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Approximate solutions for the single soliton in a Skyrmion-type model with a dilaton scalar field
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We consider the analytical properties of the single-soliton solution in a Skyrmion-type Lagrangian that
incorporates the scaling properties of quantum chromodynamics through the coupling of the chiral field to a
scalar field interpreted as a bound state of gluons. The model was proposed in previous works to describe
the Goldstone pions in a dense medium, being also useful for studying the properties of nuclear matter and
the in-medium properties of mesons and nucleons. Guided by an asymptotic analysis of the Euler-Lagrange
equations, we propose approximate analytical representations for the single-soliton solution in terms of rational
approximants exponentially localized. Following the Padé method, we construct a sequence of approximants from
the exact power-series solutions near the origin. We find that the convergence of the approximate representations
to the numerical solutions is considerably improved by taking the expansion coefficients as free parameters and
then minimizing the mass of the Skyrmion using our ansätze for the fields. We also perform an analysis of
convergence by computation of physical quantities showing that the proposed analytical representations are very
useful for further phenomenological calculations.
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I. INTRODUCTION

Through the formalism of effective-field theory, a signifi-
cant progress has been reached in our attempt to undertstand
the physics involving mesons and baryons in nuclear matter.
The first effective descriptions appeared as generalizations of
the linear σ model so that the physical constraint dictated by
the broken-realized chiral symmetry of QCD was naturally
included. More recently, the interest was focused on models
incorporating the broken-scale invariance of strong interac-
tions and therefore suitable for describing physics beyond the
pion sector [1,2]. Among these models, an interesting approach
consists of introducing a scalar glueball with an appropriate
potential into a nonlinear realization of the σ model, thus
accounting for both broken-scale and chiral symmetries [3].
From this background, the authors in Ref. [4] proposed a
Skyrmion-type Lagrangian with spontaneously broken chiral
and scale symmetries. This model, which is valid as an
approximation to QCD in the large Nc limit, is useful for
studying the properties of pions in a dense medium and can
also describe multibaryon systems, including dense hadronic
matter. In this case, baryons arise as solitonic solutions of the
equations of motion that, because of their nonlinearity, cannot
be solved in an analytical closed form.

Naturally, it is desirable that the advance in the theoretical
domain be accompanied by the solution of the mathematical
problems introduced. Our contribution in this paper is to
give analytical approximate representations for the single
soliton that is used to define the parameters of the theory
at zero density. These types of representation are preferred to
numerical solutions because with them one can trace exact
analytical information about the soliton solution. Besides,
explicit representations are very convenient for phenomeno-
logical calculations in the analysis of dense Skyrmion matter.

Our procedure consists of extracting the structure of the
exact solution from an asymptotic analysis of the equations
of motion for the scalar and chiral fields, and then we
look for solutions in terms of rational approximants, Padé
approximants, that have proved to be particularly successful in
giving a faithful representation of the topological configuration
of the original Skyrme model [5]. Here, the task is more
involved since it requires the resolution of two coupled
nonlinear differential equations for the new scalar field and the
chiral field already present in the Skyrme model. Furthermore,
the nonzero mass for pions and the additional scalar field imply
exponential asymptotic behaviors for both solutions, and this
feature must be incorporated in the approximants. We will see
that the analytical approach to the single Skyrmion with the
scalar field problem can be implemented in a simple way and
that the suggested representations reproduce the properties of
the exact solutions for small and large values of the radius r.

Our paper is organized as follows. In the next section we
briefly describe the model that is composed by the original
Skyrme model implemented with the trace anomaly of QCD,
signal of the broken-realized-scale invariance. In Sec. III
we present the properties of the single Skyrmion and the
scalar field, and then, in Sec. IV, we construct the rational
representations by using the exact asymptotic solutions for
both the chiral and the scalar field and we present an analysis
of convergence of the proposed approximants. Finally, we give
the conclusions of our work in Sec. IV.

II. THE MODEL

The model constitutes an extension of the original Skyrme
model that emerged as an attempt to describe baryons
interacting by means of meson exchanges [6]. In a more recent
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formulation introduced by Ellis and Lanik [7] and developed
in further works for the description of nuclear matter and finite
nuclei [8], the task was aimed at incorporating the underlying
scale invariance of QCD under the scale transformation

x → λ−1x, λ � 0. (1)

This symmetry is broken at the quantum level by dimen-
sional transmutation, and its breaking is manifested through
a nonvanishing trace of the energy momentum tensor θµν ,
referred to as the QCD trace anomaly, which in the chiral limit
is given by

θµ
µ = β(g)

2g
Tr GµνG

µν, (2)

where β(g) = −(g3/48π2)(11Nc − 2Nf ) is the one-loop beta
function of QCD.

The description starts with the Skyrme Lagrangian for
massive pion fields, which reads

L = f 2
π

4
Tr(∂µU †∂µU ) + 1

32e2
Tr[U †∂µU,U †∂νU ]2

+ f 2
π m2

π

4
Tr(U + U † − 2), (3)

where the Goldstone pion fields πa play the role of a chiral
phase angle present in the chiral field U = exp(iτ · π/fπ )
belonging to SU (2), and fπ,mπ , and e are the pion decay
constant, the pion mass, and the Skyrme parameter, respec-
tively.

The broken-scale invariance of QCD is implemented by the
introduction of a scalar field χ (r) with a scale dimension 1.
This scalar degree of freedom is interpreted as a bound state of
gluons, the glueball field, that operates on two-pion exchange
physics in meson-exchange phenomenology.

With an appropriate scaling-breaking potential for the scalar
field χ (r), the modified Lagrangian that respects the scaling
properties of QCD reads

L = f 2
π

4

(
χ

fχ

)2

Tr(∂µU †∂µU ) + 1

32e2
Tr([U †∂µU,U †∂νU ])2

+ f 2
π m2

π

4

(
χ

fχ

)3

Tr(U + U † − 2) + 1

2
∂µχ∂µχ

− 1

4

m2
χ

f 2
χ

{
χ4

[
ln(χ/fχ ) − 1

4

]
+ 1

4

}
. (4)

Here, fχ is the vacuum expectation value of the scalar field
χ (r). The mass of χ (r) is given by m2

χ = d2V (χ )/dχ2, where
V (χ ) denotes the scale-breaking potential. No experimental
values are available for those parameters, and conjectural
values depend rather on specific considerations of the model,
as is explained in Ref. [9]. The inability to fix them comes
from the lack of knowledge about the mixing between the two
components of the trace anomaly corresponding, respectively,
to the chiral (“soft”) and scale (“hard”) symmetry-breaking
contributions. Mixing depends on the baryonic sector to be
described. For instance, in matter it is assumed that the
glueball contribution decouples gradually with increasing
density, reaching a critical point at which only the “soft”
component is relevant. In such a case, the parameters can

be fixed, constraining the model by the bulk properties of
finite nuclei and yielding the values fχ = 240 MeV and mχ =
550 MeV. In Sec. IV, we present the approximants to the
solitonic solutions corresponding to the different sets of pa-
rameters reported elsewhere. Concerning the pion parameters,
the accepted experimental values are fπ = 93 MeV and mπ =
140 MeV.

III. PROPERTIES OF THE SINGLE SKYRMION WITH
THE SCALAR FIELD

In this section we analyze the static solutions with nontrivial
topology of the Euler-Lagrange equations of the model. We
first present the exact asymptotic solutions, and then we pro-
pose suitable analytical continuations to these representations.

Let us first derive the Euler-Lagrange equations from
Lagrangian (4). Adopting the usual hedgehog ansatz [10]
for the chiral field U = exp(iτ · π/fπ ) and assuming also
spherical symmetry for the additional scalar field [9], that is,

U (r) = exp[iτ · rF (r)], χ (r) = fχC(r), (5)

we can write the mass of the single soliton in the Skyrme
model as

E[F,C] = 4π

∫ ∞

0
r2dr

(
f 2

π

2
C2

[(
dF

dr

)2

+ 2
sin2 F

r2

]

+ 1

2e2

sin2 F

r2

[
sin2 F

r2
+ 2

(
dF

dr

)2
]

+ f 2
π m2

πC3(1 − cos F ) + f 2
χ

2

{(
dC

dr

)2

+ m2
χ

2

[
C4(ln C − 1/4) + 1

4

]})
. (6)

Variations of E[F,C] with respect to the profile function
F (r) and the scalar field C(r) lead to the classical equations
of motion.

In terms of the dimensionless variable y, defined as y =
efπr , the coupled equations for the fields F and C read

(y2C2 + 2 sin2 F )
d2F

dy2
+ 2

(
yC2 + y2C

dC

dy

)
dF

dy

+ 2 sin F cos F

(
dF

dy

)2

− 2C2 sin F cos F

− 2
sin3 F cos F

y2
−

(
mπ

efπ

)2

y2C3 sin F = 0, (7)

d2C

dy2
+ 2

y

dC

dy
−

(
fπ

fχ

)2

C

[(
dF

dy

)2

+ 2
sin2 F

y2

]

−3

(
mπ

efχ

)2

C2(1 − cos F ) −
(

mχ

efπ

)2

C3 ln C = 0. (8)

Finiteness of energy requires that U (r) tend to an arbitrary
constant element of SU (2) at spatial infinity. Choosing
U (r) → 1 as r → ∞ implies, for the chiral angle F (r), the
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boundary condition

F (∞) = 0. (9)

This condition compactifies the space of constant time surfaces
R3 to the three-sphere S3; so the field U (r) defines a map from
the compactified configuration space S3 to the identity in the
target space, SU (2), which is isomorphic to S3. The space of
the distinct equivalence classes by homotopy corresponds to
the group

	3[SU (2)] = 	3(S3) = Z, (10)

which means that the model has an infinite number of
topological sectors, each one characterized by an integer-
valued winding number. Z is defined as the topological charge
q = ∫

dx3B0, which is related to the baryonic number current
defined as

Bµ = 1

24π2
εµνρσ Tr [(U †∂νU )(U †∂ρU )(U †∂σU )]. (11)

As for the original Skyrme model, the equations of motion
for F (y) and χ (y) admit power-series solutions, of the form

F (y) ∼ π + F1y + F3y
3 + O(y5),

(12)
C(y) ∼ C0 + C2y

2 + O(y4),

which are valid for small values of y. The zero-order coefficient
from the power-series representation of F (y) is chosen to be
equal to π in order to constrain the solution to the B = 1 sector.
The coefficients F1 = −α and C0 cannot be determined by the
perturbative analysis.

By substitution of power-series solutions (12) into Eqs.(7)
and (8), the following recurrence relations among the coeffi-
cients F1, F3, C0, and C2 are found:

C2 = 1

2

(
fπ

fχ

)2

C0F
2
1 + m2

π

e2f 2
χ

C2
0 − 1

6

m2
χ

e2f 2
π

C3
0 ln C0,

(13)

F3 = − 1

30

F1

e2f 2
π

(
C2

0 + 2F1
)2

(
2F 4

1 e2f 2
π + 3m2

πC3
0

+ 12C0C2e
2f 2

π + 4C2
0F 2

1 e2f 2
π

)
.

On the other hand, from the asymptotic behavior of the
equations of motion it can be shown that the functions F and C
reach their vacuum values at infinity following the functional
forms:

F (y) ∼ exp(−mπy/efπ )

y
, C(y) ∼ 1 − exp(−mχy/efπ )

y
.

(14)
Our task in the next section is to find approximate analytical

representations for the functions F (r) and C(r), valid within
the whole domain of definition of the radius r.

IV. APPROXIMATE REPRESENTATIONS

Previous works [11,12] that addressed solving the equation
of motion of the original Skyrme Model have shown the
utility, for practical calculations, of implementing an approach
that incorporates both asymptotic behaviors of the chiral
angle F (r), near the origin and at large r, in one single

representation. The rational approximants have proved to
be suitable for this purpose. Moreover, it was shown in
Ref. [5] that, starting from the well-known Padé approximant
approach, a simple and systematic method to solve the Skyrme
problem can be developed. In the following discussion we
extend the analytical approach for the single Skyrmion with the
scalar field, showing that the exponential behavior of relation
(14) can be easily incorporated into rational representations,
providing satisfactory analytical continuations of power-series
representations (12). We begin by computing a sequence of
Padé approximants using suitable ansätze for the functions
F (r) and C(r) suggested from the previous study of the
stucture of the exact solution. We continue the discussion
by showing that the convergence to the exact solution is
drastically improved when a variational method is used to
minimize E[F,C], supplemented by our ansätze for the fields.
Then attention is focused on analyzing the convergence of the
proposed solutions by use of some typical physical observables
of Skyrmion-type models.

For the sake of completness we briefly remind the reader
that Padé approximants are rational functions used to give
an analytic continuation of a power-series representation of a
given function [13]. The Padé approximant P[M,N](y) of the
order of [M,N ] to the series S(y) = ∑

n any
n is defined as the

ratio of two polynomials:

P[M,N](x) =
∑M

k=0 aky
k

1 + ∑N
k=1 bkyk

, (15)

where the free N + M + 1 parameters, ak, bk , are fixed so that
the first M + N + 1 coefficients in the Taylor expansion of
P[M,N] coincide with the series S(y) up to order M + N .

In the present problem, modified approximants for the
chiral angle F (r) may be built so as to match the exponential
asymptotic behavior given in relation (14).

Working with the dimensionless variable y defined previ-
ously, we may cost the approximate solutions for F in the
form

F (y) =
∑m

k=0 aky
k

1 + ∑m
k=1 bkyk + bm+1ym+1 exp(mπy/efπ )

, (16)

where the parameters ak and bk are to be fixed so as to
reproduce the behavior of the exact solution near the origin.

Note that the functional form that is proposed has the exact
asymptotic behavior at infinity, that is, F (r) ∼ exp(−mπr)/r .

The lowest-order solution that can be built is

F (y) = π

1 + (α/π )y exp(mπy/efπ )
. (17)

The above approximant contains the asymptotic behavior
exp(−mπy/efπ )/y and agrees with the power-series solution
near the origin up to order O(y). It is possible to construct
another approximant of the same order [0,1], but with an
additional parameter b2:

F (y) = π

1 + (α−b2π)
π

y + b2y exp(mπy/efπ )
; (18)

b2 should be chosen so as to reproduce the exact asymptotic
decay for large r.
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The higher-order approximants contain the information of
additional terms of the exact expansion at the origin. Obviously
they improve the degree of approximation to the exact solution.
For instance, keeping ansatz (16) and fixing the coefficients
by means of the Padé approximant method using relations
(12) and (13), we find for the [1, 2] approximant the following
expression,

F [1, 2] = π (1 + a1y)

1 + b1y + b2y2 exp(mπy/fπe)
, (19)

with

a1 = −α

π
+ πF3

α2 − παmπ/efπ

, b1 = πF3

α2 − παmπ/efπ

,

(20)

b2 = F3

α − πmπ/efπ

,

and for the [2, 3] order approximant

F [2, 3] = π (1 + a1y + a2y
2)

1 + b1y + b2y2 + b3y3 exp(mπy/efπ )
, (21)

with

a1 = −α

π
+ 2

(
F 2

3 + αF5
)
(πξ − α)

/
�,

a2 = {
(α − πξ )

[
2α

(
F 2

3 + αF5
) − πF 2

3

] − 2π2F3F5
} /

�,

b1 = 2
(
F 2

3 + αF5
)
(πξ − α)

/
�, (22)

b2 = ξF3(πξ − 2α) − 2πF5/�,

b3 = −2F3
(
F 2

3 + αF5
)/

�,

where ξ = mπ/efπ and � = F3[2πF3 + αξ (πξ − 2α)].
By construction, from the Taylor expansion of Padé

approximants (19) and (21) we recover the exact behavior
near the origin [relations (12)] up to orders O(y3) and O(y5),
respectively. Note also that, as the proposed approximants
satisfy the right boundary conditions, they yield to topological
solutions of the baryonic number equal to q = 1. That is,
recalling Eq. (11),

q =
∫

dx3B0 = − 1

2π2

∫ ∞

0

dF

dy

sin2 F

y2
4πy2dy

= − 1

π

[
F (y) − sin 2F (y)

2

]∞

0

= 1. (23)

The sequence of Padé approximants to the chiral angle
F (y) given by Eqs. (17)–(21) is shown in Fig. 1 together
with the exact numerical solution. The approximate represen-
tations show convergence to the exact numerical solutions;
unfortunately, we found that higher-order calculations in the
Padé procedure lead to singular approximants being no longer
relevant to represent F (r).

To eliminate spurious representations with singularities
in the real y axis, one may proceed heuristically by adding
restrictions to the numerator coefficients of the approximants.
For instance, by simply setting ak = 1 for all k we will produce
well-behaved and positive-definite approximants, as shown
in Fig. 2. This procedure, which relies on simplicity, can
be particularly useful in problems for which one seeks for
an analytical description of Skyrmion-Skyrmion interactions

0 4 5 6 7 8        9
y

0

0.2

0.4

0.6

0.8

1

F
(y

)/

Num. Sol.
F[0,1]
F[1,2]
F[2,3]

π

1 2 3

FIG. 1. Sequence of Padé approximants to the chiral angle
F (y)/π and exact numerical solution for mχ = 720 MeV.

such as in dibaryon models or other multi-Skyrmion models
[14]. However, the prescription of setting ak = 1 is too
arbitrary and does not really select the solutions that minimize
the energy functional E[F,C].

One can actually confirm this fact by studying the sequence
of restricted rational approximants [m,m + 1] for the chiral
angle. The sequence of restricted Padé approximants is
displayed in Fig. 2, where we can see a fast convergence
to the [4, 5] order representation. As we should expect, the
convergence to the numerical solution is very fast at the
boundaries; however, the representations are underestimated
by 1%–2% in the 1 <∼ y <∼ 2 region. Higher-order approxi-
mations slightly improve the agreement with the numerical
solution but at the price of getting a less attractive expression
for use in phenomenological calculations from the model. We
made further quality tests of the approximation in this work
by calculating physical quantities that frequently enter in the
evaluation of the static properties of the nucleons.

The low convergence to the numerical solution is a
consequence of the fixing condition ak = 1, which appears
to be too restrictive. We will see further in this section that

0 1 2 3 4 5 6 7 8          9
y

0

0.2

0.4

0.6

0.8

1

F
(y

)/

Num. Sol.
F[0,1]
F[1,2]
F[4,5]

π

FIG. 2. Sequence of constrained approximants to the chiral angle
F (y)/π and exact numerical solution for mχ = 720 MeV.
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the convergence to the exact numerical results is drastically
improved and that we eliminate the arbitrariness in the ap-
proximate representations by taking the expansion coefficients
in ansatz (16) as free parameters and then minimizing by
numerical methods the functional of energy E[F,C] given
in Eq. (6).

To this end we first need to give a suitable ansatz for
the scalar field C(y). One can note that the asymptotic
behavior of 1 − C(y) has the same functional form as the
one corresponding to the profile function of the Skyrmion so
that representations analogous to those of F (y) should provide
good results for the scalar field. Thus we propose,

C(y) = 1 −
∑m

k=0 cky
k

1 + ∑m
k=1 dkyk + dm+1ym+1 exp(mχy/efπ )

.

(24)

Of course, we should expect a change on the dependence
of the rational representation parameters on the power-series
coefficients as, in this case, the perturbative solution is given
in even powers of y [see relations (12)].

We obtain our best representations of the exact solutions
for F (y) and C(y) by keeping the functional forms of
Eqs. (16) and (24) and relaxing the conditions for the expansion
coefficients. We find these by minimizing the functional of
energy following a variational method. We give the first two
approximants in the sequence [m,m + 1], which are yet very
good representations for the fields, as can be seen in Fig. 3:

F [1, 2] = π (1 − 0.097y)

(1 + 0.487y + 0.494y2 exp(mπy/efπ )
,

C[1, 2] = 1 − (1 − 0.729)(1 + 2.003y)

1 + 2.511y + 0.409y2 exp(mχy/efπ )
,

(25)

F [2, 3] = π (1 − 0.342y + 0.103y2)

(1 + 0.353y + 0.171y2 + 0.205y3 exp(mπy/efπ )
,

C[2, 3]=1− (1 − 0.729)(1 − 0.881y + 0.900y2)

1 − 0.829y + 1.264y2 + 0.095y3exp(mχy/efπ )
.

AAAA
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0 1 2 3 4 5 6 7 8          9
y

0

0.2

0.4

0.6

0.8

1

F
(y

)/

Num. Sol.
F[1,2]
F[2,3]
C[1,2]
C[2,3]A

C(y)

π

FIG. 3. Sequence of approximants to F (y)/π and C(y) found by
minimization of the functional of energy with rational representations
for the fields.

We now show that the analytical representations are useful
for phenomenological applications by making an explicit use
of them and comparing the results with numerical calculations.
We have used specific values for the set of parameters
(mχ, fχ ) of the effective chiral Lagrangian, namely (720 MeV,
240 MeV). From Ref. [9], we learn that these values are
relevant for the discussion of nuclear matter. The analysis for
other values of mχ and fχ , as those reported elsewhere [15],
give analogous results.

We calculated the mass of the single soliton in the Skyrme
model with the scalar field given by Eq. (6) as well as
the moment of inertia of the soliton that, as it is well
known, we find after performing the collective semiclassical
expansion, substituting U (r) by U (r, t) = A(t)U (r)A†(t) into
the Lagrangian, A(t) being an SU (2) matrix. For the model
in question the collective transformation yields, after spatial
integration is performed,

L = −E[F,C] + λTr[∂0A∂0A
−1], (26)

where E[F,C] is the soliton mass and the moment of inertia
λ is given by

λ = π

3fπe3

∫ ∞

0
dy y2 sin2 F

×
{

C2 + 4

[(
dF

dy

)2

+ sin2 F

y2

]}
. (27)

For the mass of the soliton and the moment of inertia we
found the following numerical values, M = 1387 MeV and
λ = 0.12/fπ , which we take as reference values when using
the analytical representations for calculations. To further check
the reliability of the rational representations we also considered
the axial-vector current that enters into calculations of matrix
elements within the Skyrme model. Starting with Eq. (4) one
finds the axial-vector current to be

(JA)aµ = i
f 2

π

4

(
χ

fχ

)2

Tr[τ a(∂µUU † − ∂µU †U )]

− i

16e2
{Tr([τ a, ∂νUU †][∂µUU †, ∂νUU †])

− Tr([τ a, ∂νU
†U ][∂µU †U, ∂νU †U ])}, (28)

so that the spatial integral of the axial current, expressed as a
product of spatial and internal factors, reads∫

d3x(JA)aj = −GTr(τ aAτ jA−1), (29)

where the factor G is explicitly given by

G = − π

3e2

∫ ∞

0
dy y2

[
C2

(
dF

dy
+ sin 2F

y

)

+ 4
sin 2F

y

(
dF

dy

)2

+ 8
sin2 F

y2

dF

dy
+ 4

sin2 F sin 2F

r3

]
.

(30)

The values for the physical quantities obtained from the
above representations are displayed in Table I. We found
very good agreement between approximate and numerical
solutions.

065206-5
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TABLE I. Predictions from rational approximants obtained by
minimization of Eq. (6). Masses are given in units of fπ/e, and λ in
units of 1/fπ .

[1, 2] [2, 3] [3, 4] Exact

M 71.10 70.86 70.86 70.87
λ 0.110 0.116 0.116 0.116
G 0.67 0.63 0.64 0.66

We would like to stress that the phenomenological calcu-
lations, which involve a highly nontrivial nonlinear problem,
are considerably simplified through the use of the proposed
analytical approximate representations. Certainly the most
interesting feature of our representations is that they contain,
in an explicit form, exact analytical properties of the Skyrmion
solution for the Skyrme model with the scalar field problem as
relations (12) and (14) can be fully recovered from them.

V. FINAL REMARKS

The suggested approximants based on a Padé-like method
provide satisfactory analytical representations for the single-
soliton solution of an effective chiral Lagrangian, well behaved

under the scaling properties of QCD. The rational functions
proved to be well suited for incorporating the exponential
behaviors of the chiral and scalar fields. Therefore they can
be used with reliability to implement an analytic continuation
of the exact power-series solutions of the equations of motion
near the origin. In this way we give an approach to a difficult
problem of two coupled nonlinear differential equations for
which only numerical solutions are available. In addition, the
analytical representations contain explicit information on the
exact solution, which remains hidden in a numerical approach.
Certainly analytical representations for the fields simplify the
analysis of physical situations described by the model and
may be used to study the phase structure of the Skyrmion
system that models nuclear matter as well as in many other
applications such as in the context of exotic baryons and
monopole excitations [16] for which the chiral soliton models
are the common background.
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de Cooperación Internacional (AECI) for financial support.

[1] R. J. Furnstahl and B. D. Serot, Phys. Rev. C 47, 2338 (1993).
[2] R. J. Furnstahl, H.-B. Tang, and B. D. Serot, Phys. Rev. C 52,

1368 (1995).
[3] J. Ellis and M. Karliner, Phys. Lett. B123, 73 (1988).
[4] H.-J. Lee, B.-Y. Park, D.-P. Min, M. Rho, and V. Vento, Nucl.

Phys. A723, 427 (2003).
[5] J. A. Ponciano, L. N. Epele, H. Fanchiotti, and C. A. Garcı́a

Canal, Phys. Rev. C 64, 045205 (2001).
[6] E. Witten, Nucl. Phys. B233, 422 (1983); B233, 433 (1983);

G. ’t Hooft, ibid. B72, 461 (1974).
[7] J. Ellis and J. Lanik, Phys. Lett. B150, 289 (1985).
[8] G. E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991).
[9] H.-J. Lee, B.-Y. Park, M. Rho, and V. Vento, Nucl. Phys. A726,

69 (2003).

[10] See, for example, A. P. Balachandran, V. P. Nair, S. G. Rajeev,
and A. Stern, Phys. Rev. D 27, 1153 (1983).

[11] J. Linde and H. Snellman, J. Math. Phys. 33, 3740 (1992).
[12] J. Ananias and Erasmo Ferreira, J. Math. Phys. 32, 1942 (1991);

J. Ananias et al., ibid. 32, 1949 (1991).
[13] G. A. Baker Jr., Essentials of Padé Approximants (Aca-
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