduces quark
degrees of freedom and are in Eq. (13) seen to mix the latter
with hadronic degrees of freedom through the SF f PN,A.

In contrast, in the hybrid meson-quark coupling model the
interactions of a single quark in a given nucleon with all quarks
in the remaining A − 1 bags are replaced by mean fields. As
expected from its intermediate position, it ought to be possible
to sum in that model the above meson-quark interactions over
the valence quarks in a bag and to construct a NN interaction
with many-body components, mediated by the same mean
boson fields. This has recently been shown to be possible [43].

The above model has been applied to nuclear matter [7,8]
and it is clearly of interest to see applications of finite nuclei.
A first example is a treatment of 3He in the PWIA [9] and one
should look forward to results for higher A.

We conclude with the observation that our derivation of
nuclear pdf differs in principle from the work of, for instance,
Eskola et al., and Kumano et al. In ours the Q2 dependence
is dictated by the same of f PN,A and pdf of N, whereas in
the other method it obtains from evolution from some scale
Q2

0. Eqs. (14) underly the same conjecture as Eq. (4) and
both ultimately require a proof, based on QCD. At the same
time, we foresee that effective theories will remain simple
and accurate tools to describe reality. Numerous examples
have proven the above in the past: Classical nuclear physics
exploits effective NN interactions and only rarely the more
fundamental boson-exchange potentials; the spectroscopy and
theory of gases or fluids of diatomic molecules uses an accurate
effective interaction between the centers of the atoms, forgoing
one computed from electron-electron interactions, and so on.

After completion of this manuscript we found two publica-
tions, where Eqs. (14) and (4) are proved in the PWIA [44,45].
We shall elsewhere provide the generalization with inclusion
of nuclear FSI, which is implied in the above equations [46].
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