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Coulomb and mass difference corrections to low-energy pion-nucleon scattering are calculated and compared
with previous work including potential models, dispersion relation methods, and chiral perturbation theory
calculations. Particular attention is paid to their role in testing isospin breaking.
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I. INTRODUCTION

Electromagnetic corrections are a key element in under-
standing low-energy pion-nucleon scattering and, in turn,
the fundamental elements of chiral symmetry breaking
and the pion-nucleon coupling constant. They are also crucial
in the important role of low-energy pion-nucleon scattering as
a testing ground for isospin breaking.

Tests of isospin breaking have been reported [1–3] that used
the extracted charged pion scattering amplitudes to predict
charge-exchange amplitudes. A breaking of the order of 8%
in the amplitude was found. Recently, Gridnev et al. [4] also
reported a similar breaking in the same analysis, although they
found a much smaller breaking (2.4% and 1.5%) in different
reactions. They concluded that the breaking is much smaller
than that found in Refs. [1–3].

Piekarewicz [5] has suggested a possible explanation for the
isospin breaking based on the effect of quark mass differences
on the charged and neutral pion coupling constants. Breaking
from ρ-ω [6] and π -η mixing are also possible [7–9]. While the
ρ-ω mixing predicts about the right magnitude for the effect,
it has the wrong sign.

Although a number of possible ways of breaking isospin
symmetry in the πN system exist (see Ref. [10] for a
classification of the types), two corrections that are isospin
breaking and nonperturbative must minimally be included at
the level of a phase-shift analysis. Any attempt to fit the three
πN scattering channels at low energy without the inclusion of
these effects is doomed.

The first correction is due to the coherent Coulomb
amplitude. At forward angles, it provides the dominant
contribution to the cross section; and at slightly larger angles,
it interferes with the strong amplitude providing important
phase information. A simple addition of the two amplitudes
would result in a nonunitarity expression. A very common
way of treating this problem is to generate a strong interaction
potential and add it to the Coulomb potential. The strong
interaction potential is assumed to conserve isospin.

The second effect is due to the π±-π0 and n-p mass
differences. One result of these differences is that the charge-
exchange reaction has a positive Q value and so tends to infinity
at zero energy. This singularity is due to the flux factor which
is present when calculating the physical amplitudes from the
S matrix. Aside from this factor, there are also corrections at the
S-matrix level which could be considered with a perturbative
treatment.

Corrections for these effects have been reported that use
a potential model for their calculation [11–13] based on
pioneering work by Oades and Rasche [14]. In addition, an
analysis was made [1] (hereafter referred to as GAK) in which
the potential method corrections were incorporated into the fit
itself. These last corrections have not been previously reported,
and it is a primary purpose of this paper to report them.

For unbroken isospin, one can write the charged pion
scattering amplitudes in terms of the isospin amplitudes:
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In the potential treatment, each of the pure isospin ampli-
tudes is extracted from wave functions assumed to satisfy a
wave equation with potentials corresponding to the isospin
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2 ). Since the π+p amplitude consists of a single

isospin amplitude, only the Coulomb correction needs to be
taken into account. The formalism for this case is covered in
Sec. II.

The other two amplitudes, being a mixture of isospin
amplitudes, pose the additional problem of the neutron-proton
and π±-π0 mass differences. By using a linear combination of
the amplitudes, the solution is expressed as a pair of coupled
equations corresponding to the charge states, that is,
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where ψc and εc are the charged wave function and kinetic
energy, and ψ0 and ε0 are the corresponding neutral pion
quantities. Tc and T0 are the kinetic energy operators. The
corrections are then included by adding a Coulomb potential
to the equation describing the π− only. The masses entering
into the kinetic energy operators T and the kinetic energies
ε are also replaced by expressions with the true masses
corresponding to the charged or neutral pions and nucleons.
It is assumed that the potentials remain unchanged during this
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process. This assumption has been questioned by Rusetsky
[15].

Although the general method used in each case is very
similar, each group has used different forms for the potentials,
fit different data sets, used different relativistic prescriptions
for the pion energies and reduced masses (energies) and, in
some cases, used different wave equations. Thus, variations
are to be expected among the resulting corrections.

In addition to the potential method, a dispersion approach
has been used [16,17]. Sauter [18] developed the basic method
for s waves only without considering mass differences. The
model was extended in several works [19]. This approach has
become the most common method for making the corrections,
producing what are often referred to as the NORDITA
[16,17] results. The corrections at low energies are made
with NORDITA in the often cited work by Arndt et al. (see
Ref. [20], for example). The advantages and disadvantages of
the potential and dispersion relations method are discussed in
Ref. [11].

II. π+ PROTON SCATTERING

In this case, the corrections in a potential model are
straightforward. The wave equation can be solved for each
partial wave to obtain the phase shifts. While this full
solution for the amplitude includes everything, the partial
wave expansion diverges, as does the one for a pure Coulomb
potential. Since the sum of the Coulomb series alone is known,
the non-spin-flip and spin-flip amplitudes can be written as

f (θ ) = fc(θ ) + 1

2ik

∞∑
�=0

[(� + 1)(e2iδ�+ − e2iσ� )

+ �(e2iδ�− − e2iσ� )]P�(cos θ ), (4)

g(θ ) = 1

2k

∞∑
�=0

[e2iδ�+ − e2iδ�− ]P 1
� (cos θ ), (5)

where σ� is the Coulomb phase shift and fc(θ ) is the Coulomb
amplitude. The notation �± means j = � ± 1

2 . Here (and in
GAK [1], but unlike Gashi et al. [11]), we neglect the spin-
dependent part of the electromagnetic interaction. Equation (4)
is often written as

f (θ ) = fc(θ ) + 1

2ik

∞∑
�=0

e2iσ� [(� + 1)(e2iδn
�+ − 1)

+ �(e2iδn
�− − 1)]P�(cos θ ), (6)

where the nuclear phase shift is defined as

δn
�± = δ�± − σ�. (7)

This phase shift is then compared with the hadronic phase
shift δh

�±, i.e., the one that would exist if there were no Coulomb
interaction. A potential model is used to calculate these two
quantities in the present case. In the limit that the interactions
are very weak, the hadronic and nuclear phase shifts become
equal so that the difference may be expected to be small. The
correction is defined as the difference between them,

C�± = δn
�± − δh

�±. (8)

FIG. 1. Comparison among the different methods for π+p elastic
scattering. The difference between the point charge (pc) and full
calculation of Gashi et al. [11] is very small except for the s wave.
The dotted curve represents a fit to the NORDITA results [16] to be
used later for comparisons at energies other than those given by them
(solid circles) and is given in the Appendix.

Figure 1 shows a comparison of the results of the dif-
ferent determinations. It is seen that the potential methods
are in reasonable agreement. The point Coulomb result of
Gashi et al. [11] included no higher order electromagnetic
effects, whereas the full calculation included a finite charge
distribution as well. Since the corrections from GAK included
a finite charge density but no higher order electromagnetic
effects, there is no exact comparison possible. The dispersion
relation approach is seen to give only slightly different results.

While one can judge to some extent the size and degree
of agreement from Fig. 1, it is useful to see the effect on
the cross section itself. Figure 2 shows such a comparison at
a kinetic energy of 45 MeV. The hadronic phase shifts are
taken from Ref. [1] for all of the cases. It is seen that the

FIG. 2. Effect of the corrections for π+p scattering in a typical
case. The corrections are small but not negligible. The three methods
compared give very nearly the same result. The data are from Brack
et al. [21].
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FIG. 3. Solid curve gives the result with both Coulomb and mass difference corrections from GAK. Dashed line is from Gashi et al. [12],
solid dots are from Tromborg et al. (NORDITA) [16], and the solid triangles are from Zimmermann [13]. Dotted lines represent a fit to the
NORDITA [16] results used later.

correction is small but not negligible, being of the order of two
standard deviations of accurate data. The differences between
the corrections would seem to be unimportant at the present
level of the quality of the data.

III. π− PROTON SCATTERING AND CHARGE EXCHANGE

In this case, the expression of the corrections is more
complicated since the potential system consists of a pair of
coupled differential equations. Not only is there a correction
due to the finite charge in the π−p channel but also the
neutron-proton and π0-π± mass differences must be taken
into account.

A. Method

To express the corrections in the coupled channel case, we
follow the formulation of Gashi et al. [12]. The solution of the
coupled channel system [1,22] produces the amplitude for π−
proton scattering, charge exchange, and π0 neutron scattering.
The result is expressed as a 2 by 2 symmetric S matrix with the
diagonal elements representing π−p and π0n elastic scattering
and the off-diagonal elements charge exchange. The scattering

matrix is expressed in terms of a 2 by 2 real K matrix,

S = 1 + iK

1 − iK
, K = −i

S − 1

S + 1
. (9)

These equations hold for each partial wave where we have
suppressed their angular momentum indices. The S11 matrix
element has been multiplied by e−2iσ� to remove the pure
Coulomb effect before calculation of the K matrix. Since the
K matrix is real and symmetric, it can be transformed to a
diagonal form with an orthogonal matrix,

(
cos φ − sin φ

sin φ cos φ

)(
K11 K12

K21 K22

) (
cos φ sin φ

−sin φ cos φ

)

=
(

K1 0
0 K2

)
≡

(
tan δ1 0

0 tan δ2

)
. (10)

If isospin is unbroken, then cos φ →
√

2
3 ≡ cos φ0 and δ1 and

δ2 are the isospin 1
2 and 3

2 phase shifts. The form expressed in
Eq. (10) is valid independent of isospin conservation; and the
differences of the resultant phase shifts δ1, δ2, as well as the
value of φ needed to diagonalize the system from the unbroken
isospin values, are used to quantify the breaking.
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FIG. 4. Comparison with the correction for the rotation angle �φ.
The meaning of the symbols is the same as in Fig. 3.

The corrections are expressed as

C1 ≡ δ̄ 1
2
− δh

1
2
, C3 ≡ δ̄ 3

2
− δh

3
2
,

(11)
�φ ≡ φ̄ − φh = φ̄ − φ0,

for each partial wave, where the barred quantities are those
obtained from the model by solving for δ1, δ2, and φ from the
equations above with Coulomb and mass differences present.
The quantities with superscript h (the hadronic values) are
those obtained from the solution of the system with all pion
masses equal to the charged pion mass, the neutron mass equal
to the proton mass, and no Coulomb interaction.

The hope is that these corrections will be nearly model
independent and that one can fit the data by choosing δh

1 and
δh

2 in a fitting procedure, apply the corrections to obtain the
full K and S matrices, add in the Coulomb amplitude where
appropriate, and compare with data to calculate a value of χ2.
A search on the values of the isospin pure phase shifts δh

1 and
δh

2 can then be made.
We now address the problem of calculating the corrections.

Since K1 and K2 are the eigenvalues of the K matrix, we can
solve directly for them with

λ± =
K11 + K22 ±

√
(K11 − K22)2 + 4K2

12

2
. (12)

We may now identify the plus and minus signs in this
expression with the isospin 1

2 and 3
2 states.

Multiplying Eq. (10) from the left by the transpose of the
rotation matrix, we find four relations for tan φ, all of which
are equivalent. Two of them are

tan φ = K11 − K1

K12
, tan φ = K12

K2 − K11
. (13)

B. Difficulty with the P1
2

wave

In most cases, there is no difficulty in choosing the proper
sign in Eq. (12) to make the correct association of δ1 and δ2

with the isospin phase shifts; in the case of P 1
2

scattering,
however, a problem arises. In this case, around 60 MeV, the
two hadronic phase shifts (P31 and P11) cross. For the two
eigenvalues K1 and K2 to be equal, the radical in Eq. (12)
must vanish. This requires that the conditions

K11 = K22, K12 = 0 (14)

be satisfied simultaneously. For unbroken isospin, this indeed
happens. In this case, isospin requires

K12 =
√

2(K22 − K11), (15)

so that

λ± = K11 + K22 ± 3
√

(K11 − K22)2

2

= K11 + K22 ± 3|K11 − K22|
2

. (16)

For the eigenvalue to have a continuous derivative, the ±
association must be changed at the zero of the radical. If one
chooses the sign to be that of K11 − K22, then

λ+ = 2K11 − K22 = tan δ
3
2 , λ− = 2K22 − K11 = tan δ

1
2 .

(17)

For broken isospin, in general, both conditions in Eq. (14)
will NOT be satisfied at once, so the two eigenvalues can never
be equal. To understand what happens in this case, it is useful
to look at the direct solution of Eq. (10).

In the general case, we can expand Eq. (10) to find that the
condition for the off-diagonal elements to be zero is

2φ = tan−1 2K12

K22 − K11
, (18)

so 2φ changes by π around the point K22 = K11. Consider a
simple example in which the isospin relation is slightly broken
in a simple way such that

K12 =
√

2(K22 − K11) + ε, (19)

then

2φ = tan−1

(
2
√

2 + 2ε

K22 − K11

)
, (20)

and 2φ increases by π as the difference K22 − K11 changes
sign. We have assumed that K22 > K11 for energies lower
than the crossing point. If the opposite is true, a very similar
argument gives the same effect with 2φ decreasing by π .
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FIG. 5. Short dashed line contains the Coulomb correction only, dash-dot line is with the mass difference correction only, and solid line
contains both corrections. Results of Zimmermann are given by the solid triangles (full calculation) and solid squares (Coulomb correction
only).

The values of K1 and K2 are given by

K1 = 1
2K11(1 + cos 2φ) + 1

2K22(1 − cos 2φ)

−K12 sin 2φ
φ→φ0→ tan δ

3
2 , (21)

K2 = 1
2K11(1 − cos 2φ) + 1

2K22(1 + cos 2φ)

+K12 sin 2φ
φ→φ0→ tan δ

1
2 . (22)

Indeed, as 2φ increases by π,K1 ↔ K2 because the sine and
cosine change sign under these conditions.

The correction is nonperturbative since the change in 2φ

by π occurs at the point where the hadronic phase shifts cross
and hence depends strongly on the hadronic phase shifts used
to define the corrections. In this case, the general method fails
for corrections near the crossing point.

One can choose to change the association of the plus and
minus signs at the zero of K12 (that is what is done in the
present work) or when K11 = K22, but either way there will
be discontinuities in the corrections extracted at the crossing
point. The actual amplitudes remain continuous; it is only
this representation of the breaking which shows an anomalous
behavior, but this compensation only occurs for the hadronic
phase shifts used in the calculation of the correction. If one

uses these corrections with phase shifts other than the ones
for which the corrections were derived, discontinuities in the
resulting amplitudes will result. Of course, this is a small
correction in a small partial wave in this case, so in a practical
sense the problem may not be very serious.

The difficulty comes partly from the fact that, even for
good isospin, for K1 = K2 any value of φ is valid for
the transformation, so φ is undetermined at that point. For
unbroken isospin there is no problem, however, since φ is
determined arbitrarily close to the crossing point on either
side.

C. Comparison with previous models

An obvious isospin breaking effect due to the mass
differences leads to a positive Q value for π−p → π0n and
a negative Q value for π0n → π−p. This fact destroys the
symmetry of the amplitudes derived from the symmetric
S matrix, because of a factor kf /ki originating from the
incoming and outgoing fluxes which appears in the charge-
exchange cross section obtained from the procedure above.
This factor is included in the calculations of charge-exchange
cross sections to be shown in this section.
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FIG. 6. Individual contributions to �φ. The convention for the
lines and points is the same as in Fig. 5.

Figures 3 and 4 show a comparison of the corrections
from GAK [1] with previous work. It is seen that there is
qualitative agreement among all calculations. There is rather
good agreement between GAK and Zimmermann at the higher
energies where he calculated. For the S11 and P33 partial waves,
there is good agreement with the work of Gashi et al. [12] as
for the case of �φ for the P 3

2
channel where, in fact, all

calculations agree.
Figures 5 and 6 give a breakdown of the contributions

to the corrections into Coulomb and mass differences for
GAK. The most important contribution is from the mass
differences, especially at low energies. Since Zimmermann
gave a separation of the two effects for the P33 phase shift
and the �φ for the P 3

2
channel, a comparison can be made

and the agreement is good. The NORDITA group [17] also
gave a separation into the Coulomb and mass difference
contributions. Their mass difference correction dominates at
low energy (see Ref. [17], Figs. 2–4). Hence, while these
corrections are often called electromagnetic, it is the correction
arising from mass differences which is the most important.

While the expression of the correction in this form is
very useful, it is difficult to appreciate the effect on the
cross sections of the differences among the determinations
as they may well be compensating to give similar corrections
to physical observables. Hence, we consider the effects of

FIG. 7. Comparison of methods of corrections for charge ex-
change for forward angles at low energies with the data of Frlez
et al. [23]. Dotted curve represents no correction, solid curve gives the
correction from GAK [1], chain-dash curve is from Gashi et al. [12],
and dashed curve represents the corrections from NORDITA [16].

these corrections on some charge-exchange cross sections and
the π−p elastic amplitude. In each case, the “no correction”
calculation is made from the hadronic phase shifts of GAK [1]
and the corrections are made relative to them.

Figure 7 shows a comparison of the correction with the
charge-exchange data of Frlez et al. [23] at 27.5 MeV for
the three groups that calculated in this energy range. The
resulting corrected cross sections are all very nearly the same;
the correction takes the result away from the data, whereas the
uncorrected calculation (dotted line) lies closer to agreement.
This last effect occurs only at forward angles.

Figure 8 gives the breakdown of the contributions. The
Coulomb correction actually moves the result slightly closer
to the data, while the mass difference correction takes it away.

FIG. 8. Separation of the Coulomb and mass corrections com-
pared with data of Frlez et al. [23].
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FIG. 9. Comparison of the effects of the corrections with the
charge-exchange data of Isenhower et al. [24] at 39.4, 20.6, and
10.6 MeV. The importance of the positive Q value of the reaction is
clear at the lower energies by comparing with the uncorrected case.

Figure 9 shows the effect over the full angular range
compared with the data of Isenhower et al. [24]. For larger
angles, the corrections move the prediction closer to the data.

At higher energies, the effect of the corrections is somewhat
smaller. A comparison with the data of Sadler et al. [25] and
Bagheri et al. [26] is shown in Fig. 10. For the second case,

FIG. 10. Comparison of the effect of the corrections with the data
of Sadler et al. [25] at 64 MeV (top) and Bagheri et al. [26] at 62.2
and 45.6 MeV (middle and bottom).

the experimental results were given as coefficients of Legendre
polynomials and the dots shown were calculated from these
numbers. The effect of the corrections is seen to be small,
and the two potential models agree well, a difference being
observable only at the lowest energy.

In general, the difference between prediction and data
can be expressed as a difference in normalization of around
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FIG. 11. Left: Zero-degree charge exchange with corrections from GAK [1], Gashi et al. [12], and NORDITA [16]. Data are from
Fitzgerald et al. [27]. Right: Corrections to the real part of fπ−p→π−p for GAK [1] (dash: Coulomb only; solid: full correction), Gashi
et al. [12] (dash-dot) and NORDITA [16] (dotted).

15% and constitutes evidence of isospin breaking. Note that
the ≈8% breaking mentioned in the introduction is in the
amplitude and is hence consistent with 15% in the cross
section.

The forward charge-exchange cross section is a sensitive
measure of isospin breaking since it shows a deep minimum
near 45 MeV. While most checks on isospin depend on
obtaining an absolute cross section, the position of this
minimum does not; only a knowledge of the beam momentum
is needed.

The left part of Fig. 11 shows the effect of the corrections
of the three groups compared with the data of Fitzgerald
et al. [27]. We see that the corrections are all very nearly
the same and move the predicted cross section away from the
data. While the uncorrected prediction cannot be said to give
a good fit to the data, it is much better than the prediction after
correction for the mass differences. The Coulomb potential
has very little effect on the position of the minimum.

The right part of Fig. 11 shows the prediction of the
corrections for the amplitude for π−p → π−p. The mass
correction is significantly different from the pure Coulomb
effect. One can also note a large difference among the
methods.

D. Comparison with chiral perturbation theory

While the results of the previous section are rather consis-
tent, at least for the charge exchange, they are based on similar
assumptions and hence could all be wrong. Thus, it is very
desirable to have a comparison with an independent method
calculating from an approximate QCD viewpoint.

A calculation of isospin breaking in chiral perturbation
theory (ChPT) has been made by Fettes and Meißner [28].
They calculated six ratios which are measures of isospin
breaking. Most of the ratios (3–6) involve quantities difficult
to measure. Ratio number 1 involves isoscalar quantities that
vanish at threshold, so the ratio depends sensitively on the
phase-shift fit used to compute them.

Their second ratio,

R2 = 2
fπ+p→π+p − fπ−p→π−p − √

2fπ−p→π0n

fπ+p→π+p − fπ−p→π−p + √
2fπ−p→π0n

, (23)

involves the same expression used to test isospin in the charge-
exchange reaction, so it is very suitable for comparison. As
stated by the authors of Ref. [28], a direct comparison cannot
be made between their work and data, but one can calculate
the ratio with the hadronic model under the same conditions.
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FIG. 12. Left: Ratio R2 calculated with GAK corrections for Coulomb only (dash-dot) and Coulomb plus mass differences (solid) compared
with that from Fettes and Meißner [28] (solid squares). Dashed line gives the result with the corrections of Gashi et al. [12]; dotted line gives that
of NORDITA [16]. Flux factor

√
kf /ki is included in the hadronic calculations. Right; Same information except that

√
kf /ki is not included.

An attempt to compare the ChPT calculation with actual
charge-exchange amplitudes obtained directly from the data
would include the flux factor

√
kf /ki . Since the ChPT

calculation is made at the matrix element level, this factor
should not be in the comparison. We show both cases to
demonstrate the importance of the factor.

Since they calculated corrections to the strong process, their
combination

fπ+p→π+p − fπ−p→π−p (24)

goes to zero in the limit of no strong interaction and we
must remove the pure Coulomb amplitude. We might subtract
it partial wave by partial wave or simply use the nuclear
phase shifts. It is the latter prescription which is shown in
the comparison graphs, although there is very little difference
in these two ways of removing the Coulomb effect.

Figure 12 shows the comparison with and without the flux
factor. For the S and P 1

2
waves, the pure Coulomb correction

agrees rather well with the ChPT (full) calculations. The P 1
2

ratio is large and shows a singularity around 60 MeV because
of crossing of the hadronic phase shifts leading to the vanishing
of the charge-exchange amplitude in this partial wave. The
position of this crossing depends on the particular fit of
the hadronic phase shifts and hence cannot be expected to

be the same in the different cases. For the P 3
2

wave, even the
ratio calculated with Coulomb corrections alone is more than
a factor of 2 larger than the ChPT result, perhaps because
the amplitude is larger and the perturbation series has not
converged.

Without the flux factor, only the P 3
2

partial wave shows
a significant discrepancy between the models and the ChPT
calculations. The two potential models and the dispersion
relation approach show about the same factor of 3–5 difference
in this case. Since this is the channel in which the � resonance
occurs, one can question whether the explicit degrees of
freedom of the � can make an important difference.

IV. CONCLUSIONS

We have seen that the hadronicly calculated corrections of
GAK [1] are in rough agreement with previous determinations
[11–13,16]. In most cases, the values of GAK and Gashi
et al. [11,12] are in reasonable agreement. All of these
methods give a significant (and very similar) correction to
the charge-exchange cross section at low energies because of
the mass differences. If one assumes that the hadronic
corrections are too large, then a closer agreement can be
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achieved in the case of forward angle charge exchange at low
energy and the position of the forward minimum. However,
this conjecture does not correct the discrepancy at larger
angles. So even this rather drastic possibility does not solve
the problem. Hence, the interpretation of isospin breaking
based on the discrepancy between data and prediction in the
charge-exchange channel (seen in Figs. 7–11) is not influenced
by the variation in the corrections. We also see that the same
discrepancy is present within all of the charge-exchange data
sets.

Corrections calculated from ChPT are significantly smaller
than those of the hadronic methods in the P 3

2
partial wave,

especially when the mass correction is included. This may
indicate that there is a general error in the hadronic corrections
or that the � degree of freedom needs to be treated differently
in the ChPT calculation. Since the mass correction in the
form currently used has been questioned, it is possible that the
assumption about the isospin potentials remaining unchanged
is incorrect.
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APPENDIX A: FITS

Following are a set of fits to the phase shifts and corrections
which are given as an aide. The form of the fits has no
physical significance and should not be used outside the range
5–100 MeV. In what follows, T is the laboratory kinetic energy
in MeV and δ is in degrees.

1. GAK hadronic phase shifts

The fit to the GAK hadronic phase shifts for s waves is in
the form

δ = a
√

T

1 + bT + cT 2
. (A1)

For S1,

a = 1.0319, b = 2.865 × 10−3, c = −8.0 × 10−7. (A2)

For S3,

a = −0.5197, b = −5.37 × 10−3, c = 1.939 × 10−5.

(A3)
For the p waves,

δ13 = −0.001806T
3
2 (1 − 0.00414T )

1 + 0.001T
,

(A4)

δ33 = 0.01084T
3
2 (1 + 0.0085T )(1 + 0.06e−0.057T )

1 − 0.000436T
.

δ11 = −0.00636T
3
2 (1 − 0.006190T − 0.0304T 2)

1 + 0.0131T
,

(A5)

δ31 = −0.00196T
3
2 (1 + 0.00228T )

1 + 0.00011T
.

2. π+ p corrections

The fits to the π+p corrections by GAK are

C0+ = 0.1 + 0.000049T , C1− = −0.009 + 0.00045T ,

(A6)
C1+ = −0.0185 − 0.000397T 1.5.

The fits to the π+p corrections by Gashi et al. [11] are

C0+ = 0.075 + 0.0005T , C1− = 0.005 + 0.0002T ,

(A7)
C1+ = −0.033 − 0.0000195T 2.2.

For NORDITA,

C0+ = 0.095, C1− = 0.00045T ,
(A8)

C1+ = −0.035 − 0.000067T 2.

3. Coupled channel corrections

The fit to the GAK corrections for the s wave is given by

C1 = 0.753T − 1
2 (1 − 0.0114T ),

(A9)

C3 = −0.619T − 1
2 (1 − 0.0051T )

1. − 0.00299T
,

�φ = 7.9

T 1.3
+ 0.0011T − 0.026. (A10)

For the P 1
2

partial wave,

C1 = −0.035 − 0.00103T

1 + 0.0008T 2

+ 0.01745 tan−1

(
0.02

T − 60.1

)
, (A11)

C3 = 0.019 − 0.01137T 0.728

(1 + 0.137T 0.72 + 0.000039T 2)

− 0.01745 tan−1

(
0.0155

T − 60.1

)
, (A12)

�φ = −1.2 + 148

(T + 4.3)0.95
− 0.4363 tan−1

(
2

T − 60.1

)
.

(A13)

For the P 3
2

partial wave,

C1 = −0.001 − 0.0039T 0.4 − 0.0038

(
T

100

)4

,

C3 = 0.1 + 0.0048T − 0.23

(
T

100

)3

, (A14)

�φ = −44.5

T
+ 0.37.
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The fit to the Gashi et al. [12] corrections used in this work
is the following:
For s,

C1 = 1.15

T 0.6
− 0.056, C3 = − 0.3

T 0.3
− 0.04, (A15)

For p 3
2
,

C1 = −0.0005T + 0.006, C3 = 0.0036T + 0.13, (A16)

For p 1
2
,

C1 = −0.045 + 0.000016T 1.9,
(A17)

C3 = −0.05 + 0.00025T + 0.046e−0.08T ,

�φs = 10.3

T 1.4
+ 0.0013T − 0.149,

(A18)

�φp 1
2

= 160

T 0.95
− 1.9, �φp 3

2
= − 45

T − 2
+ 0.4.

The fit to the NORDITA [16] corrections used in this work is
as follows:
For s,

C1 = 1.1

T 0.4
− 0.095, C3 = − 0.55

T 0.25
+ 0.082, (A19)

For p 3
2
,

C1 = −0.00065T , C3 = 0.008T + 0.06, (A20)

�φs = 16

T 1.4
+ 0.0008T + 0.01, �φp 3

2
= −48

T
+ 0.4.

(A21)

The NORDITA group did not give corrections for the P 1
2

partial wave.
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