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Distribution functions for partons in nuclei
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We suggest that a previously conjectured relation between structure functions (SF) for nuclei and nucleons
also links distribution functions (df) for partons in a nucleus and in nucleons. The above proposal ensures in
principle identical results for SF F;!, whether computed with effective hadronic or partonic degrees of freedom.
In practice there are differences, because of different input for F;'. We show that the thus-defined nuclear parton
distribution functions (pdf) respect standard sum rules. We observe close agreement between moments of nuclear
SF, computed in the hadronic and partonic descriptions. Despite substantial differences in the participating SF, we
nevertheless find approximately the same EMC ratios in the two representations, as well as reasonable agreement
with data. The apparent correlation between the above deviations is ascribed to a sum rule for F;'. We conclude

with a discussion of alternative approaches to nuclear pdf.
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I. INTRODUCTION

A large body of data are presently available on cross
sections for inclusive lepton scattering from nuclei and
subsequently on extracted nuclear structure functions (SF) F; kA.
Standard descriptions of those data used hadron degrees of
freedom throughout. A prototype, and possible first example
of such an appraoch, is the description of inclusive scattering
on a D by Atwood and West. Using the plane wave impulse
approximation (PWIA), the authors proved a generalized
convolution of the type [1]:

F = fnya FY, (1

with fi, 4 related to the nucleon momentum distribution in the
target A.

Much later, in one of first articles on EMC ratios,
Akulinichev et al., related distribution functions (df) for quarks
in a nucleon, nucleons in nuclei, and quarks in nuclei through
a similar convolution of seemingly different, but obviously
related, content [2]:

faja = fnya fon- 2

Both above-mentioned descriptions are effective ones, using
specific dynamics in terms of the chosen degrees of freedom.

A host of variations of the above basic ideas have since
been proposed for the direct computation of nuclear SF as
well as for an indirect analysis of EMC ratios in either the
hadron or the parton representation. For instance, Frankfurt
and Strikman mention nuclear parton distribution functions
(pdf), but do not relate those to the pdf of a nucleon as in
Eq. (1) [3]. Other approaches parametrize information on
SF for Q(z). Borrowing perturbative quantum chromodynamics
(pQCD) notions, a parametrized form for FZA at a given Q(z) is
evolved to desired Q? values. With knowledge of F”, EMC
ratios can be constructed. A comparison with data ultimately
determines the parameters in F2A for Q% [4,5].

Next we mention quark models for nuclei, which have
been used in direct calculations of df [6]. Finally, there are
approaches where the effect of a nuclear medium on a nucleon
or a quark is replaced by mean fields [7-9].
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In the present article we suggest a simple, nearly natural
choice for effective nuclear pdf, which are free of adjustable
parameters, satisfy sum rules either exactly or accurately, and
produce the SF F3', as computed in a hadronic base. The Q>
dependence of those nuclear pdf is prescribed by the right-hand
side of Eq. (2) and bears as yet no relation to pQCD and
evolution from a given scale Q(z). In the conclusion we compare
some of the above-mentioned alternative proposals with our
choice. We also emphasize the need for a QCD foundation
of effective descriptions, simultaneously pointing out their
simplicity and accuracy of the latter.

II. A FEW ESSENTAILS

We start with the cross section per nucleon for the
scattering of unpolarized electrons with energy E over an
angle 0:

d*c*(E;0,v) 2xM _, 2
W =oyu(E;0,v) 02 Fy(x, 07)

+ % F(x, QH)tan*(0 /2)}, 3)

where o), is the Mott cross section and F{‘z(x, 0?) are
nuclear SFs per nucleon. Those depend on the squared
four-momentum transfer ¢g> = —Q? = —(|q|> — v?) and on
the Bjorken variable 0 < x = Q%?/2Mv < A in terms of the
nucleon mass M.

Next we make explicit the specific relation [Eq. (1)]
between nuclear and nucleonic SF [10]

A
Fi(x, 0% = / Z;l—zkaN’A(z,Qz)F;fM(g,Qz) )

X

FM = (ZFl + NF}') /24

SN p SN
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with F" a nucleon SF, obtained by weighting F/”" with
Z, N. 3N /A denotes the relative neutron excess. We already
mentioned that Eq. (4) can be proved in the PWIA.

Our approach draws on the Gersch-Rodriguez-Smith (GRS)
theory for inclusive scattering of nonrelativistic projectiles
[11], in which case the linking f"-4 is the SF of a fictitious
nucleus composed of, in principle, fully interacting pointlike
nucleons. Figures 1-5 in Ref. [12] show shapes of fFN:A
for various targets and a range of Q2. Eq. (4) formulates a
nonperturbative theory with on-mass shell-nucleon SFs FkN
and a covariant generalization of the GRS theory for f [13].
All are in terms of hadronic degrees of freedom and their
dynamics.

Equation (4), which is postulated to hold for finite Q% >
Q(z) [10], misses contributions coming from virtual mesons
[14] and (anti-)screening effects [15]. Those are negligible for
x 2 0.2, to which range we limit our discussion. An extensive
body of data in the ranges x > 0.2; Q% > 2.5 GeV? appears
accounted for by the relation in Eq. (4) [16-20].

We shall need below the separation of the nucleon SF
FkN = FkN’NE + FkN’Nl into nucleon elastic and inelastic
components, which correspond to absorption processes of
a virtual photon on a N,y*+ N — N, (NE), or y*+
N — (hadrons,partons) (NI). Elastic components for a N
are proportional to the standard combinations of squared
electromagnetic form factors GN M(Qz) and vanish, unless
x = 1. With [GM]? = [Z(GP?)? +N(G”)2 ]/A, one has the
following:

FN-NE( Q)——S(l—x)[ M) (6)

EVVE(x, 0%) = 8(1 — x)
LG @) +u[Gy
1+n

The corresponding nuclear NE (QE) components from Eq. (4)
are as follows:

0]

)

PN.A 2y
e o = T D ey @
FVE(x, 0%) = xf PV (x, 07)
(G )T +u[G1 M)
x 1 . )
+7n

In particular for the lightest nuclei the normalized f "4 peak
sharply around x =~ 1, and the same holds for the above QE
components F, A, NE(x 0?). The above summarizes elements
of a hadronic descrlptlon of nuclear SF: we now turn to a
partonic representation.

III. A SIMPLE CHOICE FOR NUCLEAR PARTON
DISTRIBUTION FUNCTIONS

We start with the leading-order twist contributions to the
dominant NI components of nucleon SF for finite Q2. For
simplicity we occasionally omit one or both arguments x, Q2.
Decomposing quark df ¢ = g, + ¢ into valence and sea quarks
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parts, one has upon neglect of heavy quark contributions the
following:

F = g(4uu +d, + 8ii +2d + 25)
(10)

F} = g(u,, + 4d, + 2 + 8d + 2s).

Similarly for the “average” nucleon, defined as the Z, N
weighted p, n we obtain:

4
= = ot dy+2i4+2d+ -
xZaq [u +d, +2u + +5s
38N o
—g(uv—drﬂl-ZM—Qd), (11)

Next we turn to effective nuclear pdf, which ought to reproduce
nuclear SF F{, just as proton pdf do for F, Eq. (10). That
demand is insufficient for a unique determination, and we
exploit apparent freedom. First we choose FzA (g™) to be the
same combination of df of partons in a nucleus, as the above
F<N>, Eq. (11) for a nucleus

F2 = xZa ql

4
[u +d4 4+ 2a* +2d* + = sA

38N _
—d* +2a* —2d%)|. (12
= —df +2a )] (12)
Upon substitution into Eq. (4), and using Eq. (11), one finds
FZA = xZal PN.A ,A (13)

Comparison with Eq. (12) does still not define a unique
expressions for each individual pdf g/*. Guided by Eq. (4),
we make the following second choice, which does not mix
valence nor sea quarks

2 4 PN, A NI X
xin(x,Q)Ef dzf ’(z,Q><;>qi(;,Q)
_ 2 4 PN, A (XN (X 2
xqf‘(x,Q)Ef dzf ‘(LQ)(;)%(E,Q) (14)
A 2 A PN,A N X )
xgh(x, Q )E/ dzf"NA(z, Q )<E>g<;,Q )

Equations (14) in the PWIA with one f for all partons had
already be suggested before Ref. [21]. We are aware that
the above equations mix partonic notions with f, which is
computed in a hadronic representation.

In view of the meager experimental information on nonva-
lence parton distributions in nuclei, we shall also investigate
changes when nonvalence df are not affected by the nuclear
medium (cf. [4,5]), thus

i'=q st=5'=s g'=g", (15)
Equations (12) and (14) manifestly produce the same F2A in
the parton and the hadronic representation, provided one uses
exactly the same input f*V-4 and F}" in both.

This is actually not the case, in particular not for F7

in F2<N>. In the absence of direct information, the Coor-
dinated Theoretical-Experimental Project on QCD (CTEQ)
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FIG. 1. The ratio F}(x, Q*)/F; (x, Q%) in
the hadronic (drawn lines) and the pdf represen-
tation (dashes); upper and lower curves corre-
spond to 0% = 3.5GeV? and 0* = 5.0GeV?.
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parametrizations exploit data on FJ, using the “primitive”
estimate Fy'(x) = 2F,(x) — FJ (x). However, that approxi-
mation increasingly deteriorates for x > (0.25 — 0.30) and its
use for larger x leads to misfits with data.

As to the options in the version CTEQ6 [22] we selected
the one, with sz , closest to the Arneodo parametrization of
resonance-averaged data [23]. This appears possible for x <
0.6-0.7. SU; provides F} in terms of ¢;, g;.

In contrast, in the hadronic approach to F3, one stays as
close as possible to data, which contain sz and additional
SFs. For the former there are available parametrizations of
actual data [24]. Unfortunately, the range Q% > 3.5GeV?
of our interest borders the limits of validity of the above
parametrizations, and one has no choice but to use the
above-mentioned Arneodo representation of F2p [23]. As to
F3}, it has been obtained for all x by an indirect extraction
method, which also requires the currently accepted FF of the
p [25] (see for instance Ref. [26]). Figure 1 for C = F;'/ sz
in the two representations, Q2 =3.5,5.0GeV?, displays the
above-mentioned differences, which increase with x. Still
lacking accurate experimental information on separate proton
form factors causes uncertainties, whereas absence of data on
G’ for even medium Q? forces one to use extrapolations of
low Q2 parametrizations [25].

A second subtle difference between the representations is
the validity of Eq. (4) and (14). The former one is explicitly
limited to the nucleonic part of Fj', i.e., roughly for x >
0.2, whereas the latter is conceivably valid out to lower x
(cf. Ref. [27]).

Despite the fact that our nuclear pdf are effective ones that
are as yet not related to pQCD, pdf are constrained by sum
rules. We first check those, that are directly related to the
normalization of f*N-A:

(i) For any linear combination C of df for valence quarks one
has the following:

A 1
/ dch=/ dxcV
0 0

(16)

1
:/ dx(u, +dy)=3 (17

0

A
/ dx(uf + df)
0

/A ut —dA
dx—t—v
0

Y u, —d,
= dax=—/—"=1. (18
3 0 3

Equations (17) and (18) are for cA = uvA + d;‘ =ut —
it +d* — d*, respectively C* = (2u? — d?)/3. Those
express the conservation (per nucleon) of the number of
valence quarks in nuclei (baryon number) and of charge.
For any linear combination C = «,u, + o4d, of nuclear
pdf one has the following:

Cc4(0, 0*) = CY(0, 0%

(i)

(19)
C*(x0, Q%) ~ CN(x9, 0?).

By construction, Eq. (4) holds only for the contribution of
partons in nucleons (i.e. not including to those in virtual
mesons, etc.), and somehow the same is the case for
Eq. (14). For those parts one proves the above equality for
x = 0, whereas for 0.18 > xy > 0, Eq. (19) is an accurate
approximation [26].

(i) For any combination xC(x) =x ) ; o;g;(x,) or x ),
@;q;(x)
A A 1
/ dxxC*(x) = / dzzf PV 4(z) / detCN@)  (20)
0 0 0

A
/ dxx(uf} +d +2a* +2d" 4+ 25 + g%)
0

A 1
=/ dzszN’A(z)/ dtt(u, +d, + 2i
0 0

1
x/ dtt(u, + dy + 2ii +2d + 25 + g),. 1)
0
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Equation (21) is a special case, related to the momentum
sum rule, which does not exactly carry over to the nuclear
case. However, the peaking of the normalized fFV-4
causes the z integral in Eq. (20) to be very close to 1.
In the case of the nuclear momentum sum rule Eq. (21),
the deviations are really minute. We emphasize that those
are largely the result of imperfect calculations of fFN:4
(see Ref. [28] for an entirely different way to mend the
momentum sumrule violation in the PWIA).

The incompleteness of the above-mentioned Eq. (4) for
x < 0.2 does not constitute a problem in practice. For one, the
conservation of the number of valence quarks per nucleon is
guaranteed by the normalization of f7V:4,i.e., by unitarity. As
the momentum sum rule Eq. (21) illustrates, more is required
than unitarity, in case the fact that the widths Ax(Q?) of the
peaked f are appreciably less than the support of x. Comparing
the two sides of the expressions in Eq. (21) for four targets
and Q2 =3.5,5.0GeV?, we find differences of no more
than ~1%.

The above sum rules involve pdf in a nucleus and in a
nucleon. Other sum rules hold for moments of nuclear SF (or,
equivalently, for Mellin transforms of the latter):

MAn, 07) = f dxx"F(x, 0°),

and one may compare numerical results in the hadronic
representation (see, for instance, Refs. [17,29,30]) and in the
partonic one. For instance, Eqs. (12) and (21) hint that there
exists a sum rule for Mf‘l[z MA(D] = » a,-in.

The contributions of valence quarks to M fl is 5/6, but all
other parts diverge (see, for instance, Refs. [31,32]). Those
divergences cancel in differences of any pair of those ratios.
Thus from Eqgs. (12), (15) (for simplicity we disregard §N /A
corrections) we have the following:

Ad A
, X 4. dx 4.
A A A;NT ANI
M2 - MZ _—/ —F —/ —F;
o X 0o X

5 4 A A
— | [t )

A/
- f dx(u;"+d;")] ~ 0. (22)

0

For all A’ # A (including A’ = 1), the upper integration
limits in Eq. (22) differ. Again, for the above-mentioned
reason, one may neglect the contributions to the integrals in
Eq. (22) for x £ 0.20 and x > 0.95. Hence effectively there is
an approximate common upper limitxy ~ 1 < A, A’, beyond
which the difference (Ff' — F;') is negligible and the same
holds for x; < 0.18. For the pair D, Fe and the chosen three Q>
values, the above difference of the integrals in the hadron and
pdf representations is &~ —0.03. Special cases are isodoublets
A = A’, for which Eq. (22) is a generalized Gottfried sum. For
a recent discussion for A = 3 we refer to Ref. [33].
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Of particular interest is the zeroth moment of nuclear SF,
which is related to the momentum sum rule. Using Eq. (4)

A
M = MA©2) :/ dx FV (x)
0

A A
_ / dx / dzf PN A EN (x/2)
0 X

A
_ M(<)N> / dZZfPN,A(Z) ~ 1‘4(()1\’)7 (23)
0
which result we could check numerically.

From Egs. (12), (15), and (17) one shows that the same
moment of isosinglet NI parts in the pdf representation reads
as follows:

A
/ dx FV (x)

0

Mg

5 (1 Ay A A gay, 4oa
— dxx|uy, +d,; +2" +d”)+ =s
18 Jo 5 1,

~ 5 4 6 A A

NR[1 _/0 dxx(ES te )} 4)
5 1 6

ﬁ{l —/0 dxx[gs(x)—l—g(x)“

1
_ / dxFV (x), (25)

0

2

NE parts are small for the considered 0?. When included, the
normalization of f¥V:4 guarantees M(?’NE = MéV’NE, ie.,NE
parts of M{' are also A independent.

In Figs. 2(a)-2(e) we show differences of valence, sea
quark, and gluon distributions functions in a nucleus and for
the p. We chose five targets and display results only for Q? =
5 GeV?, because for the Q2 range considered there is hardly
any Q7 dependence. Differences increase with increasing mass
number and change sign at roughly x = 0.2 and 0.8.

To the extent that nuclear sea and gluon distributions
are close to the nucleonic ones, Eq. (25) shows that in
the pdf representation, M is practically A independent.
Emphasis is on the standard ~50% reduction of the nucleon
valence contributions 5/18 because of gluons (see, for instance,
Ref. [31]), which result carries over to nuclear df.

Present data are for x > x,, ~ 0.3 for the lowest Q? [for
which Eq. (23) is not accurate] and x > x,, =~ (0.5-0.6) for
medium Q2. For both, the missing information for x < 0.5
contains the major contribution to M()“. It is thus not feasible
to directly verify the hadronic result [Eq. (23)], which requires
F3! to be known over the entire relevant x range.

We thus turn to an indirect method and exploit knowledge
on F,{‘ for all but the smallest x, and the smoothness of the
same in the region x > x,, [34,35]. One then interpolates F2A
in the intermediate region, where data are missing [26] and
subsequently calculates the lowest moments M{,‘. Although
the small x region contributes the major part to the integrals
[Eq. (23)], the moments from the extrapolation procedure turn
out to be surprisingly close to the ones computed above.
Forthcoming data from JLab experiment E03-103 [36] will
enable a sharpening of the above method.
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TABLE 1. Zeroth moments of F3' in the hadron (/) and a parton

0.1
0.05 (p) representation, with upper limits A approximated by 1 and 2. The
5 T set of three columns correspond to Q% = 3.5 GeV, Q% = 5.0 GeV,
TR and Q% = 10.0GeV>.
= .0.05 1 -
01 Target Jo dxF3(x, Q%) Jo dxF3'(x, Q%)
0.1 D & 0.1492, 0.1484, 0.1409 0.1493, 0.1484, 0.1409
S 0.05 p 0.1505, 0.1470, 0.1413 0.1506, 0.1470, 0.1413
<-3> 0.0 === “He h 0.1455, 0.1450, 0.1378 0.1459, 0.1453, 0.1379
*  -0.05 p 0.1464, 0.1433,0.1378 0.1467, 0.1435, 0.1379
0.1 C h 0.1434,0.1434, 0.1370 0.1440, 0.1439, 0.1372
0.01 P 0.1430, 0.1403, 0.1353 0.1434,0.1408, 0.1383
— 0.005
|? Fe h 0.1402, 0.1403, 0.1338 0.1406, 0.1406, 0.1339
fr WO p 0.1447, 0.1403, 0.1353 0.1433,0.1405, 0.1351
< 00051 (N) h 0.1554, 0.1510, 0.1438
-0.01 P 0.1510, 0.1475, 0.1420
0.01
5 0.005
<" 00 where the numerical value corresponds to Ny = 6. The nuclear
'; 0,005 = medium apparently mildly quenches the free p moment to a
' measure increasing with A: For the averaged N and the D the
-0.01 quenching seems minimal.
0.1 The approximate A independence of the above zeroth
g 0.05 moments of any pair of SF implies the following:
<. 0.0
20
= -0.05

0.1 | "' A N T N O O T A B
0.0 0.1 02 03 04 05 06 07 08 09
X

FIG. 2. Differences x(g* — g) for D (drawn line), “He (dots),
C (spaced dots), Fe (short dashes), and Au (long dashes) and for a
p; Q7 =5GeV>. (@) ¢ = u,; (b) g = dy; (¢) ¢ = it; (d) ¢ = d; and
(®g=g.

Table 1 displays the zeroth moments Mé‘, A=
{D, He, C, Fe}, computed in the hadronic and the partonic
representations [Eqgs. (23), (24), and (25), respectively].
Comparison of columns 2 and 3 clearly shows that the shape
fPN-A effectively cuts the upper limit of long-range integrals
at xy ~ 1.0.

The above moments M(f(Qz) have a nonsmooth, weak
A dependence. Going from D to Fe, those moments are
3-4%, respectively 8% smaller than the same for the averaged
nucleon MSN)(QZ): D and He clearly do not follow the smooth
behavior of all other nuclei. One also notices that Mé‘ are
weakly descending functions of Q?: The SF f”V+4 reach their
asymptotic limit only for large Q% &~ 35 GeV? and so will F4
and their moments.

It is of interest to compare the entries of Table I in their
dependence on A and Q2 with the QCD description of the
lowest moment for a p in the Bjorken limit in terms of the
number of favors N [31]

)4 5Nf

M =—"7 _ —0.1471,
O 7 6(3N; + 16)

A A
My — My =/ dxF;“N’—/ dx F} N
0 0
XU /.
~ / dx(F{*N — FPY) ~ 0. (26)
X0

The vanishing of the above differences is attributed to similar
effective xranges (xg, xy) =~ (0.15, 0.85), which replace actual
unequal supports [37]. Equation (26) implies that in the above
common interval, the difference of two SF has to change
sign at least once or in different terms: the generalized EMC
ratios 4 (x, Q%) = Ff(x, 0%/ F3* (x, Q%) pass the value 1
in the above x interval, as is indeed observed for all A, Q2
(see Ref. [13] for a discussion in an entirely different
context) (Fig. 3).

The simplest cause for approximate A independence of M
would be the same for F2A , but that appears not to be the case. In
the dominant classical region x < 0.90, differences F2A - F2A/
in both representations grow with x beyond ~ 0.18 and may
become as large as 50—60 %, which is far larger than the spread
in M (cf. Table I). We return to this point below.

IV. EMC RATIOS IN THE PARTON DISTRIBUTION
FUNCTIONS REPRESENTATION

We have computed F2A M in the pdf representations,
using Egs. (12), (14), and (15). To those we added the
NE components [Eq. (9)], which are only relevant for x >
0.95. The total EMC ratios F;'/F;’ are then compared with
recently determined counterparts in the hadron representation
[13]. For the range 0.2 <x < 1.2 and Q*=3.5 GeV? and
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FIG. 3. Hadronic and pdf representations of
EMC ratios ;1 (drawn and dotted lines), A = He,
C,and Fe for 0.2<x < 1,2, 0% =3.5GeV>.
Data are from Refs. [38—40].

I I R
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]
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0?=5.0 GeV? we show in Figs. 4(a) and (b) numerical results
as well as available data for He, Fe, and Au [38—40].

Up to x <0.65 there is close agreement among the
computed ratios. Beyond that point growing deviations set
in, with pdf values in excess of the same in the hadron
representation. That situation is reversed for x > 0.90. Both
representations overestimate the relative maxima in u* around
x = 0.9, but over the entire x range, the hadronic results are
closer to the data than those for the pdf. We attribute this to
inferior F}' pdf input for larger x, which Eq. (4) shows to
propagate into F;'. Also of interest are the slightly lower pdf
results for x < 0.65 and the much higher ones beyond and up
tox ~ 0.9.

The apparent insensitivity of EMC ratios u? to the
representation, despite the large differences in the participating

FZA, combined with points (a) and (b) in Sec. III, suggests
the following: Irrespective of the cause of the dependence
of nuclear SF on A and/or representation, the approximate
independence of the zeroth moments [Eq. (23)] on both
forces the differences in Fj' in the regions x < 0.18 and
0.18 < x £ 0.90 to be nearly balanced. Consequently, if EMC
ratios in one area have some order in A, that ordering must be
inverted in the second one. It almost seems that deviations of
EMC ratios from 1 can be generated by an integral-preserving,
affine transformation with x =~ 0.18,0,90 as fixed points,
having a characteristic A dependence, in particular for A < 12
(see also Ref. [41]).

Finally, out of sheer curiosity we followed pdf predictions
down to x = 107>, Results for F;' hardly change from their
A-independent values around x = (.15, causing EMC ratios to

3.0 —
25
2.0 ;7
1sE
1)) S , e

0.5

He

T

2.5
2.0
1.5
1.0
0.5

Fe
\’:\ ‘ T ‘ T ‘\

T

FIG. 4. Same as defined in the legend to
Fig. 3 but for 9% = 5GeV>.

25
2.0
1.5
1.0

Au

l\‘\‘\‘\

0.3 0.4 0.5
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stay close to 1 for decreasing x. The above is actually observed
down to x ~ 1073, Only for the smallest x do screening effects
deplete df and cause u” to slowly reach values 220.6-0.7.

V. COMPARISON AND CONCLUSIONS

In this note we defined df for partons in a nucleus,
suggesting a relation between nucleonic and nuclear hadron
SF without adjustable parameters. We showed that, either
exactly or very closely, those nuclear pdf respect basic sum
rules. Observables such as F2A may be expressed in either
representation and by construction produce in principle the
same F;! for identical input FJ™".

In practice this is not the case for F;. The pdf choice
rests on the “primitive” approximation Fjy =2F — FY,
which approximately holds for x < 0.3, but deteriorates with
increasing x, whereas a well-founded extraction method has
been used in the hadronic representation. Consequently, EMC
ratios, computed in both versions, practically coincide for
x < 0.65 but deviate for larger x. Those reflect deviations of
Fj' from the same in better founded extracted function: The
hadronic representation of EMC ratios produces the better fits
to the data. The above, and the fact that deviations of EMC
ratios from 1 appear in distinct areas to be balanced for all A,
seems linked to the lowest moment M{' of F;': Those are for
any Q7 practically independent of A.

We have computed pdf down to the smallest x, which is the
region were the above criticism does not hold. However, there
Eq. (14) misses primarily (anti-)screening effects. Neverthe-
less, down to x ~ 1073 the agreement with data persists, but
the pdf results cannot describe antiscreening depletion of df in
w for the smallest measured x.

Our almost natural choice of distribution functions of
partons in a nucleus is clearly one out of many possible
ones, and we mention a few suggested alternatives. For
instance, Eskola et al., address participating nuclear SF in
EMC ratios, which are generated from parametrized input for
a reference Q(z). Those are subsequently evolved to the desired
0? [4]. Parameters are constrained, for instance, by fixing the
average position of minima of EMC ratios and are ultimately
determined by data.

Next we mention Kumano and coworkers, who, despite
different x support for F4 and FV, assume a linear relation
between df for partons in a nucleus and in a nucleon [5].
The species-dependent, relating weight functions w;(x, Z, A)
contain parameters for a scale Q3 and the resulting df of
partons in a nucleus are again evolved to any Q2, ultimately
producing parametrized nuclear SF and EMC ratios. A large
number of adjustable parameters leads to fits from the smallest
x up to x < 1. With the connecting weight function having no
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meaning beyond x = 1, the interesting region x > 1 is out of
reach in that approach. A serious drawback of the method may
be the lack of physical meaning of the weight functions w; and
its parameters.

Finally we discuss approaches, where df of partons in a
nucleus are those for a nucleon bound in scalar and vector
mean fields [7,8], which couple to quarks in a nucleon [42].
Offhand, the above and our phenomenological approach seem
to have little in common. This is actually not the case, and it is
instructive to trace the connection. We recall that the original
proposal Eq. (4) was inspired by a model where valence quarks
in a nucleus cluster in bags [10]. Total interactions between
quarks in two different bags have there been replaced by
phenomenological NN forces, acting on the centers of those
bags, thus replacing quark dynamics by those for hadrons. The
recalled treatment of a nucleus partially reintroduces quark
degrees of freedom and are in Eq. (13) seen to mix the latter
with hadronic degrees of freedom through the SF fFV:4,

In contrast, in the hybrid meson-quark coupling model the
interactions of a single quark in a given nucleon with all quarks
in the remaining A — 1 bags are replaced by mean fields. As
expected from its intermediate position, it ought to be possible
to sum in that model the above meson-quark interactions over
the valence quarks in a bag and to construct a NN interaction
with many-body components, mediated by the same mean
boson fields. This has recently been shown to be possible [43].

The above model has been applied to nuclear matter [7,8]
and it is clearly of interest to see applications of finite nuclei.
A first example is a treatment of >He in the PWIA [9] and one
should look forward to results for higher A.

We conclude with the observation that our derivation of
nuclear pdf differs in principle from the work of, for instance,
Eskola et al., and Kumano et al. In ours the Q2 dependence
is dictated by the same of f”4 and pdf of N, whereas in
the other method it obtains from evolution from some scale
Q3. Eqgs. (14) underly the same conjecture as Eq. (4) and
both ultimately require a proof, based on QCD. At the same
time, we foresee that effective theories will remain simple
and accurate tools to describe reality. Numerous examples
have proven the above in the past: Classical nuclear physics
exploits effective NN interactions and only rarely the more
fundamental boson-exchange potentials; the spectroscopy and
theory of gases or fluids of diatomic molecules uses an accurate
effective interaction between the centers of the atoms, forgoing
one computed from electron-electron interactions, and so on.

After completion of this manuscript we found two publica-
tions, where Eqgs. (14) and (4) are proved in the PWIA [44,45].
We shall elsewhere provide the generalization with inclusion
of nuclear FSI, which is implied in the above equations [46].
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