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Mean-field effects on collective flow in high-energy heavy-ion collisions at 2–158A GeV energies
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Collective flows in heavy-ion collisions from AGS [(2–11)A GeV] to SPS [(40, 158)A GeV] energies are
investigated in a nonequilibrium transport model with the nuclear mean field (MF). Sideward 〈px〉, directed
v1, and elliptic flows v2 are systematically studied with different assumptions for the nuclear equation of state
(EOS). We find that the momentum dependence on the nuclear MF is important for the understanding of the
proton collective flows at AGS and SPS energies. Calculated results with momentum-dependent MF qualitatively
reproduce the experimental data of proton sideward, directed, and elliptic flows in a incident energy range of
(2–158)A GeV.
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I. INTRODUCTION

Determining the nuclear equation of state (EOS) under
various conditions has been one of the principle goals of
heavy-ion physics in these decades [1–34]. Near the saturation
density, the EOS gives the bulk properties of nuclei such as
the binding energy and the radius. While the first-principle
simulations of lattice QCD are possible for hot baryon-free
nuclear matter, and while matter at low baryon densities can
be studied by expanding in the power series of the baryon
chemical potential µ [35], the properties of highly compressed
matter are still under debate. Thus phenomenological studies
are necessary to connect the experimental heavy-ion collision
data with the EOS, especially for nuclear matter at high
baryon densities. In high-energy heavy-ion collisions, where
nuclear matter over a wide range of temperatures and densities
is probed, many ideas on the EOS and phases have been
examined. For example, very dense matter was created in
recent RHIC experiments [36], suggesting the creation of a
gas of deconfined quarks and gluons (QGP). In the 1970’s
and 1980’s the existence of strong collective flow in heavy-ion
collisions was suggested in hydrodynamics [1–3], and it was
examined in experiments at Bevalac [4]. Since collective
sideward flows are generated in the early stages of collisions by
the repulsive nucleon potential in nuclear matter, the observed
strong collective flows were believed to signal very large
pressure at high baryon densities, i.e., the hard EOS [5]. On
the other hand, the real part of the nucleon-nucleus potential is
already repulsive at normal density at high incident energies,
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and the role of the momentum dependence of the nuclear
potential in the collective flows was extensively studied after
1990 [5–9]. To distinguish the momentum and the density
dependences, we need to invoke heavy-ion collision data over a
wide incident energy range. We now have systematic collective
flow data at various incident energies from the LBNL Bevalac
[10–12], GSI Schwerionen Synchrotron (SIS) [13–15], MSU
NSCL [16], BNL Alternating Gradient Synchrotron (AGS)
[17–21], CERN Super Proton Synchrotron (SPS) [22–24], and
BNL RHIC [37].

Collective flow data obtained at AGS energies [(2–11)A
GeV] provide a good landmark to determine the EOS.
As demonstrated in Ref. [25], the saturating momentum
dependence of the mean-field (MF), a large number of hadronic
resonances, and string degrees of freedom are essential in
order to explain all of the radial, sideward, and elliptic flows
at AGS energies. The momentum dependence of nuclear
potentials in the context of collective flow was also discussed
in Ref. [9] with a quantum molecular dynamics (QMD)
model. It is suggested that we can separate the momentum
dependence by analyzing the so-called balance energy at
which the flow disappears, and this was later confirmed
by experiment at NSCL [16] for Einc = (55–155)A MeV.
Recently, Danielewicz and others discussed the EOS with
these data within a Boltzmann equation simulation [17,26–28],
showing that a reliable stiffness value (K = 167–380 MeV)
cannot be uniquely determined from currently available col-
lective flow data (F or v2) up to AGS energies [Einc = (0.15–
11)A GeV] [28]. On the other hand, a description comparable
with theirs was also obtained in the relativistic Boltzmann-
Uehling-Uhlenbeck (RBUU) model [25] by using a relativistic
mean field. In RBUU, the MF is fitted to reproduce the real part
of the global optical potential in Dirac phenomenology [38]. In
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Ref. [25] a common MF giving K ∼ 300 MeV is applied in the
energy range of (0.25–11)A GeV. Thus these two studies do
not necessarily provide the same conclusion for the stiffness. In
addition, we still have large ambiguities in the MF for hadrons
other than nucleons. In order to reduce these ambiguities and
to pin down the EOS more precisely, recently measured flow
data at lower SPS energies [(20–80)A GeV] may be helpful,
because a higher baryon density would be reached at these
incident energies.

Several hadronic transport models, such as RQMD [39–43],
BEM [26–28], RBUU [25,32,33], ARC [44], ART [45], HSD

[46], UrQMD [47,48], and JAM [49], have been successfully
applied to describe many aspects of high-energy heavy-ion
collisions over a wide range of incident energies. Transport
models without MF effects (ARC, HSD, JAM) can describe
bulk observables such as transverse mass spectra or rapidity
distributions, but they cannot explain anisotropic collective
flows, which are sensitive to MF potentials. Transport models
with MF effects (RQMD, BEM, RBUU, ART, UrQMD) have
been successful in explaining anisotropic collective flows in
addition to bulk observables up to AGS energies. For SPS
energies, however, the MF effects on collective flows have not
been seriously investigated.

In this work, we investigate collective flows from 2A GeV
to 158A GeV by using a hadronic cascade model, the jet AA
microscopic transportation model (JAM) [49], combined with
a covariant prescription of the MF (RQMD/S) [43].

This paper is organized as follows. In Sec. II we explain
our transport model and the parametrization of our EOS used
there. In Sec. III we present our results for flows on rapidity and
transverse distributions as well as their excitation functions. In
Sec. IV we discuss some uncertainties in our model. In Sec. V
we summarize our work.

II. NONEQUILIBRIUM TRANSPORT MODEL AND THE
EQUATIONS OF STATE

Heavy-ion collision is a dynamical process of a system
in which the temperature and density are not uniform and
the equilibrium is not necessarily reached. Therefore we need
dynamical models to describe collisions in order to extract
static properties of nuclear matter under equilibrium. A hydro-
dynamic description is the most direct way to connect the EOS
and dynamics. Actually, ideal hydrodynamics has succeeded
in describing elliptic flow at low pT , up to semicentral and
around mid-rapidity at RHIC [50] (however, see Ref. [51] for
a recent reinterpretation of the RHIC data), where the number
of produced particles is so large that local equilibrium may be
easily achieved. However the condition of local equilibrium
may not be satisfied up to SPS energies, and nonequilibrium
dynamics is required for studying the EOS of dense nuclear
matter through heavy-ion collisions.

Hadron-string cascade processes are the main source of
thermalization and particle production up to SPS energies. In
the increase of incident energy from AGS [(2–11)A GeV] to
SPS [(20–158)A GeV], the main particle production mech-
anism in hadron-hadron collisions evolves from resonance
productions to string formations. At higher energies, hard

partonic interaction (jet production) becomes more important,
and the jet production cross section reaches around 20% of the
total cross section of pp at RHIC [52].

JAM includes all of the above particle and jet production
mechanisms, and the applicable incident energy range is
expected to be adequate (for the study of collective flow, jet
production does not matter). Inelastic hadron-hadron collisions
produce resonances at low energies. We explicitly include
all established hadronic states with masses up to around
2 GeV with explicit isospin states as well as their antiparticles,
which are made to propagate in space-time. At higher energies
(
√

s >∼ 4 GeV in BB collisions,
√

s >∼ 3 GeV in MB collisions,
and

√
s >∼ 2 GeV in MM collisions) color strings are formed,

and they decay into hadrons after their formation time (τ ∼
1 fm/c) according to the Lund string model PYTHIA [53].
Leading hadrons having constituent quarks can scatter within
their formation time with other hadrons, assuming the additive
quark cross section that is known to be important at SPS
energies [48].

It is necessary to include MF effects to explain collective
flow data, and the MF should have momentum dependence as
well as density dependence in order to describe flows over a
wide incident energy range. We adopt here a simple Skyrme-
type density-dependent MF in the zero-range approximation
and a Lorentzian-type momentum-dependent MF [6] that
simulates the exchange term (Fock term) of the Yukawa
potential. The single-particle potential U then has the form

U (r, p) = α

(
ρ(r)

ρ0

)
+ β

(
ρ(r)

ρ0

)γ

+
∑
k=1,2

C(k)
ex

ρ0

∫
dp′ f (r, p′)

1 + [( p − p′)/µk]2
. (1)

This MF potential leads to the following total potential energy,
through the relation U = δV/δf :

V =
∫

d r
[
αρ2(r)

2ρ0
+ βργ+1(r)

(1 + γ )ργ

0

]

+
∑
k=1,2

C(k)
ex

2ρ0

∫
d r dp dp′ f (r, p)f (r, p′)

1 + [( p − p′)/µk]2
, (2)

where f (r, p) is the phase space distribution function whose
integral over p is normalized to the density ρ(r). At zero
temperature the phase space distribution function is given as

f (r, p) =
(

4

3
πp3

F

)−1

ρ(r) �(pF − | p|). (3)

Then the total energy per nucleon is

E

A
(ρ) = 3

5

pF (ρ)2

2m
+ α

2ρ0
ρ+ β

(1 + γ)ργ

0

ργ + ρ

2ρ0

(
4

3
πp3

F

)−2

×
∫ pF

0
dp

∫ pF

0
dp′ ∑

k=1,2

C(k)
ex

1 + [( p − p′)/µk]2
, (4)
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TABLE I. Parameter set of density-dependent and momentum-dependent/independent potentials.
Momentum-dependent hard (MH) and soft (MS) potentials are taken from Ref. [55] with simplification
(see text for detail). Momentum-independent hard (H) and soft (S) potentials are taken from Ref. [56].

Type α β γ C(1)
ex C(2)

ex µ1 µ2 K
(MeV) (MeV) (MeV) (MeV) (fm−1) (fm−1) (MeV)

MH −33 110 5/3 −277 663 2.35 0.4 448
MS −268 345 7/6 −277 663 2.35 0.4 314
H −124 70.5 2 — — — — 380
S −356 303 7/6 — — — — 200

where the Fermi momentum is taken to be pF (ρ) =
h̄(3π2ρ/2)1/3. See Eq. (A22) for the definition of ρ used in
the actual simulations. Integrals in Eq. (4) can be obtained
analytically [7] as

∫ pF

0
dp

∫ pF

0
dp′ 1

1 + [( p − p′)/µ]2

= 32π2

3
p4

F µ2

{
3

8
− µ

2pF

arctan
2pF

µ
− µ2

16p2
F

+
[

3

16

µ2

p2
F

+ 1

64

µ4

p4
F

ln

(
1 + 4p2

F

µ2

)]}
. (5)

Parameters α, β, and γ in Eq. (4) are determined to repro-
duce the saturation of the total energy per nucleon at the
normal nuclear density, i.e., E/A|ρ=ρ0 = −16 MeV and P =
ρ2∂(E/A)/∂ρ|ρ=ρ0 = 0 MeV/fm3 [54]. The incompressibility
K is obtained from K = 9ρ2∂2(E/A)/∂ρ2|ρ=ρ0 . Parameters
for the hard (H) and soft (S) EOS are listed in Table I, and the
density dependences of the total energy per nucleon are shown
in the right-hand panel of Fig. 1.

Parameters C(k)
ex and µk are taken to reproduce the real part

of the global Dirac optical potential (Schrödinger equivalent
potential) of Hama et al. [38], in which angular distribution and
polarization quantities in proton-nucleus elastic scatterings
are analyzed in the range of 10 MeV to 1 GeV in Dirac

phenomenology. The single-particle potential at ρ = ρ0,

U ( p, ρ0) = α + β +
(

4

3
πp3

F

)−1

×
∫ pF

0
dp′ ∑

k=1,2

C(k)
ex

1 + [( p − p′)/µk]2

= α + β +
(

4

3
πp3

F

)−1

×
∑
k=1,2

C(k)
ex πµ3

k

[
p2

F + µ2
k − p2

2pµk

ln
(p + pF )2 + µk

(p − pF )2 + µk

+ 2pF

µk

− 2

(
arctan

p + pF

µk

− arctan
p−pF

µk

)]
, (6)

is compared with the Schrödinger equivalent potential from
Ref. [38] in the left-hand panel of Fig. 1. Parameters for
the momentum-dependent potentials are shown as MH and
MS in Table I. These parameter sets are based on Ref. [55]
with a simplification in which the Coulomb, surface, and
Pauli potentials as well as the zero-point kinetic energy of
the Gaussian wave packets are dropped, because their study
focused on nuclear matter below the saturation density. We
have fixed the high-energy limit of the optical potential
U → 77 MeV at Einc → ∞, leading to a constraint α + β =
77 MeV. This constraint generally makes the EOS stiffer than
those in Ref. [31].
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FIG. 1. Left, momentum dependence of the single-particle potentials, Eq. (6), for momentum-dependent hard (MH) and soft (MS) and
momentum-independent hard (H) and soft (S) potentials are compared with the real part of the global Dirac optical potential [38]. Right, density
dependence of total energy per nucleon in Eq. (4) for momentum-dependent (MH, MS) and -independent (H, S) potentials.
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We include the above MF effects in JAM [49] by means
of simplified RQMD (RQMD/S) [43] framework. The relativistic
quantum molecular dynamics (RQMD) model [39,40,42] is a
constrained Hamiltonian dynamics, in which potentials are
treated in a covariant way. RQMD/S [43] uses much simpler
and more practical time fixation constraints than the original
RQMD [39,40,42]. For details, see Appendix.

In this work we take into account potential interactions only
between baryons. The simulation time step size is taken to be
dt = 0.1 fm/c at all incident energies. We discuss the influence
of MF for nonnucleonic baryons on the flow analysis and
the validity of this treatment in Sec. IV. The magnitude of
the energy conservation violated is about 0.4% on average for
time and events.

III. COLLECTIVE FLOWS FROM AGS TO SPS ENERGIES

When two heavy nuclei collide at high energies at finite
impact parameters, the pressure gradient is anisotropic in
the initial stages of the collision. As a result, it generates
anisotropic collective flows. Until now, several kinds of
collective flows have been proposed for probing highly dense
matter. The first is the sideward flow (also called directed
flow) 〈px〉, which is defined as the mean value of px , where x is
defined as the impact parameter direction on the reaction plane.
Sideward flow is generated mainly by the participant-spectator
interaction. Nucleons in the projectile feel repulsive interaction
from the target nucleus during the projectile-target contact
time. This repulsion pushes projectile nucleons out in the
positive sideward direction if the contact time is long enough.
When the incident energy is very high, the contact time in
collisions becomes shorter owing to the Lorentz contraction;
therefore sideward flow decreases. At SPS energies mainly
other types of collective flows, called directed (v1) and elliptic
(v2) flows, are measured. These are defined as the nth Fourier

coefficient,

d3N

pT dpT dydφ
= d2N

2πpT dpT dy

(
1 +

∑
n

2vn(pT , y) cos nφ

)
,

(7)

where the azimuthal angle φ is measured from the reaction
plane. The directed flow v1 is the first Fourier coefficient of
the azimuthal distribution

v1 = 〈cos φ〉 =
〈
px

pT

〉
, (8)

and the elliptic flow v2 is the second Fourier coefficient of the
azimuthal distribution

v2 = 〈cos 2φ〉 =
〈

p2
x − p2

y

p2
T

〉
. (9)

These collective flows are reviewed in Ref. [57].
The effects of the MF in high-energy heavy-ion collisions

are visible but not very large in single-particle spectra, such
as the rapidity distribution dN/dy or the transverse mass
distribution d2N/mT dmT dy. In this section we demonstrate
that MF effects are essential for studying anisotropic collective
flows in the hadron-string transport model JAM with MF
potentials.

A. Collective flows at AGS energies

We show proton sideward flow 〈px〉 in mid-central Au+Au
collisions at AGS energies [Einc = (2–11)A GeV] together
with AGS-E895 data [20] in Fig. 2 and in the left-hand panel
of Fig. 3. We choose the impact parameter range 4 < b < 8 fm
in the calculations, which roughly corresponds to mid-central
collisions in experimental data.

It is seen that both cascade and momentum-independent soft
(S) MF results are inconsistent with the data. The magnitude
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FIG. 2. Sideward flows 〈px〉 of protons in mid-central Au+Au collisions at (2–8)A GeV are compared with the AGS-E895 data [20].
Curves show the calculated results of cascade with momentum-dependent hard or soft mean field (MH or MS, left-hand panels), cascade with
momentum-independent mean field (H or S, right-hand panels), and cascade without mean field (CS). The experimental data are shown in both
the left and the right panels.
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FIG. 3. Comparison of calculated sideward flow 〈px〉 of protons (left) and pions (right) in 11A GeV Au+Au mid-central collisions to
AGS-E877 data [18]. The meaning of the curves is the same as in Fig. 2.

of 〈px〉 in the forward rapidity region (y/yproj 	 ±1) is
small compared with the data, and the slope parameters at
mid-rapidity are also smaller than that of the data with soft
MF. The momentum-independent soft MF reduces 〈px〉 in
the forward rapidity region and enhances the slope param-
eters at mid-rapidity. The former is an unfavorable effect
in explaining the data, and the latter is not enough. With
momentum-independent hard (H) MF, the slope parameter is
well reproduced, but the 〈px〉 at forward rapidities are smaller
than the data, especially at Einc = 2A and 11A GeV.

Proton sideward flow data are qualitatively reproduced with
the momentum-dependent MF. The momentum-dependent MF
pushes up the flow almost linearly as a function of rapidity,
and it becomes closer to the data, while the 〈px〉 values at
forward rapidities may be a little too large compared with the
data at Einc = (4–8)A GeV. As the incident energy increases,
MF effects on the slope parameter at mid-rapidity become
small, but we can still see clear differences at forward rapidities
between the results with and without momentum dependence.

Our results suggest the necessity of the momentum de-
pendence in the MF to yield large-magnitude emission in the
x direction at forward rapidity. We note that our results with
momentum-dependent MF are consistent with the previous

calculations with MF on the collective flow data at AGS
energies [25,28,33] as well as SIS energies [15,30].

The importance of momentum dependence in the MF is
also seen in the transverse momentum dependence of the
proton v2 as shown in Fig. 4. Only if momentum dependence
is included do we reproduce the strong squeezing at Einc =
2A GeV of the pT dependence.

In the right-hand panel of Fig. 3, we plot the results of
sideward flow 〈px〉 for pions in Au+Au collisions at Einc =
11A GeV. The sideward flow 〈px〉 of pions are suppressed
significantly by momentum-dependent MF. This may be
because pions are trailed by nucleons, which is affected by
MF, giving visible differences.

B. Directed flow at SPS energies

Directed flow v1 has been measured at SPS energies [Einc =
(40, 158)A GeV] instead of 〈px〉 as a function of rapidity.
In Fig. 5, we compare the rapidity dependence of proton v1

with the data in mid-central Pb+Pb collisions at Einc = 40A

and 158A GeV from the CERN-NA49 Collaboration [24],
both of which are deduced by the reaction plane method
(standard method). One can see that momentum-dependent
MF generally improves the description of v1.
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FIG. 4. Transverse momentum dependence of the elliptic flow v2 for protons in Au+Au mid-central collisions at (2, 4, 6)A GeV are
compared with AGS-E895 data [20]. The meaning of the curves is the same as in Fig. 2.
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FIG. 5. Proton directed flows v1 as a function of rapidity in mid-central Pb+Pb collisions at Einc = 40A GeV (left panel) and 158A GeV
(right panel) in comparison with SPS-NA49 data [24]. Curves show the calculated results of cascade with momentum-dependent hard or soft
mean field (MH or MS), cascade with momentum-independent mean field (H or S), and cascade without mean field (CS).

It is interesting to note that the cascade model overestimates
v1 for protons, in contrast to the underestimate of 〈px〉 at
AGS energies. We also see that v1 is reduced at SPS energies
with momentum-dependent MF, while 〈px〉 is enhanced at
AGS energies. This behavior is the reverse of that at lower
incident energies. Note also that the results with momentum-
independent MF predict a larger v1 than do the cascade
results.

In Fig. 5 the results from the momentum-dependent MF
show a flat behavior at mid-rapidity at 158A GeV. The wiggle
(a negative slope of the proton v1 near mid-rapidity) [29]
has been reported at peripheral collisions [24]. It would be
interesting to study this in detail in the future.

In Fig. 6 we compare the transverse momentum dependence
of v1 for protons in Pb+Pb collisions at Einc = 40A and
158A GeV with the data. We choose rapidity cut |y| < 1.8
for 40A GeV and |y| < 2.1 for 158A GeV according to the
experimental cuts. The pT dependence at 158A GeV is very

different from that at 40A GeV. Dense baryonic matter is
tentatively formed in the calculations up to around 40A GeV,
while many strings are formed and hadrons are formed later at
158A GeV at mid-rapidity. As a result, v1 does not necessarily
grow as a function of pT at 158A GeV, because strings do not
feel the MF in our model, and hadrons with large pT from string
decay have a long formation time in the total CM system, and
they would have smaller chances to interact with other hadrons
before strings decay.

Let us now turn to the pion v1. We show v1 for pions as a
function of rapidity in Fig. 7 and transverse momentum in
Fig. 8 at 40A and 158A GeV. It is seen that MF effects
for pion v1 are very small, especially at mid-rapidities.
MF effects are seen only in the forward rapidity region
for momentum-dependent MF. At 40A GeV, in the forward
rapidity region, we find reduction (enhancement) of v1 in the
momentum-dependent (-independent) MF results compared
with cascade ones. This comes from the counteraction from
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FIG. 6. Proton directed flows v1 as a function of transverse momentum in mid-central Pb+Pb collisions at Einc = 40A GeV (left panel)
and 158A GeV (right panel) are compared with SPS-NA49 data [24]. The meaning of the curves is the same as Fig. 5.
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(right panel) are compared with SPS-NA49 data [24]. The meaning of the curves is the same as Fig. 5.

protons; momentum-dependent (-independent) MF reduces
(enhances) proton v1 in the mid-rapidity region, and pion v1

anticorrelates with proton v1. Probably we need to include
pion MF for a better understanding of the collective flows at
SPS energies.

C. Elliptic flow at SPS energies

Since the v1 signal becomes small owing to the short
participant-spectator interaction time at high energies, the
next Fourier coefficient, called the elliptic flow v2, has been
discussed more extensively at SPS and RHIC. At these
energies, the participants form an almondlike shape in the
transverse plane after the spectators go through, and these
almond-shaped participants start to expand more strongly in
the x (shorter axis of the almond) direction because of the

higher-pressure gradient if the participants are well thermal-
ized. This expansion is known to lead to the enhancement of
in-plane particle emission, i.e., positive elliptic flow v2.

In Figs. 9 and 10 we plot the results of the rapidity and
transverse momentum dependence of v2 for protons at SPS
energies (40A and 158A GeV) together with the SPS-NA49
data [24]. At SPS energies, the cascade model generally
explains the proton v2 data qualitatively, including the flat
behavior of v2(y) at mid-rapidities at 158A GeV and the
approximate linear pT dependence of v2(pT ). One exception
is the missing collapse of v2(y) at mid-rapidity at 40A GeV.
This collapse seen in the NA49 data may be an indication of
a first-order phase transition at high baryon densities achieved
in the Pb+Pb collisions at 40A GeV [34].

Effects of MF are small for proton v2 at SPS energies.
Elliptic flow is most easily generated in the early stages of the
collisions, since spatial anisotropy is the largest. However, at
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FIG. 8. Pion directed flows v1 as a function of transverse momentum for 0 < y < 1.5 in Pb+Pb collisions at Einc = 40A GeV (left panel)
and 158A GeV (right panel) are compared with SPS-NA49 data [24]. The meaning of the curves is the same as Fig. 5.
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show the calculated results of cascade with momentum dependent hard or soft mean field (MH or MS), cascade with momentum-independent
mean field (H or S), and cascade without mean field (CS). Experimental data are taken from SPS-NA49 [24].

SPS energies, string excitations dominate particle production
at early times in the model, and those strings are not affected
by the nuclear mean field. That is the reason that MF effects
are small at SPS energies in our results.

The rapidity and the transverse momentum dependences
of the pion v2 are shown in Figs. 11 and 12, respectively.
The rapidity dependence at 158A GeV and the transverse
momentum dependence at low pT (pT < 1 GeV/c) at 40A
and 158A GeV are well explained by the cascade model as
well as by the momentum-dependent or -independent MF
models, and we do not find any significant MF effects for
these observables. By contrast, we do not see the collapse of
v2(y) at mid-rapidities seen in the 40A GeV NA49 data, and
we underestimate v2 at high pT . The former corresponds to
the collapse of proton v2(y) mentioned before. Momentum-
independent MF enhances pion v2(y) slightly, but this is in the

reverse direction needed to explain the data at 40A GeV. The
strong increase of v2(pT ) up to around pT ∼ 2 GeV/c is also
seen at RHIC energies, and this behavior is discussed as an
indication of hydrodynamic evolution [50].

We now turn to the discussion of the difference between v1

and v2. We have shown that MF effects on v1 are rather strong,
but v2 is relatively insensitive to MF at SPS energies. This
may come from the difference of developing time between
v1 and v2. The directed flow v1 at mid-rapidities is generated
mainly by the interaction between participants and spectators
in the early stage of the collision, where baryon density is the
highest. On the other hand, v2 in our model is generated in
the late stage until the time reaches the order of the nuclear
radius, where densities are not very high, but it is not formed
in the early stage in our model. This is because our current
hadronic transport approach does not have large participant
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FIG. 10. Proton elliptic flows v2 as a function of transverse momentum. The meaning of the curves is the same as Fig. 9.
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FIG. 11. Pion elliptic flows v2 as a function of rapidity. The meaning of the curves is the same as Fig. 9.

pressure in the early stages of the collisions, as we do not
explicitly include MF for strings and partonic interactions.
In a hydrodynamic picture, v2 develops from very early times
owing to thermal pressure. This is a striking difference between
our approach and hydrodynamics, as was previously studied in
Ref. [41].

D. Elliptic flow excitation functions from AGS to SPS energies

When the incident energy is not high enough, spectators
squeeze participants out of the reaction plane owing to the
repulsive nuclear interactions at 0.2A <∼ Einc <∼ 4A GeV. This
squeezing leads to a negative value of the elliptic flow of
nucleons (v2 < 0). The elliptic flow, therefore, shows the
strength of the repulsive interaction at lower energies. On the
other hand, elliptic flow becomes positive at higher energies,
because there is no such squeezing effect that is due to the
Lorentz contraction. Elliptic flow gives a information how
much pressure is generated at higher energies.

In Fig. 13 we show the incident energy dependence
of proton v2 in mid-central collisions with measured data
[−0.1 < y < 0.1 for AGS, 0 < y < 2.1(0 < y < 1.8) for SPS
158A (40A) GeV] [19,24]. Rapidity cut |y| < 0.2yproj has
been used in the calculations. Experimental data clearly show
the evolution from squeezing to almond-shaped participant
dynamics. With both cascade and momentum-independent soft
MF (S), we cannot explain strong squeezing effects at lower
energies. The calculated v2 values for momentum-independent
MF (H, S) and cascade are generally larger than data at
AGS energies. Momentum-dependent MF (MH, MS), which
is repulsive in the incident energy range under consideration,
pushes down the elliptic flow significantly. We qualitatively
reproduce the incident energy dependence from AGS [19] to
SPS [24] energies.

Calculated results with both MH and MS are smooth as a
function of beam energy, while the data at Einc = 40A GeV
has a dip [24]. Confirmation of data is necessary to examine the
incident energy dependence of v2, whether it is a monotonic
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FIG. 12. Pion elliptic flow v2 as a function of transverse momentum. The meaning of the curves is the same as Fig. 9.
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function or has a dip at around Einc ∼ 40A GeV, by looking at
the missing data points.

In our results with momentum-dependent potentials, the
stiffness dependence of v2 is smaller than that in the Boltzmann
equation model (BEM) [19,27,28]. In the RQMD/S framework
with the relativistic distance r̃2

ij , the interaction between the
projectile and target nucleons are suppressed at high energies
by the factors mi/p

0
i and mj/p

0
j in the potential derivatives in

Eqs. (A25) and (A26). For momentum-dependent potentials,
we have the relative momentum vector pij in Eq. (A29),
which can compensate for the suppression factor in Eq. (A26).
For momentum-independent potentials, on the other hand,
the pair velocity β ij in Eq. (A20) is very small for nucleon
pairs between the projectile and target, and there is no

enhancement factor to compensate for the above suppression
in the derivatives of the relativistic distance r̃2

ij in Eqs. (A27)
and (A28). This suppression does not happen in BEM, and
they find significant stiffness dependence in Refs. [19,27,28],
while we do not see strong stiffness dependence. In the case
of momentum-independent potentials, our results are closer to
the cascade results compared with those in Refs. [48,58]. This
difference also comes from the above suppression between the
projectile and target nucleons. The essential reason for these
differences is that in RQMD or RQMD/S potentials are regarded
as Lorentz scalar. Possible other model dependences will be
discussed in the next section.

IV. MODEL UNCERTAINTIES

In the previous section it has been shown that the
momentum-dependent hard or soft MF improved the descrip-
tion of the collective flow data from AGS to SPS energies.
However, there are some uncertainties in our calculations for
the study of collective flows.

First, let us consider the effects of the MF for nonnucleonic
baryons. Strange baryons, resonance hadrons, or antibaryons
are expected to feel MF, which may be different that affecting
nucleons. In the previous section we assumed that all the
baryons feel the same MF, and this treatment would give a
rough estimate of a maximum MF effect, since, for example,
the MF for �’s or �’s is generally expected to be smaller than
that for nucleons. On the other hand, if we include MF only for
nucleons, we may get a rough estimate of a minium baryonic
MF effects.

In Figs. 14 and 15, we compare the results with and without
MF for nonnucleonic baryons. We can read in the left-hand
panel of Fig. 14 that ignoring MF for nonnucleonic baryons
(specified as N in the figure) at 2A GeV reduces both the 〈px〉
slope and the strength at the forward rapidities by about 20%
compared with the case of B, in which all baryons feel MF.
But the slope remains the same at 11A GeV for N and B. On
the other hand, it is seen in the right-hand panel of Fig. 14
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that MF only for nucleons is not enough to suppress v1 at SPS
energies. One can also see some differences of v2 in B and
N in Fig. 15 up to AGS energies. The experimental data lie
between B and N except for 40A GeV, suggesting that the MF
for excited baryons is smaller than that for nucleons.

Next, we have checked the time step size dt dependence.
Since the update of MF after each collision requires a huge
calculation time, we evaluate MF only at each time slice.
When a baryon collides in one time step, that baryon is
propagated with MF until the collision time, and we ignore
the MF after the collision before it is formed. In the time
step of baryon formation, displacements by the MF for pi

and r i are evaluated by using the MF at the next time slice.
This treatment is valid up to the first order in dt when one
baryon collides or is formed once in one time step. In the later
stages this prescription is expected to work well because of the
low collision frequency. In the early stages many collisions
make strings and resonances, which do not feel MF, so our
prescription may not be too bad. In the middle stages, however,
it may be possible that elastic scatterings are frequent enough
and baryons continue to feel MF after collisions in each time
step. Thus we need to analyze the collision frequency effects
on constructing flows by reducing dt. In Figs. 14 and 15 we
plot the results with different time step sizes dt = 0.05, 0.1,
0.5 fm/c. For 〈px〉 at AGS energies (left-hand panel of
Fig. 14), all the results with different time step size agree
well with each other, and we cannot distinguish these lines.
The time step size dependence of v2 as shown in Fig. 15 still
gives us confirmation of the convergence of the numerical
results. For v1 at SPS energies (right-hand panel of Fig. 14),
only very small differences can be seen between the results
with dt = 0.5 fm/c and dt � 0.1 fm/c. We conclude that dt =
0.1 fm/c, which has been used as a default throughout this
work, is small enough to perform a reliable calculations.

Finally, we would like to address the problem of the
uncertainties of the transport model itself. In addition to the
ambiguities in introducing collision terms, the equations of
motion depend on the model treatment. It is not trivial at all to
construct equations of motion of relativistic particles during

heavy-ion collisions based on the potential or the MF, giving
an appropriate EOS. At relativistic energies there are proposed
several ways to introduce the potential effects.

(i) Relativistic mean field (RMF), having Lorentz scalar Us

and vector Uµ
v terms (RBUU [25,32]). The scalar and

the vector time component are evaluated in the local
rest frame, and by the Lorentz transformation we can
get Uµ

v in the calculation frame. Thus, neglecting a
nonlocality in time, this evaluation of the potential is
practically covariant. In this approach, however, we need
to introduce strong cutoff for the coupling of vector
meson and baryons [25], since the vector potential effects
linearly increase as a function of incident energy.

(ii) Lorentz scalar reinterpretation of nonrelativistic poten-
tials (BUU [31], BEM [27]). In the BUU model [31] the
Lorentz scalar MF Us is obtained from the nonrelativistic
MF U in the local rest frame through the relation

ε( p, ρ) =
√

[m + Us( p, ρ)]2 + p2

(10)
=

√
m2 + p2 + U ( p, ρ),

where ρ is the baryon density [31]. For the momentum-
independent MF in BEM in Refs. [27,28], the scalar
potential is directly given so as to fit the EOS, and
the scalar density is used for ρ. They do not have any
vector terms increasing at high energies, and the potential
effects become mild compared with the RMF treatment.
For example, the derivative of the above single-particle
energy gives rise to the factor (m + Us)/ε in front of the
Us derivative and suppresses the potential effects.

(iii) Combination of the Lorentz scalar and nonrelativistic-
type density-dependent potentials (BEM [26–28]). This
approach is adopted in Ref. [26] and in the momentum-
dependent MF in Refs. [27,28]. The single-particle
energy is given as

ε(p, ρ) = m +
∫ p

0
dp′v∗(p′, ρ) + Ũ (ρ), (11)

v∗(p, ρ) = p√
p2 + [m∗(p, ρ)]2

. (12)

The derivative of Ũ (ρ) does not come with a suppression
factor such as m/ε, and it generates strong effects at high
energies, where both the density and the density derivative
become large.

(iv) Constraint Hamiltonian dynamics (RQMD [39], RQMD/S
[43]). In RQMD and RQMD/S, particle velocity and force
are not given by the derivatives of the single-particle
energy but by the derivatives of the total Hamiltonian,
as shown in the Appendix in the case of RQMD/S. Thus
the relation to other MF models described above is not
straightforward. However, the potential Vi in the on-mass-
shell constraint (A8) is introduced as Lorentz scalar, and
we have suppression factor m/p0 in the equations of
motion, (A14) and (A15). These observations suggest
that the RQMD and RQMD/S would give results similar to
those in Lorentz scalar MF models, such as BUU [31].
Another difference from other MF models exists in the
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nuclear density profile. One nucleon is represented by one
Gaussian packet rather than many test particles, then the
nuclear diffuseness becomes generally larger in QMD-
type models. This may generate artificial surface effects
at large impact parameters or in light-ion collisions.
However, central and mid-central collisions of heavy-
nuclei are expected to be well described, as in the case of
various cascade models, in which one particle is used for
one hadron.

We are not very sure which is the best way to include the
potential effects in high-energy heavy-ion collisions. Further
formal developments on transport models in relation to the
nuclear EOS would be necessary, and at the same time,
phenomenological studies of heavy-ion collisions are required
in order to verify the validity of models and to elucidate
the EOS. From the latter point of view, systematic study
in wide range of incident energy is needed, since the above
uncertainties are closely related to the Lorentz transformation
properties, whose effects would vary drastically as the incident
energy varies. The incident energy range from AGS to SPS
energies studied in this work may provide a good benchmark
test for transport models and the EOS.

V. SUMMARY

We have investigated collective flows in heavy-ion colli-
sions from AGS [(2–11)A GeV] to SPS [(40, 158)A GeV]
energies by using a combined framework of hadron-string
cascade (JAM) [49] and covariant constraint Hamiltonian
dynamics (RQMD/S) [43]. In JAM, various particle production
mechanisms are taken into account — production and decay of
resonances and strings, jet production, and its fragmentation.
Momentum dependence of the MF is fitted [55] to the real part
of the Schrödinger equivalent global optical potential of Hama
et al. [38] in a Lorentzian form, Eq. (1). Saturation properties
are fitted by introducing the density-dependent potential of
the Skyrme type in the power series of ρ. Calculated results of
cascade, cascade with momentum-dependent MF, and cascade
with momentum-independent MF are compared with the data
of sideward 〈px〉, directed v1, and elliptic v2 flows as a function
of rapidity, transverse momentum, and beam energy from
AGS to SPS. Generally, results with momentum-dependent
MF explain the trend of the data for proton flows reasonably
well. We note that this is the first that the anisotropic proton
collective flow data of heavy-ion collisions from AGS to SPS
has been explained in one framework consistently. Without
momentum dependence in MF, we cannot reproduce the strong
enhancement of the sideward flow at Einc = (2–11)A GeV,
strong squeezing seen in v2 for Einc <∼ 4A GeV, and the
suppression of proton v1 at Einc = 40A and 158A GeV.

Our new model—a hadron-string cascade with momentum-
dependent MF—provides an improved description for col-
lective flows in mid-central collisions from AGS to SPS
energies. The present analysis implies that the effects of the
momentum-dependent potential is large up to the SPS energies.

There are still many problems in the attempt to pin down
the equation of state of dense nuclear matter from heavy-ion
data. First, we have made an assumption that the MF is taken

into account only for baryons and that all the baryons feel
the same MF. It would be interesting to extend the present
work to discuss the MF effects for mesons and different MFs
for hyperons and resonance hadrons and to look at the � or
kaon flow data. Second, we cannot make the soft EOS (K ∼
200 MeV) with the present form of the MF be consistent
with the optical potential. When the momentum dependence
is fitted to the optical potential by Hama et al. [38] in the
Lorentzian form, the EOS necessarily becomes relatively stiff
in combination with the Skyrme-type density-dependent form,
as shown in Table I. The small sensitivity of the EOS to
momentum in this work may suggest that the probed EOS
range is not wide enough. Finally, the model dependence
of the MF treatment has to be removed in order to obtain
model-independent EOS information. For this purpose it is
necessary to test various MF treatments in one framework.
In the present model, we need to modify the on-mass-shell
constraint to include Lorentz vector potentials or potentials
of other types. It can be a breakthrough for a transport
model-independent discussion of the EOS.
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APPENDIX: RQMD/S FORMALISM

Here we briefly summarize the RQMD/S formalism de-
veloped by Maruyama et al. in Ref. [43] for completeness.
The original RQMD formalism is initiated by Sorge et al. in
Ref. [39]. RQMD(/S) is based on the constrained Hamiltonian
dynamics [59], which is formulated in a manifestly covariant
way. We use four-vectors q

µ

i and p
µ

i for the description of the
N particle system. Therefore we need to have 2N constrains
φi(i = 1, . . . , 2N ), as physical phase space is 6N dimensional.
Now our Hamiltonian may be constructed from the constraints
φi , and the Lagrange multiplier ui from the Dirac’s constraint
Hamiltonian formalism:

H =
2N−1∑
i=1

uiφi. (A1)

The equations of motion are then

dqi

dτ
= {H, qi} ≈

2N−1∑
j=1

uj

∂φj

∂pi

, (A2)

dpi

dτ
= {H,pi} ≈ −

2N−1∑
j=1

uj

∂φj

∂qi

, (A3)

where the Poisson brackets are defined as

{A,B} ≡
∑
k,µ

(
∂A

∂q
µ

k

∂B

∂pkµ

− ∂A

∂pkµ

∂B

∂q
µ

k

)
, (A4)
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q

µ

i , pjν

} = δµ
ν δij ,

{
q

µ

i , qν
j

} = 0,
{
piµ, pjν

} = 0,
(A5)

i, j, k = 1, . . . , N, µ, ν = 0, 1, 2, 3,

and the sign ≈ means the weak equality initiated by Dirac [60].
When we require that constraints φi should be conserved in
time, then they fulfill

dφi

dτ
= ∂φi

∂τ
+

2N−1∑
j=1

uj {φi, φj } ≈ 0. (A6)

Particle trajectories in 6N phase space is uniquely determined
by the equations of motion Eqs. (A2) and (A3) together with
Eqs. (A10) and (A11) when 2N constraints are given.

We use the following 2N constraints in RQMD/S

φi ≡
{
Hi i = 1, . . . , N

χi−N i = N + 1, . . . , 2N.
(A7)

First N constraints are the on-mass-shell constraints

Hi ≡ p2
i − m2

i − 2miVi ≈ 0, i = 1, . . . , N. (A8)

Remaining N conditions constrain the time fixation of the
particles. In the original RQMD time fixation [39,40,42], the
N × N matrix has to be solved numerically at each time step
to deduce inverse matrices. Moreover, if particle production or
annihilation occurs, the time fixation is violated, and a initial
qi of produced particles satisfying the constraints and energy
conservation has to be imposed.

Maruyama et al. introduced a simplified time fixation in
RQMD/S with the global time parameter τ in Ref. [43], as

χi ≡ â · (qi − qN ) ≈ 0, i = 1, . . . , N − 1,

χN ≡ â · qN − τ ≈ 0,
(A9)

where â is a four-component vector corresponding to (1, 0) at
the rest frame of the particle and qi is space-time coordinate of
the ith particle. The constraints equation (A9) can be satisfied
in the case of particle production.

Since the constraint φi(i = 1, . . . , 2N − 1) does not de-
pend explicitly on τ , the Lagrange multiplier ui(τ ) can be
solved as

ui ≈ −∂φ2N

∂τ
C2N,i, i = 1, . . . , 2N − 1, (A10)

where

C−1
ij ≡ {φi, φj }, i, j = 1, . . . , 2N. (A11)

The matrix C (inverse of matrix C−1) must exist, because
we only allow for the τ -dependent 2N th constraint functions,
which are combined with the 2N − 1 constraints. Furthermore,
C can be obtained analytically, if we replace p0

i from the

potential Vi with the kinetic energy
√

p2
i + m2

i . This is a great
advantage from the point of view of CPU time. One obtains
the RQMD/S Hamiltonian

H ≈
N∑

i=1

ui

(
p2

i − m2
i − 2miVi

)
, (A12)

where

ui = 1

2p0
i

, p0
i =

√
p2

i + m2
i + 2miVi. (A13)

The equations of motion are then

d r i

dτ
≈ − ∂H

∂ pi

= pi

p0
i

+
N∑

j=1

mj

p0
j

∂Vj

∂ pi

, (A14)

dpi

dτ
≈ ∂H

∂ r i

= −
N∑

j=1

mj

p0
j

∂Vj

∂ r i

. (A15)

In actual calculations, we have replaced p0
i with the kinetic

energy
√

p2
i + m2

i in the denominators of Eqs. (A14) and
(A15) after evaluating all the derivative terms for simplicity.
This approximation would be valid in the relativistic energy
region, where the kinetic energy is much larger than the
potential Vi .

Relative distance r ij = r i − rj and pij = pi − pj in the
potentials should be replaced by the squared four-vector
distance with a Lorentz scalar, as

−qT ij
2 = −qij

2 + (qij · Pij )2

Pij
2

, (A16)

−pT ij
2 = −pij

2 + (pij · Pij )2

Pij
2

, (A17)

where pij = pi − pj , qij = qi − qj , Pij = pi + pj . We
note that in the nonrelativistic limit −qT ij

2 −→
c→∞ r2

ij . This
assumption takes into account the contraction of longitudinal
direction, and we can avoid unphysical compression. In the
actual simulations, we use the following expression:

−q2
T ij ≡ r̃2

ij = r2
ij + γ 2

ij (r ij · β ij )2, (A18)

−p2
T ij ≡ p̃2

ij = p2
ij − (

p0
i − p0

j

)2 + γ 2
ij

(
m2

i − m2
j

p0
i + p0

j

)2

,

(A19)

where the velocity and the γ factor between the ith and the jth
particle are given by

β ij = pi + pj

p0
i + p0

j

, γij = 1√
1 − β2

ij

. (A20)

We now write the explicit form of the equations of motion in
RQMD/S, which is used in the actual simulation. As explained
in Sec. II, we use the following potentials:

V =
∑

i

(VSky i + Vmom i)

=
∑

i

 α

2ρ0
〈ρi〉 + β

(1 + γ )ργ

0

〈ρi〉γ

+
∑
k=1,2

C(k)
ex

2ρ0

∑
j (�=i)

1

1 + [ p̃ij /µk]2
ρij

 , (A21)
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where 〈ρi〉 is obtained from a convolution of the Gaussian
wave packet:

〈ρi〉 ≡
∑
j (�=i)

∫
d rρi(r)ρj (r) =

∑
j (�=i)

ρij

=
∑
j (�=i)

1

(4πL)
3
2

exp

(
− r̃2

ij

4L

)
. (A22)

The width parameters L = 2.05(MH), 2.1(MS), 1.08(H
and S) fm2 are taken from Refs. [55,56]. The equations of
motion (A14) and (A15) then become

d r i

dτ
= pi

p0
i

+
∑
j (�=i)

Dij

∂ r̃2
ij

∂ pi

+
∑
j (�=i)

Eij

∂ p̃2
ij

∂ pi

, (A23)

dpi

dτ
= −

∑
j (�=i)

Dij

∂ r̃2
ij

∂ r i

, (A24)

where

Dij =
(

− 1

2L

)
ρij

[
α

2ρ0

(
mi

p0
i

+ mj

p0
j

)

+ γ

1 + γ

β

ρ
γ

0

{
mi

p0
i

〈ρi〉γ−1+ mj

p0
j

〈ρj 〉γ−1

}]

+
(

− 1

4L

)
1

2ρ0
ρij

(
mi

p0
i

+ mj

p0
j

) ∑
k=1,2

C(k)
ex

1 + [ p̃ij /µk]2
,

(A25)

Eij = 1

2ρ0
ρij

(
mi

p0
i

+ mj

p0
j

) ∑
k=1,2

(
− 1

µk
2

)
C(k)

ex

1 + ( p̃ij /µk)2
.

(A26)

The result of the differentials are [61]

∂ r̃2
ij

∂ pi

= 2γ 2
ij

p0
i + p0

j

(r ij · β ij )

{
r ij + γ 2

ij (r ij · β ij )

(
β ij − pi

p0
i

)}
,

(A27)

∂ r̃2
ij

∂ r i

= 2r ij + 2γ 2
ij (r ij · β ij )β ij , (A28)

∂ p̃2
ij

∂ pi

= 2 pij − 2
(
p0

i − p0
j

) pi

p0
i

+ 2γ 4
ij

1

p0
i + p0

j

(
m2

i − m2
j

p0
i + p0

j

)2 (
β ij − pi

p0
i

)
. (A29)

Finally, let us check the nonrelativistic limit to confirm the
validity of Eqs. (A12)–(A15). We define the kinetic energy as
Ei ≡ p0

i − mic
2 (here we write the speed of light c explicitly),

Indeed Hamiltonian (A12) and the equations of motion have
the correct nonrelativistic limit, as

H ≈
N∑

j=1

1

2

1

Ej /c2 + mj

(
E2

j

c2
+ 2mjEj − p2

j − 2mjVj

)

≈
c→∞

N∑
j=1

(
Ej − p2

j

2mj

− Vj

)
= E − HN.R., (A30)

d r i

dτ
= ∂HN.R.

∂ pi

≈ pi

mi

+
N∑

j=1

∂Vj

∂ pi

, (A31)

dpi

dτ
= −∂HN.R.

∂ r i

≈ −
N∑

j=1

∂Vj

∂ r i

. (A32)
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