
PHYSICAL REVIEW C 72, 065202 (2005)
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We examine charmed-strange mesons within the framework of the constituent quark model, focusing on the
states with L = 1. We are particularly interested in the mixing of two spin states that are involved in Ds1(2536)
and the recently discovered DsJ (2460). We assume that these two mesons form a pair of states with J = 1.
These spin states are mixed by a type of spin-orbit interaction that violates the total-spin conservation. Without
assuming explicit forms for the interactions as functions of the interquark distance, we relate the matrix elements
of all relevant spin-dependent interactions to the mixing angle and the observed masses of the L = 1 quartet.
We find that the spin-spin interaction, among various types of spin-dependent interactions, plays a particularly
interesting role in determining the spin structure of Ds1(2536) and DsJ (2460).
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I. INTRODUCTION

Recently a new charmed-strange meson, D∗
sJ (2317), was

discovered by the BaBar Collaboration [1] and confirmed
by the CLEO Collaboration [2]. The CLEO reported another
charmed-strange meson called DsJ (2460). Both these mesons
were confirmed by the Belle Collaboration [3,4]. The masses
and decay properties of D∗

sJ (2317) and DsJ (2460) have been
investigated with two types of particular structures assumed for
them. One type is the ordinary qQ̄ structure, and the other is an
exotic structure such as the KD molecule [5–7,9] or tetra-quark
configuration [10–13]. We will work with the former structure
in this paper. Then, these new entries together with Ds1(2536)
and Ds2(2573), which were discovered earlier, are expected to
form a quartet with L = 1 (P states) of the cs̄ (or sc̄) system.
Given this expectation, Godfrey studied various properties
of D∗

sJ (2317) and DsJ (2460) [14,15], following the work
done prior to the discoveries of these mesons [16,17]. Also,
decay modes of D∗

sJ (2317) and DsJ (2460) were analyzed by
Colangero and De Fazio [18], Bardeen et al. [19], Mehen and
Springer [7], and Close and Swanson [8].

With respect to the spin structure of these mesons, there are
four states, 1P1,

3P0,
3P1, and 3P2, in terms of the JLS bases.1

While D∗
sJ (2317) and Ds2(2573) can probably be assigned

to 3P0 and 3P2, respectively, Ds1(2536) and DsJ (2460) are
probably mixtures of 1P1 and 3P1. The extent of the mixing can
be parametrized by a mixing angle [14–17,20,21]. In addition
to the masses of the mesons, the branching fractions for B →
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1We use the ordinary spectroscopic notation 2S+1LJ that is used
for a two-particle system, where S, L, and J are total spin, orbital
angular momentum, and total angular momentum quantum numbers,
respectively.

D̄DsJ followed by the electromagnetic (EM) decays of DsJ

have also been measured [3]. The mixing angles are closely
related to the EM decay rates of DsJ [15].

The purpose of this paper is to examine the spin structure
of the four mesons. We use the constituent quark model with
the interquark interactions that arise from the nonrelativistic
expansion of the QCD-inspired Fermi-Breit interaction. We
have five types of interactions in the following sense. In
addition to the spin-independent interaction that consists of
a confining potential and the color Coulomb interaction, we
have four types of spin-dependent interactions. They are the
spin-spin, tensor, and two types of spin-orbit interactions, on
which we elaborate in the next paragraph. The model is the
same as the one used by Godfrey et al. [16,17,20] except that
we do not assume any explicit forms for the interactions as
functions of the distance between the two quarks. We treat all
spin-dependent interactions perturbatively.

By the two types of spin-orbit interactions, we mean the
ones that are symmetric and antisymmetric with respect to
the interchange of the two quarks. We refer to the former as
SLS and the latter as ASLS interactions. The SLS interaction
commutes with the total spin of the two quarks, whereas
ASLS interaction does not. The ASLS interaction violates
the conservation of the total spin. This is the agent that
induces the mixing of 1P1 and 3P1. The ASLS interaction is
proportional to the mass difference between the quarks. Hence,
its effect can be substantial when the mass difference is large,
leading to a specific amount of mixing in the heavy quark
limit. This is indeed the case with the cs̄ (or sc̄) system as
we will see. Historically, ASLS interaction effects were first
examined for the �-N interaction and hypernuclei [22–24].
Regarding the particular roles of spin-orbit interactions in qQ̄

systems, we refer to a series of works by Schnitzer [25] and
the work by Cahn and Jackson [26] in addition to those cited
already [16,17,20].

As we said above, we have five types of interactions. On
the other hand, there are five pieces of experimental data now
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TABLE I. Summary of observed charmed-strange mesons.

Label Mass (MeV) Assignment Year of
(2S+1LJ ) discovery

D±
s 1968.3 ± 0.5 1S0 1983 [28]

D∗±
s 2112.1 ± 0.7 Probably 3S1 1987 [29]

D∗
sJ (2317)± 2317.4 ± 0.9 Probably 3P0 2003 [3]

DsJ (2460)± 2459.3 ± 1.3 ? 2003 [3]
Ds1(2536)± 2535.35 ± 0.34 ? 1989 [30]
Ds2(2573)± 2572.4 ± 1.5 Probably 3P2 1994 [31]

available, which are the masses of the four mesons and the
branching ratio of the EM decays. [See Eq. (29).] The matrix
elements of the five interactions (within the P-state sector) can
be determined such that the five pieces of the experimental data
are reproduced. At the same time, the spin structure of the four
mesons can be determined. In doing so, we do not have to know
the radial dependence of the interactions. As it turns out, the
spin-spin interaction, among the four types of spin-dependent
interactions, plays a particularly interesting role in relation to
the spin structure of Ds1(2536) and DsJ (2460).

We begin Sec. II by defining a nonrelativistic model Hamil-
tonian that incorporates relativistic corrections as various
spin-dependent interactions and proceed to determining the
matrix elements of the interactions by using the mass spectra
of the L = 1 quartet of charmed-strange mesons and the EM
decay widths of DsJ (2460). In Sec. III, we remark on the
approximations that we use. Discussions and a summary are
given in the last section. In Table I we list the observed
charmed-strange mesons that we consider in this paper [27].

II. HAMILTONIAN AND MIXING ANGLE

We assume that the nonrelativistic scheme is appropriate
for the system, and relativistic corrections can be treated
as first-order perturbation. The nonrelativistic expansion of
the Fermi-Breit interaction gives us the Hamiltonian for a
charmed-strange meson in the form of

H = H0 + Ss · ScVS(r) + S12VT (r)

+L · SV
(+)
LS (r) + L · (Ss − Sc)V (−)

LS (r), (1)

where Si is the spin operator of the strange quark when i = s

and of the charmed quark when i = c, S = Ss + Sc, S12 is the
tensor operator, and L the orbital angular momentum operator.
The lowest-order terms in the nonrelativistic expansion are all
in H0 which also contains a phenomenological potential to
confine the quarks. More explicitly, H0 reads as

H0 = ms + mc + p2
s

2ms

+ p2
c

2mc

+ VC(r) + Vconf(r), (2)

where mi and pi are the mass and momentum of quark i,
respectively, VC is the color Coulomb interaction, and Vconf

is the confinement potential. The last two terms of Eq. (1)
are the SLS and ASLS interactions, respectively. The spatial
functions attached to the operators in Eq. (1) can be expressed
in terms of VC and Vconf [17,32]. However, we do not need

such explicit expressions of these functions, as it will become
clear shortly.

We start with the eigenstates of H0 such that

H0ψnJLS(r) = E
(0)
nLψnJLS(r), (3)

where

ψnJLS(r) = RnL(r)
J∑

M=−J

CMYM
JLS(θ, φ). (4)

Here CM are constants such that
∑

M |CM |2 = 1 and can be
chosen as (2J + 1)−1/2 since there is no preferable direction.
We concentrate on the P states of n = 1 with no radial node. We
denote each of the L = 1 states with single index ν according to

ν =




1
2
3
4

corresponding to




1P1
3P0
3P1
3P2

. (5)

Next we calculate the matrix elements of H in terms of
the bases defined by Eqs. (3) and (4). Nonvanishing matrix
elements are

H11 = M0 − 3
4vS,

H22 = M0 + 1
4vS − 2vLS − 4vT ,

H33 = M0 + 1
4vS − vLS + 2vT ,

H44 = M0 + 1
4vS + vLS − 2

5vT ,

H13 = H31 = √
2�,

(6)

where

M0 =
∫

d3r ψ∗
J1S(r)H0ψJ1S(r) = E

(0)
1 , (7)

vS =
∫ ∞

0
drr2VS(r)R2

1(r), (8)

vLS =
∫ ∞

0
drr2V

(+)
LS (r)R2

1(r), (9)

vT =
∫ ∞

0
drr2VT (r)R2

1(r), (10)

� =
∫ ∞

0
drr2V

(−)
LS (r)R2

1(r). (11)

We choose the phases of the wave functions involved in
Eq. (11) such that � is positive. Here we have suppressed
suffix n = 1 of the wave functions and the unperturbed P-state
energy. We have ignored the tensor coupling of the 3P2 state to
the 3F2 state. We will remark on this point in the next section.
Note that the ASLS interaction gives rise to � �= 0, which
causes the mixing of 1P1 and 3P1.

All of the matrix elements of the Hamiltonian that we need
are parametrized in terms M0, vS, vLS, vT , and �. These five
parameters can be determined by the four observed masses and
the EM decay rates of DsJ (2460). We have no other adjustable
parameters. In this context, we do not need explicit expressions
of the radial wave function nor the radial dependence of the
potential functions.
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The diagonalization of H leads to four states whose masses
are given by

M+ = 1
2

[
2M0 − 1

2vS − vLS + 2vT

+{(vLS − 2vT − vS)2 + 8�2}1/2
]
, (12)

M2 = M0 + 1
4vS − 2vLS − 4vT , (13)

M− = 1
2

[
2M0 − 1

2vS − vLS + 2vT

−{(vLS − 2vT − vS)2 + 8�2}1/2
]
, (14)

M4 = M0 + 1
4vS + vLS − 2

5vT . (15)

The second and fourth states with M2 and M4 are pure 3P0

and 3P2 states, respectively. We identify them with D∗
sJ (2317)

and Ds2(2573). The other two states with M+ and M− are
composed of 1P1 and 3P1 states. We interpret them as Ds1(2536)
and DsJ (2460), respectively.

Let us introduce a mixing angle θ that represents the extent
of the mixing of 1P1 and 3P1 states in Ds1(2536) and DsJ (2460).
Following Godfrey and Isgur [16], we define θ by

ψ+(r) = −ψ110(r) sin θ + ψ111(r) cos θ,

ψ−(r) = ψ110(r) cos θ + ψ111(r) sin θ,
(16)

where ψ+ and ψ− are the eigenstates that correspond to
Ds1(2536) and DsJ (2460), respectively. The requirement that
the energy eigenvalues for ψ± are M± leads to

tan(2θ ) = − 2
√

2�

vS − vLS + 2vT

. (17)

It is understood that θ lies in the interval of −π/2 � θ � 0
so that it conforms to the sign convention used in Ref. [16].
Since −π/4 � θ � 0 (or −π/2 � θ � − π/4) if (vS − vLS +
2vT ) � 0 (or �0), we have θ → 0 (or → −π/2) as � → 0
if (vS − vLS + 2vT ) � 0 (or �0). In other words, when (vS −
vLS + 2vT ) > 0 (or < 0), Ds1(2536) develops from the 3P1 (or
1P1) state, while DsJ (2460) develops from the 1P1 (or 3P1) state
because of the ASLS interaction.

We can express the five parameters M0, vS, vLS, vT , and �

in terms of the four observed masses and the mixing angle
such that

M0 = 1
4M+ + 1

4M− + 1
12M2 + 5

12M4, (18)

vS = − 1
3 (1 − 2 cos(2θ ))M+ − 1

3 (1 + 2 cos(2θ ))M−

+ 1
9M2 + 5

9M4, (19)

vLS = − 1
8 (1 + cos(2θ ))M+ − 1

8 (1 − cos(2θ ))M−

− 1
6M2 + 5

12M4, (20)

vT = 5
48 (1 + cos(2θ ))M+ + 5

48 (1 − cos(2θ ))M−

− 5
36M2 − 5

72M4, (21)

� = − 1
2
√

2
(M+ − M−) sin(2θ ). (22)

Equation (18) states that the mass of the center of gravity of
the l = 1 quartet is free from the spin-dependent interactions
involved in Eq. (1) in the lowest-order perturbation scheme.

In order to determine the mixing angle, we consider EM
decays of DsJ (2460) to Ds and D∗

s . Generally the E1 decay
width of a meson composed of quark 1 and antiquark 2 is

given by

�(i → f + γ ) = 4e2
Q

27
k3(2Jf + 1) |〈f |r| i〉|2 Sif , (23)

where eQ is the effective charge defined by

eQ = m1e2 − m2e1

m1 + m2
, (24)

k is the momentum of the emitted photon

k = M2
i − M2

f

2Mi

, (25)

and

Sif =
{

1 for a transition between triplet states,

3 for a transition between singlet states,
(26)

is a statistical factor [33]. For the decays of DsJ , we have

k =
{

322.7 MeV for the decay to D∗
s ,

442.0 MeV for the decay to Ds,
(27)

and (2Jf + 1)Sif = 3 for both cases. Since only the 3P1 state
in DsJ undergoes the transition to D∗

s and only the 1P1 state to
Ds , the matrix element 〈f |r|i〉 is proportional to sin θ for the
decay to D∗

s and to cos θ for the decay to Ds [15]. Thus we
obtain

�(DsJ → D∗
s γ )

�(DsJ → Dsγ )
=

(
322.7

442.0

)3

tan2 θ. (28)

The Belle Collaboration made the first observation of B →
D̄DsJ decays and reported the branching fractions for B →
D̄DsJ followed by the EM decays of DsJ [3]. Colangelo et al.
analyzed the data to extract the ratio of branching fractions for
the EM decays of DsJ (2460) to Ds and D∗

s [34]. They obtained

Rexp ≡
[
�(DsJ → D∗

s γ )

�(DsJ → Dsγ )

]
exp

= 0.40 ± 0.28. (29)

The experimental value has the large statistical errors which
results in a large uncertainty in determining the mixing angle
as can be seen in Fig. 1. The numerical value is

θ = −45.4◦−7.5◦
+16.4◦ , (30)

where the upper and lower increments are due to the positive
and negative corrections of the statistical errors in Rexp,
respectively. This may be compared with −38◦ obtained by
Godfrey and Kokoski [17], and −54.7◦ that emerges from
sin θ = −√

2/3 in the heavy quark limit [15,20].
We can calculate M0, vS, vLS, vT , and � through

Eqs. (18)–(22) by fitting the observed masses of Table I and
the mixing angle of Eq. (30). Again these quantities are subject
to uncertainties due to the statistical errors. Using the central
values of the observed masses, we obtain

M0 = 2513.6 MeV, (31)

vS = 21.0−13.1
+27.5 MeV, (32)

vLS = 61.4+2.5
−5.2 MeV, (33)

vT = 19.7−2.1
+4.3 MeV, (34)

� = 26.9−1.0
−4.1 MeV. (35)
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FIG. 1. Variation of the mixing angle with Rexp. The dot-dashed
line shows the value obtained from the central value of Rexp, and
the vertical dotted lines indicate the upper and lower values of Rexp

allowed within the statistical errors.

In Fig. 2 we show how the matrix elements vary when Rexp

is varied within the statistical errors. Note that the matrix
element of the spin-spin interaction is particularly sensitive
to the variation of Rexp. Since the sign of (vS − vLS + 2vT )
determines the main spin states of M±, it is interesting to
see the Rexp dependence of this quantity shown in Fig. 3. We
see that (vS − vLS + 2vT ) changes its sign from positive to
negative as Rexp passes over 0.39. If Rexp < 0.39 the main
spin states of Ds1(2536) and DsJ (2460) are, respectively,
3P1 and 1P1. If Rexp exceeds 0.39, these two spin states are
interchanged.

In the nonrelativistic expansion of the Fermi-Breit inter-
action, the spin-spin interaction contains the derivative of the
color Coulomb interaction. If the color Coulomb interaction
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FIG. 2. Matrix elements calculated by applying the experimental
value of Rexp from Eqs. (18)–(22) with Eq. (28). The dot-dashed
line shows the value obtained from the central value of Rexp, and
the vertical dotted lines indicate the upper and lower values of Rexp

allowed within the statistical errors.
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FIG. 3. Matrix element (vS − vLS + 2vT ) vs Rexp. The value at
which the matrix element changes its sign is 0.39. The dot-dashed
line shows the value obtained from the central value of Rexp, and
the vertical dotted lines indicate the upper and lower values of Rexp

allowed within the statistical errors.

is of the form of 1/r , the spin-spin interaction behaves like
the δ function near the origin. In that case, the matrix element
of the spin-spin interaction will vanish in P states because
the P-state wave functions are strongly suppressed where
the interaction acts. The real situation, however, is not so
simple. The singular spin-dependent interactions are smeared
out because of the relativistic corrections [16,17] and the
asymptotic freedom. The resultant spin-spin interaction will
have a well-behaved form at the origin. Consequently, the
matrix element of the spin-spin interaction can become sizable.
Its magnitude depends on the spatial form of the interaction
which in turn depends on how one incorporates the relativis-
tic corrections and the asymptotic freedom. Equation (32)
is a constraint that the spin-spin interaction has to satisfy.

Earlier we had experimental information on the effect of
the spin-spin interaction on P states of heavy quark systems
only from the charmonia. In first-order perturbation theory, we
can estimate the matrix element by calculating the difference
between a weighted average of the masses of 3P states and
the mass of 1P state. [See Eq. (6).] For the cc̄ system, if we
can regard hc(1P ) as the 1P0 state [27], we obtain −0.85 MeV
for this quantity. If one assumes that the spin-spin interaction
is inversely proportional to the product of the quark masses
and that the wave functions of the cc̄ system and those of
the charmed-strange mesons are the same, one obtains about
−3 MeV for the charmed-strange mesons. The value that
emerged from our analysis is much larger in magnitude than
this value.

Let us remark on the works of Godfrey and Isgur [16] and
of Godfrey and Kokoski [17] in comparison with the present
work. They used basically the same Hamiltonian that we used
and diagonalized it on the basis of the harmonic oscillator
eigenstates. They assumed explicit forms for the confinement
potential and the color Coulomb interaction in terms of which
the spatial behavior of all spin-dependent interactions can be
expressed. They accomplished the relativistic corrections by
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TABLE II. Matrix elements, mixing angle θ , and masses of the P-state charmed-strange mesons in the columns with the corresponding
meson symbols. They are given in MeV except for θ . In the first row, the central values of the masses reported by the Particle Data Group [27]
are listed and we used them to obtain the matrix elements. Mixing angle was given by Eq. (30) with the statistical errors suppressed. Values
of the masses and mixing angles in the second and fourth rows are predictions by the indicated authors. Matrix elements in each row were
calculated by substituting these quantities into Eqs. (18)–(22). Numbers in parentheses in the third row are the matrix elements obtained in
Ref. [17].

M0 vs vLS vT � θ D∗
sJ DsJ Ds1 Ds2

This work 2513.6 21.0 61.4 19.7 26.9 −45.4◦ 2317.4 2459.3 2535.35 2572.4
Godfrey and Kokoski [17] 2563 13 27 8 3 −38◦ 2480 2550 2560 2590

(2564) (15) (27) (7) (3)
Lucha and Schöberl [21] 2531 14 29 8 4 −44.7◦ 2446 2515 2517 2561

introducing a smearing function which softens the singular
behavior of the spin-dependent interactions at the origin.
As a consequence, a sizable contribution from the spin-spin
interaction to the matrix element for the P state emerged. They
fixed the parameters by fitting observed meson masses known
then and predicted unobserved meson masses. Although they
worked beyond the perturbation theory, we thought it would
be interesting to estimate the matrix elements of the spin-
dependent interactions perturbatively through Eqs. (18)–(22)
from the masses and the mixing angles that they obtained for
charmed-strange mesons.

The results are summarized in Table II and compared with
preceding works by Godfrey and Kokoski [17] and Lucha
and Schöberl [21]. The last four numbers under the meson
symbols in the first row are the observed masses that we used
to evaluate the matrix elements in our analysis. The last four
numbers in the other rows are the predicted masses. The values
in parentheses in the third row are the matrix elements obtained
nonperturbatively in Ref. [17]. Note that these values are very
close to the corresponding ones of the second row, showing
that our perturbative treatment is adequate.

The masses of D∗
sJ predicted in Refs. [17] and [21] are

much larger than the experimental value. The matrix elements
of the SLS and tensor interactions come into the masses of
D∗

sJ with a negative sign as seen in Eq. (13). In Refs. [17] and
[21] the magnitudes of these matrix elements are very small
compared with the ones that the experiments require. This is
why they had approximately 110–120 MeV larger masses for
D∗

sJ compared with the experimental value even when one
corrects the overestimate of the center of gravity M0 for the
P-state masses. On the other hand, the matrix elements of
the SLS and tensor interactions come with opposite signs
for the mass of Ds2. This moderates the overestimate of the
mass of Ds2. The mass differences between Ds1 and DsJ in
Refs. [17] and [21] are very small as compared with 76 MeV
of the experimental value. This is simply due to the feature
that the values of � of Refs. [17] and [21] are much smaller
than the one implied by the experiments.

III. VALIDITY OF THE APPROXIMATIONS USED

Let us now discuss the approximations used in
Sec. II. First, we regarded all spin-dependent interactions as

perturbation and obtained their matrix elements as given in
Eqs. (32)–(35). A typical mass difference �M0 between two
consecutive principal states that emerges from H0 is probably
400–500 MeV. The values of vS, vLS, vT , and � are much
smaller than �M0. This justifies our perturbative treatment of
the spin-dependent interactions.

Secondly, we ignored the tensor coupling of the 3P2

state to the 3F2 state. The nonvanishing matrix element of
the tensor interaction between these states gives rise to an
additive correction to H44 in Eq. (6) through the second-order
perturbation. Let us estimate the second-order correction. Note
that a quark in a state with L � 1 feels the color Coulomb
interaction much less than a quark in an S state. This is
because the wave function of the former is much suppressed
near the origin as compared with the wave function of the
latter. Therefore, the P and F state wave functions are not
very different from those emerging from the confinement
potential alone. Let us ignore the color Coulomb interaction
in obtaining the P and F state wave functions and use the
harmonic oscillator potential for Vconf . Then the radial parts of
nodeless P and F state wave functions are given by

R1(r) =
√

8

3

[
(µω)5

π

]1/4

r e−µωr2/2, (36)

R3(r) =
√

32

105

[
(µω)9

π

]1/4

r3 e−µωr2/2, (37)

where ω is an oscillator constant and µ = (1/ms + 1/mc)−1

the reduced mass. Remember that ω is related to the mass
difference between two consecutive principal states and,
hence, ω ≈ �M0. Since the tensor interaction can be expressed
as

VT (r) = V ′
C(r) − rV ′′

C (r)

12msmcr
(38)

in terms of the color Coulomb interaction, the needed diagonal
and off-diagonal matrix elements are given by

〈3P2

∣∣S12VT (r)
∣∣3P2

〉 = − 8

45

√
(µω)3

π

α

msmc

, (39)

〈
3P2

∣∣S12VT (r)
∣∣3F2

〉 = 16

15

√
6

35

√
(µω)3

π

α

msmc

, (40)
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where we used

VC(r) = −4

3

α

r
(41)

with the strong coupling constant α. Thus we obtain

〈
3P2

∣∣S12VT (r)
∣∣3F2

〉
〈
3P2

∣∣S12VT (r)
∣∣3P2

〉 = −6

√
6

35
≈ −2.5. (42)

If we equate the denominator to the matrix element of
the tensor operator times the quantity given in Eq. (34),
that is, 〈

3P2

∣∣S12VT (r)
∣∣3P2

〉 ≈ −8 MeV, (43)

an approximate magnitude of the off-diagonal element be-
comes 〈3P2

∣∣S12VT (r)
∣∣3F2

〉 ≈ 20 MeV. (44)

Since the energy difference between the 3P2 and 3F2 states is
approximately 2ω ≈ 1 GeV, the second-order correction will
be about 0.4 MeV, that is, about 5% of the diagonal element
for the 3P2 state. Thus we conclude that the tensor coupling to
the 3F2 state will not appreciably change our result.

IV. DISCUSSIONS AND SUMMARY

We examined the P-state charmed-strange mesons, focus-
ing on the mixing of 1P1 and 3P1 states in Ds1(2536) and
DsJ (2460) that is caused by the antisymmetric spin-orbit
(ASLS) interaction. We treated the spin-dependent interactions
that arise from the nonrelativistic expansion of the Fermi-Breit
interaction perturbatively. We did not assume any explicit
forms for the interactions as functions of the interquark dis-
tance. We expressed the matrix elements of these interactions
in terms of the observed masses of the P-state quartet and
the mixing angle determined from the EM decay rates of
DsJ (2460).

The EM decay rates have large statistical errors. If we
vary the decay rates within the errors, the mixing angle varies
widely. The matrix elements of the spin-dependent interactions
also vary accordingly. The matrix elements of the SLS, tensor,
and ASLS interactions are relatively stable with the variation
of the mixing angle, varying only within 20%. On the other
hand, the matrix element of the spin-spin interaction varies
from 48.5 to 7.9 MeV when the mixing angle varies from one
end to the other as determined from the EM decay rates with
the statistical errors. Note that Godfrey and Kokoski obtained
for the matrix element of the spin-spin interaction 15 MeV,
which lies in this interval [17].

The matrix element of the spin-spin interaction is particu-
larly sensitive to the mixing angle and of crucial importance in
determining the dominant states of Ds1(2536) and DsJ (2460).
With the large variation in the mixing angle, the dominant
state of Ds1(2536) is transferred from the 3P1 to the 1P1 state
and that of DsJ (2460) from the 1P1 to the 3P1 state. This
implies that the spin-spin interaction is the most important
among the spin-dependent interactions for the determination
of the dominant states in Ds1(2536) and DsJ (2460). It will be
crucial to their assignments, provided that other mechanisms
for the mixing such as the coupling to decay channels are less
significant than what we have discussed [35–37].

Our analysis is based on the branching fractions that
were obtained from the first observation of B → D̄DsJ

decays by the Belle Collaboration. The analyses are ac-
companied by large statistical errors, and so are the mixing
angles that are extracted from the branching fractions. For
further discussion of the relationship between the mixing
angle and the spin-dependent interactions, we need more
refined data on the branching fractions from the experimental
groups.
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