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Gauge invariance in two-particle scattering
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It is shown how gauge invariance is obtained for the coupling of a photon to a two-body state described by
the solution of the Bethe-Salpeter equation. This is illustrated both for a complex scalar field theory and for
interaction kernels derived from chiral effective Lagrangians.
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I. INTRODUCTION

Chiral perturbation theory provides an appropriate frame-
work for studying hadronic processes at low energies [1]. In
chiral perturbation theory (ChPT) the most general effective
Lagrangian incorporating the same symmetries and symmetry
breaking patterns as the underlying theory, QCD, is formulated
in terms of the relevant degrees of freedom, i.e., mesons
and baryons. Moreover, external fields representing, e.g.,
external photons are included in a gauge-invariant fashion.
The Green’s functions are then expanded perturbatively in
powers of Goldstone boson masses and small three-momenta.
By employing a regularization scheme that respects chiral
symmetry, gauge invariance is maintained at every order in
the loop expansion of ChPT.

However, the systematic loop expansion involves a charac-
teristic scale �χ � 4πFπ ≈ 1.2 GeV at which the chiral series
is expected to break down and the limitation to very low-energy
processes is even enhanced in the vicinity of resonances. The
appearance of resonances in certain channels constitutes a
major problem for the loop expansion of ChPT, because a
resonance cannot be reproduced at any given order of the chiral
series. Nevertheless, at low energies the contribution from
such resonances is encoded in the numerical values of certain
low-energy constants (frequently called resonance saturation).

Recently, considerable effort has been undertaken to com-
bine the effective chiral Lagrangian approach with nonper-
turbative methods, both in the meson-baryon sector [2–4]
and in the purely mesonic sector [5]. The combination with
nonperturbative schemes has made it possible to go to energies
beyond �χ and to generate resonances dynamically (giving up,
however, certain aspects of the rigorous framework constituted
by ChPT). Two prominent examples in the baryonic sector are
the �(1405) and the S11(1535). The first one is an s-wave
resonance just below the K−p threshold and dominates the
interaction of the K̄N system, whereas the S11(1535) was
identified in Ref. [2] as a quasibound K�-K� state.

Such chiral unitary approaches have been extended to
photo- and electroproduction processes of mesons on baryons,
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see, e.g. [6–8]. In these coupled-channel models the initial
photon scatters with the incoming baryon into a meson-
baryon pair that in turn rescatters (elastically or inelastically)
an arbitrary number of times. The two-body final state
interactions are taken into account in a coupled-channels
Bethe-Salpeter equation (BSE) or—in the nonrelativistic
framework—Lippmann-Schwinger equation. The coupling of
the incoming photon to other possible vertices is omitted, and
although these approaches appear to describe the available
data well, the issue of gauge invariance is not discussed
in these chiral unitary approaches. Conversely, a method
to obtain conservation of the electromagnetic current of a
two-nucleon system is presented in Ref. [9] and extended
to a resonance model for pion photoproduction in Ref. [10].
Alternatively, the so-called gauging of equations method has
been developed in Refs. [11,12] to incorporate an external
electromagnetic field in the integral equation of a few-body
system in a gauge-invariant fashion. Further investigations of
gauge invariance in pion photoproduction within πN models
can be found in Refs. [13,14]. Gauge invariance is also of
interest in coupled-channels approaches in the mesonic sector,
e.g., in radiative φ, ρ decays [15,16] and in the anomalous
decays η, η′ → γ γ, π+π−γ [17,18]. For related recent work,
see also Ref. [19].

The purpose of the present work is to illustrate how gauge
invariance can be maintained when an external photon couples
to a two-particle state described by the BSE within the chiral
effective framework. We start in the next section by first
outlining the procedure for a simple scalar field theory. With
the insights gained from this example we can then address
gauge invariance in meson-baryon scattering processes with
chiral effective Lagrangians. In Sec. III we discuss the case
with the interaction kernel of the BSE derived from the
leading order Lagrangian—the Weinberg-Tomozawa term.
The extension to driving terms from higher chiral orders
is presented in Sec. IV. In Sec. V it is shown that the
corresponding amplitudes also satisfy unitarity constraints.
Our conclusions and outlook are presented in Sec. VI.

II. COMPLEX SCALAR FIELDS

In this section, we demonstrate in a simple field theory with
complex scalar fields that the coupling of an external photon to
a two-body state, which corresponds to the solution of the BSE,
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is gauge invariant. To this end, consider the (normal-ordered)
Lagrangian for complex fields φ and ψ

L = ∂µφ∗∂µφ − m2φ∗φ + ∂µψ∗∂µψ

− M2ψ∗ψ − g(φ∗φ)(ψ∗ψ), (1)

with masses m and M, respectively. For small values of the
coupling constant g, the scattering process φ(p1)ψ(p2) →
φ(p3)ψ(p4) may be calculated perturbatively. For general
values of g, however, and if one is interested in bound states,
one must resort to nonperturbative techniques such as the
BSE. The Bethe-Salpeter equation for the scattering matrix
T of the two-particle scattering process can be written as
follows:

T (s) = g + gG(s)T (s), (2)

where s = p2 = (p1 + p2)2 = (p3 + p4)2 and G is the scalar
loop integral

G(p2) = i

∫
l

�φ(l)�ψ (p + l) (3)

utilizing the short-hand notation∫
l

=
∫

d4l

(2π )4
(4)

and the propagators

i�φ(l) = i

l2 − m2
, i�ψ (l) = i

l2 − M2
. (5)

The solution of the BSE is given by the following:

T (s) = g

1 − gG(s)
= g + gG(s)g + gG(s)gG(s)g + . . . ,

(6)
which amounts to the summation of an infinite series of
s-channel loops, the so-called bubble chain (or bubble sum).
From inversion of Eq. (6) it immediately follows that

Im T −1 = −Im G = |qcm|
8π

√
s
θ [s − (m + M)2], (7)

where the second relation is deduced from unitarity of the
amplitude T and qcm is the three-momentum in the center-of-
mass frame. The explicit calculation of the scalar loop integral
G, e.g., in dimensional regularization, indeed confirms the
above relation.

Let us now turn to the coupling of an external photon field
to the solution of the BSE. By minimal substitution

∂µ → ∇µ = ∂µ + ieφAµ for φ,
(8)

∂µ → ∇µ = ∂µ + ieψAµ for ψ,

where Aµ is the photon field and eφ(eψ ) the charge of the
meson φ(ψ), one obtains a locally gauge-invariant Lagrangian.
The coupling of the photon with incoming momentum k to the
four external legs of a bubble chain leads to the following
amplitudes:

T
µ

1 = eφT (s ′)�(p1 + k)(2p1 + k)µ,

T
µ

2 = eψT (s ′)�(p2 + k)(2p2 + k)µ,
(9)

T
µ

3 = eφ(2p3 − k)µ�(p3 − k)T (s),

T
µ

4 = eψ (2p4 − k)µ�(p4 − k)T (s),

where s ′ = (p + k)2. Multiplying these contributions with the
four-momentum of the photon, kµ, and setting the external legs
on-shell yields the following:

(eφ + eψ )[T (s ′) − T (s)], (10)

which in general does not vanish. This underlines that, to
achieve gauge invariance, it is not sufficient to couple the
photon only to external legs. One rather has to include
contributions that arise because of the coupling of the photon
to intermediate states within the bubble chain, leading to the
additional contributions

T
µ

5 = ieφT (s ′)
∫

l

�φ(l + k)(2l + k)µ�φ(l) �ψ (p − l)T (s),

T
µ

6 = ieψT (s ′)
∫

l

�ψ (l + k)(2l + k)µ�ψ (l) �φ(p − l)T (s).

(11)

By employing the Ward-Takahashi identities

kµ(2l + k)µ = �−1
φ/ψ (l + k) − �−1

φ/ψ (l) (12)

it is straightforward to show that

kµ

(
T

µ

5 + T
µ

6

) = (eφ + eψ )T (s ′)[G(s) − G(s ′)]T (s). (13)

The last expression can be rewritten by making use of the BSE

T (s ′)[G(s) − G(s ′)]T (s)

= T (s ′)[g−1T (s) − 1] − [T (s ′)g−1 − 1]T (s)

= T (s) − T (s ′). (14)

Adding up all contributions we arrive at

kµ

6∑
i=1

T
µ

i = 0, (15)

which confirms the gauge invariance of the photon coupling
to the bubble chain.

At the same time, insertion of the photon coupling at all
possible places in the bubble chain guarantees unitarity of the
scattering matrix up to radiative corrections of order O(e3). To
this end, we remark that in the transition φψγ → φψ we can
restrict ourselves to the states |φψ〉 and |φψγ 〉. Unitarity of
the S matrix, S = 1 − iT , implies then

〈φψ |T − T †|φψγ 〉 = −i

∫
PS

{〈φψ |T †|φ′ψ ′〉〈φ′ψ ′|T |φψγ 〉

+ 〈φψ |T †|φ′ψ ′γ ′〉〈φ′ψ ′γ ′|T |φψγ 〉},
(16)

where
∫

PS denotes the phase-space integral for the set of
intermediate states |φ′ψ ′〉 and |φ′ψ ′γ ′〉. We have introduced a
superscript for the intermediate particles with running three-
momenta, φ′, ψ ′, and γ ′, to distinguish them from the external
particles φ,ψ , and γ with fixed momenta. Note that the
last matrix element 〈φ′ψ ′γ ′|T |φψγ 〉 contains a disconnected
piece of order O(e0) in which the photon does not couple
to the bubble chain and thus appears in the O(e) part of the
unitarity relation. The remaining connected diagrams of this
matrix element that contain the coupling of the photon to
the bubble chain are of order O(e2) and are neglected in the
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following. By making use of the symmetry 〈i|T |j 〉 = 〈j |T |i〉
because of time reversal invariance, Eq. (16) can be rewritten as
follows:

−2 Im〈φψ |T |φψγ 〉 =
∫

PS
{〈φψ |T |φ′ψ ′〉∗〈φ′ψ ′|T |φψγ 〉

+ 〈φψ |T |φ′ψ ′γ 〉∗〈φ′ψ ′γ |T |φψγ 〉},
(17)

where now the phase-space integral applies only to the particles
φ′ and ψ ′. The last equation represents the Cutkosky cutting
rules [20]. At the diagrammatic level this amounts to cutting
a pair of φ and ψ propagators at all possible places in the
bubble chain (keeping in mind that the photon is merely
an external particle). The two terms on the right-hand side
represent the two possibilities for the photon to couple to the
bubble chain before or after the cut. Because these are the only
possible cuts in the bubble chain leading to imaginary pieces
in the relevant kinematic region, one verifies Eq. (17) and
hence unitarity of the S matrix up to radiative corrections.
However, if the photon couples to a propagator, there is
also the possibility to cut in the corresponding diagram both
propagators that are directly connected to the photon. For
a photon with k2 < 4 min(m2,M2), which is the case both
for physical photons and for virtual photons from electron
scattering, these cuts do not yield imaginary values and can be
safely omitted here.

Having convinced ourselves that it is possible to obtain
gauge invariant and (up to radiative corrections) unitary
amplitudes by taking into account the coupling of the photon
to scalar fields in all possible ways in the bubble chain, we
can now continue by applying this procedure to the slightly
more complicated case of the chiral effective meson-baryon
Lagrangian.

III. WEINBERG-TOMOZAWA TERM

The chiral effective Lagrangian describing the interactions
between the octet of Goldstone bosons (π,K, η) and the
ground-state baryon octet (N,�,�,
) is given at leading
chiral order by

L(1)
φB = i〈B̄γµ[Dµ,B]〉 − m0〈B̄B〉 + · · · , (18)

where 〈. . .〉 denotes the trace in flavor space. The 3 × 3 matrix
B collects the ground-state baryon octet and m0 is the common
baryon octet mass in the chiral limit. We have displayed
only the terms relevant for the present investigation and
omitted two operators that contain the axial vector couplings
of the mesons to the baryons. In the present investigation, we
restrict ourselves to interaction kernels of the BSE given by
contact interactions. The axial vector couplings of the mesons
to the baryons could in principle contribute via direct and
crossed Born terms, but the crossed Born term corresponds
to three-body intermediate states which are beyond the scope
of this work and we neglect the Born terms throughout. (The
inclusion of Born terms in the interaction kernel is deferred to
future work [21].) In fact, many coupled-channels approaches
only take into account the contact interaction originating from

the Lagrangian in Eq. (18), see, e.g. [22] and references
therein.

The covariant derivative of the baryon field is given
by

[Dµ,B] = ∂µB + [�µ,B] (19)

with the chiral connection

�µ = 1

2
[u†, ∂µu] − i

2
(u†vµu + uvµu†) (20)

and vµ = −eAµQ, where Q = 1
3 diag(2,−1,−1) is the quark

charge matrix. The pseudoscalar meson octet φ is arranged in
a matrix valued field

U (φ) = u2(φ) = exp

(√
2i

φ

F

)
, (21)

with F the pseudoscalar decay constant in the chiral limit.
Expansion of the chiral connection in the meson fields φ yields
at leading order a φ2B̄B contact interaction, the Weinberg-
Tomozawa term, which we choose to be the driving term for
the BSE in this section.

The mesonic piece of the Lagrangian at leading chiral order
is given by [1]

L(2)
φ = F 2

4
〈∇µU †∇µU 〉 + F 2

4
〈χ+〉, (22)

where χ+ = 2B0(u†Mu† + uMu) describes explicit chiral
symmetry breaking via the quark mass matrix M =
diag(mu,md,ms) and B0 = −〈0| q̄q |0〉 /F 2 represents the
order parameter of spontaneously broken chiral symmetry. The
covariant derivative of the meson fields is given by (neglecting
external axial-vector fields)

∇µU = ∂µU − ivµU + iUvµ. (23)

In the Bethe-Salpeter formalism we choose to work with the
propagators

�i(p) = 1

p2 − M2
i

,

(24)

Sa(p) = 1

p/ − ma

,

with flavor indices i, a and physical meson and baryon masses
Mi and ma , respectively. However, the following calculations
are valid for all propagators satisfying the Ward-Takahashi
identities

kµV φ
µ (p + k, k) = �−1(p + k) − �−1(p),

(25)
kµV B

µ (p + k, k) = S−1(p + k) − S−1(p),

where V φ
µ (V B

µ ) are the corresponding γφ2(γ B̄B) three-point
functions.

In the presence of a general interaction kernel A and coupled
channels consisting of a meson-baryon pair the BSE for the
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A B C

D E

FIG. 1. Tree diagrams for the process γφB → φB. Solid, dashed,
and wavy lines correspond to baryons, mesons, and photons,
respectively. The square denotes the vertex from the leading order
Lagrangian.

process φ(qi)B(pi) → φ(qf )B(pf ) generalizes to

Tf i(p; qf , qi) = Af i(p; qf , qi) + i
∑

l

∫
k

Tf l(p; qf , k)

× �j (k)Sa(p + k)Ali(p; k, qi)

= Af i(p; qf , qi) + i
∑

l

∫
k

Af l(p; qf , k)

× �j (k)Sa(p + k)Tli(p; k, qi), (26)

with p = pi + qi = pf + qf and l = {φj , Ba} the channels
that couple both to the initial and final state, i and f. Note
that we have replaced the common mass of the ground-state
baryon octet, m0, by the physical baryon masses ma . This
is consistent with the chiral order of the interaction kernel
derived from the Weinberg-Tomozawa term and, in particular,
produces the unitarity cuts at the physical thresholds.

After setting up the formalism we first calculate the tree-
level contributions for the coupling of a photon to meson-
baryon scattering. The pertinent Feynman diagrams for the
process γ (k)φi(qi)Ba(pi) → φj (qf )Bb(pf ) are depicted in
Fig. 1. In addition to the coupling of the photon to the
propagators the chiral connection in Eq. (18) gives rise to
a γφ2B̄B vertex, Fig. 1(E).

The tree contributions to the transition amplitude read as
follows:

T (tree)bj,ai
µ = − e

4F 2

{
(q/i + q/f )Sa(pi + k)γµQ̂a

+ γµQ̂bSb(pf − k)(q/i + q/f )

+ (q/i + q/f + k/)�i(qi + k)[2qi + k]µQ̂i

+ (q/i + q/f − k/)�j (qf − k)[2qf − k]µQ̂j

− γµ

(
Q̂j + Q̂i

)} 〈λb†[[λj†, λi], λa]〉, (27)

where Q̂aλa = [Q,λa] (no summation over a) is the charge
of the particle a in units of e and the λi are the generators of
the SU(3) Lie-Algebra in the physical basis. By multiplying
the tree contributions in Eq. (27) with kµ gauge invariance is
easily verified, if the momenta of the particles are put on-shell.

To prove gauge invariance for the coupling of the photon to
the bubble chain, it is convenient to consider first the diagrams
presented in Fig. 2 with the pertinent contributions given by
the following (a, b, c, d denote baryon flavor indices, whereas
i, j,m, n represent meson flavors):

=

A B

+

+

+

C D

+ +

E F

FIG. 2. (Color online) Bubble-chain diagrams for the process
γφB → φB. Solid, dashed, and wavy lines correspond to baryons,
mesons, and photons, respectively. The square denotes the vertex
from the leading order Lagrangian, the filled circle represents the
bubble chain derived from the BSE.

Fig. 2(A):

Abj,ai
µ = e

4F 2
γµ(Q̂j + Q̂i)〈λb†[[λj†, λi], λa]〉, (28)

Fig. 2(B):

i2
∫

l

∫
q

T bj,dn(p′; qf , q)Sd (p′ − q)�n(q)Adn,cm
µ

× Sc(p − l)�m(l)T cm,ai(p; l, qi), (29)

Fig. 2(C):

i

∫
l

T bj,cm(p′; qf , l)Sc(p′ − l)�m(l)Acm,ai
µ , (30)

Fig. 2(D):

i

∫
l

Abj,cm
µ Sc(p − l)�m(l)T cm,ai(p; l, qi), (31)

Fig. 2(E):

i2
∫

l

T bj,cm(p′; qf , l + k)Sc(p − l)�m(l + k)

× (−ieQ̂m(2l + k)µ)�m(l)T cm,ai(p; l, qi), (32)

Fig. 2(F):

i2
∫

l

T bj,cm(p′; qf , l)Sc(p′ − l)(−ieQ̂cγµ)Sc(p − l)

×�m(l)T cm,ai(p; l, qi), (33)

with p′ = p + k = pi + qi + k = pf + qf .
For general momenta p, q (i.e., not necessarily on-shell),

the quantity A
bj,ai
µ satisfies the following relation:

kµAbj,ai
µ = e{(Q̂b − Q̂a)Abj,ai(q, p) − Q̂i

×Abj,ai(q, p + k) + Q̂jAbj,ai(q − k, p)}, (34)
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where A is the amplitude deduced from the Weinberg-
Tomozawa term as follows:

Abj,ai(q, p) = − 1

4F 2
(q/ + p/)〈λb†[[λj†, λi], λa]〉. (35)

Making extensively use of Eq. (34) and the BSE it is
straightforward to show that the contributions of Eqs. (28)–
(33) multiplied by kµ yield in total

e[−Q̂aT bj,ai(p′; qf , qi) + Q̂bT bj,ai(p; qf , qi) − Q̂i

× T bj,ai(p′; qf , qi + k) + Q̂jT bj,ai(p; qf − k, qi)].

(36)

This compensates exactly the contributions from the remaining
four diagrams where the photon couples to the external
on-shell legs of the bubble chain. We have thus confirmed
that gauge invariance is achieved if all possible diagrams of a
photon coupling to a bubble chain are taken into account. In
particular, it is not sufficient to consider only the coupling
of the photon to external legs, because this will lead to
a gauge-dependent amplitude. Conversely, within the field
theoretical framework applied here it is also not sufficient
to take into account only the coupling of the photon to the
interaction kernel. Note that in the proof given here we do not
assume the so-called on-shell approximation for the interaction
kernel.

It is also important to stress that an explicit evaluation of the
BSE was not necessary and thus we do not need to specify the
regularization scheme to render the loop integral in the BSE
finite. Any regularization procedure that satisfies the Ward
identities for both the propagators, Eq. (23), and the interaction
kernel, Eq. (34), will maintain gauge invariance in the BSE as
outlined in the proof.

Finally, the unitarity constraint for the full amplitude Tµ can
be proven in analogy to the treatment in Sec. II. The detailed
derivation of unitarity is deferred to Sec. V. Thus, also to obtain
a unitarized amplitude (up to radiative corrections) one must
take into account the coupling of the photon at all possible
places in the bubble chain.

IV. HIGHER ORDER INTERACTION KERNELS

In this section, we consider more complicated structures
for the interaction kernel as they arise at higher chiral orders
in the effective Lagrangian. Because we restrict ourselves to
φ2B̄B contact interactions, the most general form of a term
without the chiral invariant field strength tensor f +

µν is given
by the following:

Lint = B̄Cµ1···µlµl+1···µmµm+1···µn
(Dµ1 . . . Dµlφ̃)

× (Dµl+1 . . . Dµmφ†)(Dµm+1 . . . DµnB̃), (37)

where we have suppressed flavor indices for brevity (we
merely kept the ∼ symbol as a reminder of the flavor
structure indicating that the in- and outgoing baryons and
mesons can be different) and introduced the notation Dµ =
∂µ + iêAµ with ê the charge of the particle Dµ is acting
on. As the contact interactions originate from a gauge-
invariant Lagrangian, charge conservation is guaranteed at
each vertex. The introduction of explicit flavor indices does

not change any of the following conclusions. Note that the
constant C in Eq. (37) may also contain elements of the
Clifford algebra. From this Lagrangian one derives both a
φ̃(q̃)B̃(p̃) → φ(q)B(p) contact interaction A(p̃, q̃, q) and a
γ (k)φ̃(q̃)B̃(p̃) → φ(q)B(p) vertex εµAµ(p̃, q̃, q, k), where
εµ is the polarization vector of the photon. Because of the
form of the contact term (37), which can always be obtained
by partial integration, the vertices do not depend explicitly on
the momentum p. In the appendix it is shown that they satisfy
the relation

kµAµ(pi, qi, qf , k)

= êφA(pi, qi, qf − k) − êφ̃A(pi, qi + k, qf )

+ êBA(pi, qi, qf ) − êB̃A(pi + k, qi, qf ) (38)

for general momenta of the particles. This equation is the
analog of Eq. (34) for the Weinberg-Tomozawa term. It follows
then immediately by applying the same arguments as in the
previous section that the coupling of the photon to the two-
particle state of the BSE yields a gauge-invariant amplitude
also in the presence of more complicated contact interactions
of the type Eq. (37).

Note that throughout we have not considered the dimension-
two magnetic-moment coupling ∼σµνf +

µν and higher order
operators involving the chiral covariant field-strength tensor
f +

µν . Such terms are of course present in the effective
Lagrangian and must be considered at the appropriate order in
the chiral expansion of the interaction kernel. However, these
are of the form ∂νvµ(Oνµ − Oµν) with some operator Oνµ

and the pertinent vertex in momentum space vanishes upon
contraction with the photon momentum kµ.

As already mentioned in the previous section, the proof
of gauge invariance does not depend on the specific choice
of the meson and baryon propagators but rather is valid for
all propagators satisfying the Ward-Takahashi identities with
the corresponding γφ2 and γ B̄B three-point functions. For
example, one can define the BSE by employing propagators
with the physical masses for the intermediate states and derive
the interaction kernel from the effective Lagrangian to a given
chiral order. This automatically produces the correct physical
thresholds of the unitarity cuts and we have followed this path
in the present investigation.

Alternatively, one may prefer to deduce the propagators
from the effective Lagrangian as well. To leading chiral order
this implies a common baryon octet mass shifting the threshold
of the unitarity cuts to unphysical values. At higher chiral
orders the inclusion of self-energy diagrams for the meson
and baryon propagators will cure the situation by restoring
the physical thresholds. The self-energy diagrams will modify
the simple form of the propagators given in Eq. (26); e.g., the
meson propagators will acquire the following form:

�(p) = Z

p2 − M2 − �R(p)
, (39)

with M being the physical meson mass, Z the appropriate wave
function renormalization constant, and �R(p) the renormal-
ized self-energy.

To prove gauge invariance in the latter approach, one must
also take into account the coupling of the photon to the self-

065201-5



B. BORASOY, P. C. BRUNS, U.-G. MEIßNER, AND R. NIßLER PHYSICAL REVIEW C 72, 065201 (2005)

energy corrections of the propagators. Because the effective
Lagrangian is gauge invariant, the corresponding propagators
and three-point functions satisfy the pertinent Ward-Takahashi
identities and the proof is equivalent to the one given in the
previous section.

We also compare the present investigation with the work
of Refs. [11,12]. Although similar in spirit, the authors study
therein an integral equation for the two-body Green’s function,
whereas we prefer to work with an equation for the scattering
amplitude. “Gauging” the integral equation for the Green’s
function as outlined in Refs. [11,12], i.e., adding a vector
index µ to all the terms of the equation such that a linear
equation in µ-labeled quantities results, amounts to attaching
an external photon everywhere, including the external legs.
In our framework, the straightforward application of the
gauging method to the integral equation for the scattering
amplitude fails, as in this case the procedure does not yield
the contributions where the photon couples to the external
legs. (Of course, one could correct this by adding the missing
contributions by hand.) Conversely, our approach is more
convenient within the chiral effective framework, as it allows
a direct comparison with the scattering amplitude derived
in the perturbative scheme of ChPT. Moreover, the authors
of Refs. [11,12] restrict themselves merely to one two-body
channel, whereas in the present investigation this is generalized
to several coupled channels. In contrast to Refs. [11,12] we
explicitly specify the interaction kernel by deriving the vertices
from the chiral effective Lagrangian and utilizing them as
interaction kernels in the BSE.

V. UNITARITY

After having constructed a gauge-invariant amplitude
for Bφγ → Bφ with Weinberg-Tomozawa or more general
contact interaction kernels, we investigate unitarity of the
obtained amplitude. The calculation presented in this section
generalizes the findings for the scalar field theory presented at
the end of Sec. II, as one must take care of the noncommutative
nature of the matrix amplitudes because of the Clifford algebra
and coupled channels. Moreover, we do not assume symmetry
of the transition amplitudes under exchange of initial and final
states.

In operator form the statement of a unitary scattering matrix
amounts to

T − T † = −iT †T . (40)

For brevity we introduce a short-hand notation for the BSE,
Eq. (26),

T (p) = A +
∫

T (p)G(p)A = A +
∫

AG(p)T (p), (41)

where p is the external momentum and G = iS�. The BSE for
the meson-baryon scattering amplitude T is easily transformed
into the unitarity relation

T − T̄ =
∫

T̄ (G − Ḡ)T , (42)

with Ō ≡ γ0O
†γ0, as both T and G are elements of the Clifford

algebra. Note that the adjoint O† also implies taking the

transposed matrix in channel space. We see that the quantity
G − Ḡ is equal to setting the intermediate meson-baryon
pairs on-shell in Eq. (42). For invariant energies below the
lowest three-particle threshold Eq. (42) is thus equivalent to
the unitarity constraint (40).

If T is an analytic function, one can apply the residue
theorem and rewrite the difference G − Ḡ as

i[S(p − l)�(l) + S̄(p − l)�̄(l)]

→ i(−2πi)2δ+(l2 − M2)δ+[(p − l)2 − m2][p/ − l/ + m],

(43)

where l and p are the loop and external momentum, re-
spectively, and δ+(k2 − µ2) = δ(k2 − µ2)θ (k0). For a detailed
derivation of this replacement, see, e.g., Ref. [23]. The last
equation can even be generalized to nonanalytic T that does
not have coinciding poles with G. In particular, the above
replacement is valid if T describes the solution of the BSE with
polynomial interaction kernels, as can be seen by insertion of
its defining Eq. (26) into Eq. (42).

To prove unitarity for the transition Bφγ → Bφ, it is
convenient to introduce the amplitude

M
µ
φγ = V

µ

disc + T µ (44)

with the disconnected piece

V
µ

disc = 2Eqi
(2π )3δ(3)(qi − qf )V µ

B

+ 2Epi
(2π )3δ(3)( pi − pf )V µ

φ (45)

and T µ the transition amplitude calculated in Secs. III and IV.
The energies of the particles are given by Eqi

=
√

q2
i + M2

φ

and Epi
=

√
p2

i + m2
B , respectively. The piece V

µ

disc is rep-
resented by the two disconnected diagrams in which the
photon couples either to the baryon or the meson, whereas
the other particle does not interact at all. Although V

µ

disc
does not contribute to on-shell matrix elements and could in
principle be omitted in the unitarity relation, its introduction
generalizes unitarity beyond the physical region. From the
amplitude M

µ
φγ one constructs the reversed amplitude M

µ
γφ

for the process B(pf )φ(qf ) → B(pi)φ(qi)γ (k). Neglecting
radiative corrections and below the lowest three-particle (i.e.,
baryon two-meson) threshold unitarity implies

M
µ
φγ − M̄

µ
γφ =

∫
T̄ (p′)[G(p′) − Ḡ(p′)]Mµ

φγ

+
∫

M̄
µ
γφ[G(p) − Ḡ(p)]T (p), (46)

where we have replaced again the two-body phase-space
integration by the four-dimensional integral over G − Ḡ. Note
that in the physical region M

µ
φγ reduces to T µ. By inserting

the amplitudes T µ and T from the BSE and making use of the
unitarity statement for T, Eq. (42), as well as V̄

µ

φ/B = V
µ

φ/B

and Āµ = Aµ from Eq. (28), one can indeed confirm the
unitarity constraint for M

µ
φγ and thus for T µ for on-shell matrix

elements.
We refrain from presenting the entire and tedious calcu-

lation here but would like to comment on two points. First,
the contribution of the disconnected graphs drops out on the
l.h.s. of the unitarity statement (46) (because of the symmetry
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of these graphs under interchange of incoming and outgoing
particles and V̄

µ

φ/B = V
µ

φ/B). On the r.h.s., they produce terms
of the following type:∫

l

T̄ (p′)[G(p′) − Ḡ(p′)]2Eqi
(2π )3δ(3)(qi − l)V µ

B

=
∫

l

T̄ (p′)i(−2πi)2δ+[(p′ − l)2 − m2]

× δ+(l2 − M2)[p/′ − l/ + m]2Eqi
(2π )3δ(3)(qi − l)V µ

B

=
∫

d3lT̄ (p′)(−2πi)δ+((p′ − l)2 − m2)

× [p/′ − l/ + m]δ(3)(qi − l)V µ

B

= T̄ (p′)(−2πi)δ+((p′ − qi)
2 − m2)[p/′ − q/i + m]V µ

B

= T̄ (p′)[S(pi + k) − S̄(pi + k)]V µ

B . (47)

For on-shell matrix elements (and k �= 0) this vanishes as
ε → 0 in the propagators, but it happens that all terms of
this type cancel each other on the r.h.s. of Eq. (46), even
for general external momenta. Our second comment concerns
some contributions from diagrams 2(E) and (F). On the l.h.s.
of Eq. (46) one obtains, e.g., the following combination:

i

∫
l

T̄ (p′)S(p′ − l)�(l)V µ

B S(p − l)T (p)

+ i

∫
l

T̄ (p′)S̄(p′ − l)�̄(l)V µ

B S̄(p − l)T (p), (48)

which represents the discontinuity of the transition amplitude
stemming from Fig. 2(F) (the two integrals only differ in
the sign of the “iε” terms in the propagators). According to
the Cutkosky cutting rules and for momenta k2 < 4m2 this
discontinuity is given by the following:∫

l

T̄ (p′)[G(p′) − Ḡ(p′)]V µ

B S(p − l)T (p)

+
∫

l

T̄ (p′)S̄(p′ − l)V µ

B [G(p) − Ḡ(p)]T (p). (49)

In the kinematical region that is of relevance here the cut
through the two propagators connecting to the photon does
not contribute to the discontinuity and can be safely neglected.
We conclude by emphasizing that the unitarity constraint
[Eq. (46)] is fulfilled only if the photon couples to all possible
places in the bubble chain.

VI. CONCLUSIONS

In the present work, we have studied how gauge invariance
is obtained for a photon coupling to a two-body state described
by the solution of the Bethe-Salpeter equation. We have
discussed the procedure both for a simple complex scalar
field theory and for interaction kernels derived from chiral
effective Lagrangians in the meson-baryon sector. In the latter
case, we have first considered the Weinberg-Tomozawa term
and afterwards the most general contact interaction consisting
of two mesons and two baryons that can arise in the chiral
effective framework. Our study underlines that it is not
sufficient to take into account only the coupling of the photon to

the external legs, as has been done in many calculations based
on chiral unitary approaches, but rather one has to include all
possible contributions of the photon coupling to the vertices
and intermediate states. Neither is it sufficient to consider only
the coupling of the photon to the interaction kernel. At the
same time, coupling of the photon to the bubble chain at all
possible places is necessary to guarantee a unitary scattering
matrix up to radiative corrections.

For the interaction kernels discussed in the present work
we have shown explicitly that gauge invariance is maintained
in this manner. It is accomplished without assuming the on-
shell approximation for the interaction kernel. Moreover, the
explicit evaluation of the loop integral in the Bethe-Salpeter
equation is not necessary and hence the proof does not depend
on the chosen regularization scheme. But the regularization
procedure is required to satisfy the Ward identities both for the
propagators and the interaction kernels. This study will also
be of importance for photo- and electroproduction processes
of mesons on nucleons and for radiative decays of baryons
and mesons that must be treated in a similar way to achieve
gauge-invariant and unitarized amplitudes. Work along these
lines is in progress.
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APPENDIX

Higher chiral orders

In this appendix we derive Eq. (38), which follows from a
contact interaction of the type

Lint = B̄Cµ1···µlµl+1···µmµm+1···µn
(Dµ1 . . . Dµlφ̃)

× (Dµl+1 . . . Dµmφ†)(Dµm+1 . . . DµnB̃), (A1)

with Dµ = ∂µ + iêAµ. The γ (k)φ̃(qi)B̃(pi) → φ(qf )B(pf )
vertex is obtained from this Lagrangian by extracting the part
linear in Aµ. A partial derivative acting, e.g., on an incoming
meson φ(q) yields a factor −iq in momentum space, whereas a
partial derivative on φ(q)A(k) (both momenta incoming) leads
to −i(q + k). Therefore, one obtains the following vertex:

Aµ = i

l∑
s=1

Cµ1···µn

∣∣∣∣∣
µs=µ

(−i)(2l−2m+n)

[
s−1∏
t=1

(qi + k)µt

]

× (−êφ̃)

[
l∏

t=s+1

q
µt

i

] [
m∏

t=l+1

q
µt

f

] [
n∏

t=m+1

p
µt

i

]
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+ i

m∑
s=l+1

Cµ1···µn

∣∣∣∣∣
µs=µ

(−i)(2l−2m+n)

[
l∏

t=1

q
µt

i

]

×
[

s−1∏
t=l+1

(qf − k)µt

]
(−êφ)

[
m∏

t=s+1

q
µt

f

]

×
[

n∏
t=m+1

p
µt

i

]
+ i

n∑
s=m+1

Cµ1···µn

∣∣∣∣∣
µs=µ

(−i)(2l−2m+n)

×
[

l∏
t=1

q
µt

i

] [
m∏

t=l+1

q
µt

f

] [
s−1∏

t=m+1

(pi + k)µt

]

× (−êB̃)

[
n∏

t=s+1

p
µt

i

]
. (A2)

Multiplying this equation with kµ and making use of
charge conservation at the vertex that follows from gauge
invariance of the Lagrangian one arrives at the follow-
ing:

kµAµ = iCµ1···µn
(−i)(2l−2m+n)(−êφ̃)(qi + k)µ1 · · · (qi + k)µl q

µl+1
f · · · qµm

f p
µm+1
i · · · pµn

i

− iCµ1···µn
(−i)(2l−2m+n)(−êφ)qµ1

i · · · qµl

i (qf − k)µl+1 · · · (qf − k)µmp
µm+1
i · · · pµn

i

+ iCµ1···µn
(−i)(2l−2m+n)(−êB̃)qµ1

i · · · qµl

i q
µl+1
f · · · qµm

f (pi + k)µm+1 · · · (pi + k)µn

− iCµ1···µn
(−i)(2l−2m+n)(−êB)qµ1

i · · · qµl

i q
µl+1
f · · · qµm

f p
µm+1
i · · · pµn

i . (A3)

The vertex φ̃(qi)B̃(pi) → φ(qf )B(pf ) from the Lagrangian
(A1) is given by the piece without the photon field Aµ and
reads as follows:

A(pi, qi, qf ) = iCµ1···µn
(−i)(2l−2m+n)q

µ1
i · · ·

× q
µl

i q
µl+1
f · · · qµm

f p
µm+1
i · · ·pµn

i . (A4)

This proves the Ward identity [Eq. (38)]

kµAµ(pi, qi, qf , k)

= êφA(pi, qi, qf − k) − êφ̃A(pi, qi + k, qf )

+ êBA(pi, qi, qf ) − êB̃A(pi + k, qi, qf ). (A5)
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