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Signals of spinodal hadronization: Strangeness trapping
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If the deconfinement phase transformation of strongly interacting matter is of first order and the expanding
chromodynamic matter created in a high-energy nuclear collision enters the corresponding region of phase
coexistence, a spinodal phase separation might occur. The matter would then condense into a number of separate
blobs, each having a particular net strangeness that would remain approximately conserved during the further
evolution. We investigate the effect that such strangeness trapping may have on strangeness-related hadronic
observables. The kaon multiplicity fluctuations are significantly enhanced and thus provide a possible tool for
probing the nature of the phase transition experimentally.
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I. INTRODUCTION

One of the major goals of high-energy heavy-ion research is
to explore the equation of state of strongly interacting matter,
particularly its phase structure [1]. Depending on the beam
energy, various regions of temperature and baryon density
can be explored. Thus systems with a very small net baryon
density are formed at the Relativistic Heavy Ion Collider
(RHIC) [2](

√
s � 200A GeV), whereas it is expected that the

creation of the highest possible baryon densities occurs at
more moderate beam energies (

√
s � 10A GeV), such as those

becoming available at the planned FAIR [3].
Our understanding of the quantum chromodynamics (QCD)

phase diagram is best developed at vanishing chemical
potential, µB = 0, where lattice QCD calculations are most
easily carried out. The most recent results indicate that the
transformation from a low-entropy hadron resonance gas to
a high-entropy quark-gluon plasma occurs smoothly at the
temperature is raised, with no real phase transition being
present [4]. However, at zero temperature most models predict
the occurrence of a first-order phase transition when the density
is raised [5], though no firm results are yet available for the
corresponding value of the chemical potential, µ0. However,
if the T = 0 transformation is in fact of first order, one would
expect the phase boundary to extend into the region of finite
temperature and terminate at a certain critical end point,
(µc, Tc) [5]. Indeed, recent lattice QCD results [6] suggest
the presence of such a first-order phase transition line and an
associated critical end point, though its precise location is not
well determined.

It is therefore important to consider how this key issue could
be elucidated on the basis of experimental data. Generally,
one might expect that if the expanding matter created in
a high-energy nuclear collision crosses a first-order phase-
transition line then the associated nonmonotonic behavior
of the thermodynamic potential might have observational
consequences.

From this perspective, the enhancements of the K/π ratio
reported for beam energies of 20–30A GeV at the SPS [7]
appears intriguing. Because these data present the only
nonmonotonic behavior seen so far in high-energy heavy-ion
collisions, it appears appropriate and timely to study the

consequences of a possible first-order phase transition on the
production of kaons or, more generally, strange hadrons.

A universal feature of first-order phase transitions is the
occurrence of spinodal decomposition, which results from the
convex anomaly in the associated thermodynamic potential
[8]. This phenomenon occurs when bulk matter, by a sudden
expansion or cooling, is brought into the convex region of
phase coexistence. Because such a configuration is ther-
modynamically unfavorable and mechanically unstable, the
uniform system seeks to reorganize itself into spatially separate
single-phase domains. Moreover, because this spinodal phase
separation develops by means of the most unstable collective
modes, the resulting domain pattern tends to have a scale char-
acteristic of those modes. This general phenomenon, which
is known in many areas of physics and has found a variety
of technological applications, appears to be an important
mechanism behind the multifragmentation phenomenon in
medium-energy nuclear collisions [9,8], where the relevant
first-order phase transition is between the nuclear liquid and
a gas of nucleons and light fragments. Thus, if a first-order
phase transition is encountered during the expansion stage
of a high-energy nuclear collision, one might expect that
such a spinodal separation might occur. While the resulting
enhancement of baryon fluctuations was studied by Bower and
Gavin [10] and the prospects for observing such a process via
N-body kinematic correlations was discussed by Randrup [11],
the present study explores the consequences for the production
of strange hadrons.

For a spinodal decomposition to occur, several conditions
must be met. First of all, of course, the equation of state
must have a first-order phase transition. Though expected,
the existence of a first-order phase transition is not yet well
established theoretically and it may ultimately have to be
determined experimentally by analyzes of the kind considered
here. Second, the dynamical trajectory of the bulk matter
formed early on must pass through the spinodal region of phase
coexistence. Although some calculations suggest that this may
happen at FAIR [12–14], this question needs to be investigated
more thoroughly. Third, even if the the above conditions are
met, the dynamical conditions of the collision must be carefully
tuned to ensure, on the one hand, that the bulk of the system is
brought into the spinodal region sufficiently quickly to achieve

0556-2813/2005/72(6)/064903(14)/$23.00 064903-1 ©2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.72.064903


VOLKER KOCH, ABHIJIT MAJUMDER, AND JØRGEN RANDRUP PHYSICAL REVIEW C 72, 064903 (2005)

a quench, yet, on the other hand, the overall expansion should
be slowed down to a degree that will allow the dominant
instabilities to grow sufficiently to cause the bulk to break up.
Although the conditions for achieving this delicate balance
are hard to ascertain theoretically, they may be found by a
systematic variation of the beam energy. These open questions
notwithstanding, we shall here assume that the matter created
in a heavy-ion collision somehow breaks into a number of
subsystems, blobs, which subsequently expand and hadronize
independently and we then investigate the consequences for
the production of strange hadrons. In particular, we wish to
ascertain whether such a breakup could lead to an enhancement
of the K/π ratio and its fluctuations.

In such a scenario, if the breakup is sufficiently rapid,
then whatever net strangeness happens to reside within the
region of the plasma that forms a given blob will effectively
become trapped and, consequently, the resulting hadronization
of the blob will be subject to a corresponding constraint
on the net strangeness. As we shall demonstrate, this type
of canonical constraint will enhance the multiplicity of
strangeness-carrying hadrons, as compared to the conventional
(grand-canonical) scenario where global chemical equilibrium
is maintained through the hadronic freeze-out [15]. (This oc-
currence of an enhancement is qualitatively easy to understand,
because the presence of a finite amount of strangeness in the
hadronizing blob enforces the production of a corresponding
minimum number of strange hadrons.) The fluctuations in the
multiplicity of strange hadrons, such as kaons, are enhanced
even more, thus offering a possible means for the experimental
exploration of the phenomenon.

The remainder of this article is organized as follows:
First we introduce a suitable idealized model framework and
develop the necessary formal tools for the required canonical
calculations, with some of the formal manipulations being
relegated to appendices. The key features are then brought
out in a schematic scenario containing only charged kaons.
Subsequently, we present instructive numerical results and
also make a quantitative assessment of the importance of
global strangeness conservation. We finally give a concluding
discussion. The appendices contain a number of technical
details.

II. CALCULATIONAL FRAMEWORK

To establish a framework for investigating the effect of
the strangeness trapping mechanism, we adopt the following
schematic scenario: We start by considering the expanding
system when it is still in the plasma phase. At this stage
the system is spatially uniform and the strange quarks and
antiquarks can be considered as being randomly distributed
throughout the system, irrespective of what the net baryon
density happens to be. We imagine that the bulk of the
expanding and cooling plasma enters the region of phase
coexistence and that the associated spinodal instability will
cause it to break up into separate subsystems, blobs, which
are assumed to all have the same size, as they would tend to
have in a spinodal breakup. Each of these blobs now proceed
to expand and hadronize while maintaining its net strangeness.

The resulting assembly of hadrons is determined at freeze-out
by a sampling of the statistical phase space, subject to the
appropriate canonical strangeness constraint.

To assess the effect of the strangeness trapping, it is
useful to compare the results against the standard scenario,
in which the system is assumed to evolve to freeze-out while
remaining macroscopically uniform and maintaining global
statistical equilibrium. Focusing on a particular subvolume
Vh, we describe the resulting hadron gas in the classical
grand-canonical approximation. The abundance of a particular
hadron specie k is then as follows:

n̄k = gk

2π2

VhT
3
h

h̄3c3
K̃2

(
mkc

2

Th

)
e(µBBk+µQQk+µSSk)/Th , (1)

where K̃2(x) ≡ x2K2(x) is regular at x = 0 and a hadron of
the specie k has baryon number Bk , electric charge Qk , and
strangeness Sk . The average values of baryon number, charge,
and strangeness in the volume Vh then readily follow,

B̄ =
∑

k

Bkn̄k, Q̄ =
∑

k

Qkn̄k, S̄ =
∑

k

Skn̄k. (2)

The values of the freeze-out temperature Th and the three
chemical potentials µB,µQ, and µS will be determined by fits
to the experimental yield ratios (see later). In this treatment,
the individual hadron species are statistically independent and
the associated multiplicities have Poisson distributions, so the
multiplicity variances are equal to the mean values, σ 2

k = n̄k .
We now return to the particular spinodal scenario described

above, where we assume that the plasma has broken up into
separate blobs. We first consider the distribution of strangeness
within the blobs and then treat their subsequent hadronic
freeze-out.

If a given plasma blob is only a small part of the total system,
its statistical properties may be treated in the grand-canonical
approximation. The various quark (and gluon) species are then
independent. Furthermore, because there is no bias on the
overall strangeness, the s and s̄ quarks have identical partition
functions, Zs = Zs̄ , where

lnZs = gq

∫
d3rsd

3ps

h3
ln[1 + e−εs/Tq ] (3)

≈ 3

π2

VqT
3
q

h̄3c3
K̃2

(
ms

Tq

)
≡ ζs. (4)

Here gq = 6 is the quark spin-color degeneracy, Tq is the
plasma temperature, and Vq is the volume of the particular
blob considered at the time when its strangeness is frozen
in. The energy εs is given by ε2

s = p2
s + m2

s , where we
use the mass ms = 150 MeV. Whereas the first expression
is the exact fermionic form, the last relation emerges in
the classical limit which we shall adopt here for simplicity
(see Appendix A). Then the s and s̄ multiplicities, ν and ν̄,
have Poisson distributions characterized by the mean value
ζs = lnZs . The total strangeness content in the blob is then
S0 = ν̄ − ν. Because the different quark flavors are distributed
independently, the resulting probability for ending up with
a given blob strangeness S0 is independent of the prevailing
baryon and charge contents and can be expressed as a modified
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Bessel function,

P (S0) =
∑
νν̄

ζ ν
s ζ ν̄

s

ν!ν̄!
e−2ζs δν̄−ν,S0 = IS0 (2ζs) e−2ζs . (5)

We note that the corresponding ensemble average value of
S0 vanishes, ≺S0 � = 0, while its ensemble variance is σ 2

S0
=∑

S0
S2

0P (S0) = 2ζs .
To avoid spurious correlations, we take account of the

fact that the presence of a certain net strangeness in a given
blob introduces a bias on its baryon number and charge,
relative to the overall grand-canonical averages B̄ and Q̄ of
the grand-canonical reference scenario, Eq. (2). Indeed, each
particular value of S0 determines a canonical subensemble
of blobs that have modified distributions of baryon number
and charge. It is elementary to show that these are shifted by
amounts proportional to S0, so the corresponding conditional
expectation values become

〈B〉S0 = B̄ − 1
3S0, 〈Q〉S0 = Q̄ + 1

3S0. (6)

It also follows that the ensemble correlations of B and Q with
S are given by the following:

σBS =≺BS� = − 1
3σ 2

S0
, (7)

σQS =≺QS� = + 1
3σ 2

S0
. (8)

Each isolated blob is assumed to expand further while
hadronizing, until the freeze-out volume Vh = χVq has been
reached. Its temperature is then Th � Tq . Rough approxima-
tions to the equation of state [16] and the demand of energy
conservation suggest that the expansion factor is χ ≈ 3, to
within a factor of 2 or so. The blob has now transformed itself
into a hadron resonance gas that we describe as a canonical
ensemble characterized by the strangeness S0 of the precursor
plasma blob. The baryon number and charge are treated grand-
canonically and the demand that the expected baryon and
charge contents match the above conditional values (6) then
determines the associated biased chemical potentials µ′

B and
µ′

Q, where the primes indicate that these pertain to the biased
(canonical) ensemble characterized by the particular value of
S0. Though required for formal consistency and included in the
calculations, this refinement is not quantitatively important.

For the description of the hadron gas, we include 124
hadronic species {k}, from the π0(135) and up though the
�−(1672). Each specie is characterized by its one-particle
partition function,

ζk = gk

∫
d3rkd

3pk

h3
e−(εk−µ′

BBk−µ′
QQk)/Th (9)

= gk

2π2

VhT
3
h

h̄3c3
K̃2

(
mkc

2

Th

)
e(µ′

BBk+µ′
QQk )/Th . (10)

The nonstrange hadrons, which are not affected directly by
the canonical strangeness constraint, have grand-canonical
distributions governed by the biased chemical potentials
µ′

B(S0) and µ′
Q(S0). The total partition function is therefore

of the form Z = Z {S=0}
gc Z {S 
=0}

S0
. We describe briefly below

how we obtain the canonical partition function for the strange
hadrons, Z {S 
=0}

S0
, and refer to Appendix B for more details.

For this task, we organize the hadron species according
to their strangeness (an alternate approach was employed in
Refs. [17,18]). For each strangeness class S = ±1,±2,±3,
we introduce the effective one-particle partition function ζS =∑

κ ζκδSκ ,S , which accounts for all hadron species having the
particular strangeness S. The corresponding generic multiplic-
ities are denoted by NS , the multiplicity of hadrons having the
specified strangeness S (e.g., N+1 = nK0 + nK+ + n
̄ + · · ·).
It should be noted that ζS is not simply related to ζ−S when the
system has a net baryon density. In terms of these quantities
we then have the following:

Z {S 
=0}
S0

=
∏
S 
=0


∑

NS� 0

ζ
NS

S

NS!


 δ

(∑
S

NSS − S0

)
. (11)

It is convenient to obtain this total partition function
recursively by adding two conjugate strangeness classes {±S}
at a time,

Z {S=±1,±2}
S0

=
∑

S2=0,±2,...

Z {±1}
S0−S2

Z {±2}
S2

, (12)

Z {S=±1,±2,±3}
S0

=
∑

S3=0,±3,...

Z {±1,±2}
S0−S3

Z {±3}
S3

, (13)

where the canonical partition function for a single pair
of conjugate strangeness classes is given by an expression
analogous to Eq. (5) [18],

Z {±S}
S0

=
∑

N+N−

ζ
N+
+S

N+!

ζ
N−
−S

N−!
δ(N+−N−)S,S0

=
(

ζ+S

ζ−S

)S0/2

IS0 (2
√

ζ+Sζ−S). (14)

The corresponding correlated conditional distribution of the
generic multiplicities {NS} is then determined. Furthermore,
recursive expressions can readily be derived for the associated
multiplicity moments, such as 〈NS〉S0 and 〈NSNS ′ 〉S0 (see
Appendix B). Once we know the number of hadrons with
a given strangeness S,NS , we can obtain the multiplicities
{nκ} of the individual strange species from the corresponding
multinomial, for example, distributions,

Pκ (nκ ) = NS!

ζ
NS

S

ζ nκ
κ

nκ !

(ζS − ζκ )NS−nκ

(NS − nκ )!
. (15)

By proceeding as described above, it is possible to treat
the entire ensemble of possible blobs and by numerical
simulation generate a sample of “events” consisting of the
resulting primordial hadrons. (The importance of subsequent
decays is discussed later.) These “final states” can then be
analyzed as idealized experimental data. This can be done both
in the spinodal scenario where individual blobs are treated
canonically as well as in the grand-canonical reference
scenario. For instructive purposes, we also consider a restricted
canonical scenario in which the strangeness of a blob is always
required to vanish, S0 = 0.

The inclusion of the bias effect [see Eq. (6)], as expressed
through µ′

B and µ′
Q in Eq. (10), ensures that the ensemble

correlation of baryon number and charge with strangeness
remains the same as it were in the plasma, even though our
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treatment of the hadron production conserves B and Q only on
the average for each S0,

σBS ≡ ≺ BS � − ≺ B �≺ S � =
∑
S0

〈B〉S0S0P (S0)

=
∑
S0

(
B̄ − 1

3
S0

)
S0P (S0) = −1

3
σ 2

S0
, (16)

σQS ≡ ≺ QS � − ≺ Q �≺ S � =
∑
S0

〈Q〉S0S0P (S0)

=
∑
S0

(
Q̄ + 1

3
S0

)
S0P (S0) = +1

3
σ 2

S0
. (17)

III. SCHEMATIC SCENARIO

Before discussing the results of such numerical simulations,
it is instructive to first illustrate the effect of strangeness
trapping in a schematic scenario. For this purpose, assume
that plasma blobs of strangeness S0 hadronize into charged
kaons only. We furthermore ignore the chemical potentials
(µB is ineffective for mesons and µQ is anyway rather small).
The resulting K± multiplicity distributions are then given in
terms of the (common) one-particle partition function,

ζK = gK

∫
d3rd3p

h3
e−εK/T0 = gK

2π2

VhT
3
h

h̄3c3
K̃2

(
mK

Th

)
. (18)

In particular, the average kaon multiplicities resulting from
blobs of strangeness S0 can be expressed as an asymptotic
expansion in 1/ζK ,

〈nK±〉S0 = ζK ± 1

2
S0 − 1

4
+ 4S2

0 − 1

32ζK

+ O
(

1

ζ 2
K

)
. (19)

Ignoring the relatively small effects of quantum statistics on
the quark multiplicity distribution, we found above that the
ensemble of values S0 = ν̄ − ν is characterized by ≺ S0 �= 0
and σ 2

S0
= 2ζs . The ensemble average K± multiplicities are

then as follows:

≺ nK± �= ζK − 1

4
+ 8ζs − 1

32ζK

+ O
(

1

ζ 2
K

)
. (20)

Furthermore, the corresponding expressions for the ensemble
multiplicity (co-)variances are as follows:

σ 2
K+ = σ 2

K− = 1

2
ζK + 1

2
ζs + O

(
1

ζK

)
, (21)

σ 2
K+K− = 1

2
ζK − 1

2
ζs + O

(
1

ζK

)
. (22)

It should be noted that these expressions imply that σ 2(nK+ −
nK− ) = 2ζs = σ 2

S0
as required by the fact that S0 = nK+ − nK−

in each blob.
In the special case where ζs happens to equal ζK we

recover the grand-canonical result, ≺ nK± � = σ 2
K± = ζK and

σK+K− = 0, reflecting the fact that the grand-canonical ensem-
ble can be built from an ensemble of canonical subensembles.
But generally the above results differ from those of the grand-
canonical scenario. In particular, when ζK < ζs = (1 + �)ζK ,
as tends to be the case because of the large degeneracy of the

quarks, the kaon production is enhanced by the strangeness
trapping,

≺nK±�≈ ζK + 1
4�, (23)

σ 2
nK± ≈ ζK + 1

2�ζK, (24)

σnK+ nK− ≈ − 1
2�ζK. (25)

The negative value of the covariance reflects the fact positive
(negative) values of S0 favors positive (negative) kaons, so
an excess of positive kaons is likely to be accompanied by a
deficit of negative kaons and vice versa. We note that while the
relative increase of the average multiplicities is of the order of
�/ζK , the relative effect on the fluctuations is of the order of
�, thus being enhanced by a factor of ζK . This basic feature
suggests that the fluctuations are preferable to the averages for
probing the strangeness trapping phenomenon.

IV. RESULTS AND DISCUSSION

We now discuss results obtained by numerical sampling
of the canonical partition function described above. In our
calculations, which serve to merely illustrate the effect of
the strangeness trapping mechanism, we use the freeze-out
hadron populations directly in the analysis and make no
attempt to include subsequent electroweak decays. Obviously,
this complication should be addressed before a quantitative
confrontation with data can be made.

The overall grand-canonical reference environment is de-
termined as follows. Using the baryon chemical potential µB

as a control parameter, we obtain the freeze-out temperature Th

from the fit to the data obtained in Ref. [15], yielding Th(µB) ≈
T0[1 − (µB/mN )5/2] with T0 = 170 MeV. Subsequently, we
perform a grand-canonical iteration to determine those values
of µQ and µS that ensure Q̄ = αB̄ and S̄ = 0, where α = 0.4,
which is representative of Z/A for gold. The resulting values
are shown in Fig. 1 as functions of µB . As µB is increased,

0 100 200 300 400 500 600 700 800

Baryon chemical potential µB (MeV)

-50

0

50

100

150

200

T
h a

nd
 µ

Q
 a

nd
 µ

S
 (

M
eV

)

Th

µS

µQ

ρQ = 0.4 ρB ,  ρS = 0Hadron gas:

FIG. 1. (Color online) The employed freeze-out values of the
temperature Th and the chemical potentials µQ and µS as functions of
µB , as obtained by fitting to the result for Th(µB ) [15] and demanding
that Q̄ = 0.4B̄ and S̄ = 0.
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baryons become favored over antibaryons, so there will a
bias of hyperons over antihyperons. To counterbalance the
associated net negative strangeness (recall that S
 is −1), µS

must take on a positive value to ensure a compensating excess
of kaons over antikaons, leading to an approximate proportion-
ality between µS and µB . This balancing of the strangeness
in turn leads to a small bias toward positive net charge and
µQ must therefore be correspondingly negative. Although the
resulting value is also approximately proportional to µB , the
absolute value is rather small and one might for most purposes
simply take µQ to be zero.

In our spinodal scenario the value of S0 is sampled at
the plasma stage and then canonically conserved though the
hadronization process. Each plasma blob has the volume Vq

(usually taken to be 50 fm3) and its strangeness content is
determined by sampling ν and ν̄ at the plasma temperature
Tq , which is either taken to be equal to T0 (= 170 MeV) or
to equal the hadronic freeze-out temperature Th(µB), which
should provide approximate upper and lower bounds. At
µB = 0, where Tq = 170 MeV, the width of the strangeness
distribution in such a blob is σS0 = 5.74. If we take Tq = Th,
the distribution will grow narrower as µB is increased and
at µB = 400 MeV, where the temperature has decreased to
150 MeV, we have σS0 = 4.65.

The blob then expands until the freeze-out volume Vh =
χVq is reached. (Guided by rough approximations to the equa-
tion of state, we usually employ an expansion factor of χ = 3,
i.e., Vh = 150 fm3.) At this point, the blob has transformed
itself into an assembly of hadrons whose abundances are
assumed to be governed by the canonical distribution Eq. (15)
associated with the particular value of S0, and the modified
chemical potentials µ′

B(S0) and µ′
Q(S0) [see Eq. (10)] that

have been adjusted for each particular blob strangeness S0

to ensure matching of the corresponding biased baryon and
charge contents, as explained earlier.

A. Kaon multiplicity distributions

We first discuss the results for the charged kaon multiplicity
distributions. Figure 2 shows the resulting average K±
multiplicities for three different scenarios. The first scenario
is the usual global grand-canonical treatment (see above),
whereas the second is our spinodal scenario in which the
blob strangeness is determined at the plasma stage and then
kept fixed during the hadronization. Both of these scenarios
consider all possible values of S0 but while the distribution of
this quantity is determined at the hadronic freeze-out in the
former, it is determined already in the plasma in the latter. In
the third “restricted canonical” scenario the blob strangeness
is always required to vanish, S0 = 0.

The various scenarios lead to rather similar results. The K−
multiplicity decreases steadily as a result of the strangeness
balancing explained above, whereas the K+ yield initially
increases, for the same reason, but then, as the freeze-out
temperature Th(µB) begins to decrease noticeably, the overall
hadron production decreases, thus yielding a decreasing
behavior of the K+ curve. Generally, the average multiplicities
are affected very little by the blob formation, relative to
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FIG. 2. (Color online) The average K± multiplicities as functions
of the baryon chemical potential µB in three scenarios: (a) the standard
grand-canonical treatment where the hadronic freeze-out occurs in the
volume Vh at the temperature Th(µB ), (b) our spinodal treatment in
which the blob strangeness S0 is sampled in the plasma volume Vq

at the temperature Tq = T0 and then conserved through the hadronic
freeze-out, and (c) the restricted canonical treatment admitting only
S0 = 0.

the grand-canonical treatment, and the spinodal results are
therefore omitted for K−, while only the results for Tq = T0

are shown for K+. These exhibit a progressively increasing
enhancement that amount to 2% at µB = 400 MeV. By
contrast, for the restricted scenario, where only blobs having
S0 = 0 are admitted, there is a reduction in the averages by a
few percentages for all µB .

The picture changes when the multiplicity fluctuations are
considered, as illustrated in Fig. 3, where the corresponding
multiplicity variances are shown for the positive kaons. While
the overall behavior is qualitatively similar to the behavior of
the averages, there are several important differences. First,
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FIG. 3. (Color online) The variance in the K+ multiplicity as
functions of the baryon chemical potential µB for the various
scenarios considered in Fig. 2, using either T0 or Th for the plasma
temperature Tq in the spinodal scenario.
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in the restricted scenario (where only S0 = 0 is included)
the suppression of the variance is significantly larger than
was the case for the average, amounting here to 8–10%.
Furthermore, at the larger values of µB , where the net baryon
density becomes significant, the grand-canonical variance
suffers more from the decreasing temperature than the spinodal
variance. This important divergence is a result of the fact that
the larger average baryon number implies a correspondingly
larger baryon-number variance as well and therefore also a
larger variance in the strangeness (because strangeness in
the plasma is carried exclusively by quarks and antiquarks
that also carry baryon number). Most importantly, there is a
significant dependence on the employed plasma temperature
Tq . To illustrate this effect, we show results for two extreme
values, namely Tq = T0 = 170 MeV and Tq = Th(µB), and for
these the difference amounts to 10% at µB = 400 MeV.

B. Multiplicity ratios

From the experimental perspective, it is more convenient
to consider multiplicity ratios, and we therefore show in
Fig. 4 the average K+/π+ and K−/π− ratios, for the same
three scenarios. When µB is positive there is a preference for
K+ over K− and hence K+/π+ will increase while K−/π−
decreases. This behavior is practically linear because the sup-
pression from the decreasing temperature affects all hadrons
species. Because there is a (small) tendency for the π and K
multiplicities to vary in concert, the difference between the
various scenarios is reduced. In particular, there is hardly any
difference to be seen for the K−/π− ratio.

We now turn to the corresponding variances. Because the
variance of the K/π ratio decreases in inverse proportion to
the size of the system, it is convenient to multiply by the mean
pion multiplicity and thus obtain a result that approaches a
constant for large volumes, 〈π±〉σ 2(K±/π±). The resulting
results for the positively charged hadrons are shown in Fig. 5.
They are qualitatively similar to those for 〈K±/π±〉 (Fig. 4).
But although variances in the ratios are less sensitive to the
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FIG. 4. (Color online) The average value of the K/π ratio for
either positive (increasing) or negative charges (decreasing) for the
three scenarios considered in Figs. 2 and 3.
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FIG. 5. (Color online) The normalized variance in the K/π ratio
for either positive (increasing) or negative charges (decreasing) for
the three scenarios considered in Figs. 2 and 3. The variances have
been multiplied by the corresponding average pion multiplicity to
make the result scale invariant.

specific scenario than the kaon variances themselves (Fig. 3),
the differences are still clearly brought out. Furthermore, as
expected from Fig. 3, an increase of the plasma temperature Tq

increases the resulting values. The fluctuations in the K+/π+
ratio may thus offer a suitable observable that is sensitive to
a clumping-induced trapping of strangeness in the expanding
matter prior to the hadronization.

C. Dependence on the expansion factor

The above results have been obtained for a given expansion
factor χ ≡ Vh/Vq = 3. This value should be taken only as
a rough approximation to what might actually happen and
because the results are sensitive to this parameter it is of
interest to consider also other degrees of expansion. This
aspect is illustrated in Fig. 6, where the average of the K+/π+
ratio and its variance (normalized by 〈π+〉) are shown as a
function of χ for µB = 300 MeV. Since we keep the hadronic
freeze-out volume equal to Vh = 150 fm3 to facilitate the
comparisons, a larger expansion factor χ implies a smaller
plasma volume Vq . Because both averages and variances are
proportional to volume, a smaller Vq shrinks the distribution
of the blob strangeness S0 (so it has smaller mean and
variance). Consequently, the resulting values 〈K+/π+〉 and
〈π+〉σ 2(K+/π±) are decreasing functions of χ . However, this
dependence is not dramatic: A doubling of χ from 2 to 4
reduces the average ratio by less than 2% and the normalized
variance by less than 10%.

It is important to recognize that there are two opposing
effects: One is the basic fact there are more degrees of freedom
in the deconfined plasma phase than in the confined hadron gas,
which enhances the fluctuations. (At T = T0 and µB = 0 we
have ζs ≈ 0.33 Vq , whereas ζS=±1 ≈ 0.081 Vh, so the effective
degeneracy of the plasma is approximately 4 times larger than
that of the hadron gas, which would then be compensated
with an expansion factor of χ ≈ 4, as indeed borne out by
the calculation.) However, as χ is increased from unity, this
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FIG. 6. (Color online) The average of the K+/π+ ratio (left) and its variance multiplied by the mean π+ multiplicity (right) as obtained at
µB = 300 MeV for the scenarios considered in Fig. 5, shown as a function of the volume expansion factor χ = Vh/Vq .

advantage is being steadily offset by the ever larger volume
of the freeze-out configuration, Vh = χVq . The crossover
happens to occur at χ ≈ 3.3, a value rather near our adopted
estimate, χ = 3. Should it turn out that there is less change in
volume from the formation of the plasma blob to the hadronic
freeze-out, then the relative effect of the strangeness trapping
will be considerably larger. For example, if χ were only 10%
smaller, the effect would be about twice as large.

D. Effect of source mixing

The above studies have considered only the hadrons result-
ing from a single blob which, presumably, populate a certain
limited kinematical region centered around the velocity of the
original blob [11]. However, even if a spinodal decomposition
into kinematically separated blobs were to occur, it would
not be experimentally feasible to restrict the measurement to
include only those hadrons resulting from a single blob. Rather,
one should generally expect that a given detection acceptance
will admit hadrons originating from more than one single blob.
Thus one needs to address the fact that a mixing of hadrons
from different sources will degrade the strangeness-trapping
signal.

To elucidate this practically important feature, we calculate
the production from several different blobs and combine the
resulting hadrons into a single “event” before performing the
analysis. The resulting variance in the K/π ratio (multiplied
by the mean π+ multiplicity) is shown in Fig. 7 as a function
of the number of blobs whose products have been combined.
Although the value drops by about a factor of 2 when going
from a single blobs to two combined blobs, it subsequently
stabilizes and quickly approaches a constant as ever more
blobs are combined. Furthermore, the relative increase when
going from the standard grand-canonical scenario one of our
spinodal scenarios remains nearly unaffected by the numbers
of blobs combined in the analysis. This result indicates that the
suggested signal of the strangeness trapping is robust against
the inevitable source mixing and, consequently, it may in fact
be practically observable.

E. Global strangeness conservation

We finally analyze in some detail the role played by the
overall conservation of strangeness in each event.

In the above studies, we have treated the strangeness in
a given plasma blob as a grand-canonical variable, which
is well justified when the blob volume forms only a small
part of the total system. To investigate the quality of this
approximation, we consider the effect of constraining the
combined strangeness of N individual blobs to zero. The
corresponding canonical partition function for the combined
system is then

Z (1···N)
0 =

N∏
i=1


∑

Si

Z (i)
Si


 δS1+...+SN ,0, (26)

where Z (i)
Si

is the canonical partition function for blob i
having the strangeness Si . For simplicity, we shall assume
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FIG. 7. (Color online) The effect of combining the hadrons from
several separate plasma blobs before extracting the variance of the
K+/π+ ratio, for the three different treatments. (For these results we
used an expansion ratio of χ = 2.)
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that all N blobs are similar (as we have done above). First,
to obtain the correlated distribution of the blob strangenesses
(S1, . . . , SN ), we consider the problem at the plasma level
where Z0 = I0(2Nζs). We then find the following:

P0(S1, . . . , SN ) = δS1+···+SN ,0

I0(2Nζs)

N∏
i=1

[ISi
(2ζs)]. (27)

as described in more detail in Appendix C.
To bring out the effect of the global strangeness constraint,

we consider the multiplicity of a particular strange hadron κ

resulting from the combined observation of some of the blobs,
say those labeled 1, · · · , N ′, i.e., nκ = n(1)

κ + · · · + n(N ′)
κ ,

where n(i)
κ is the multiplicity contributed by the blob i. If all

the blobs are similar, the average multiplicity is of the form

〈nκ〉 = N ′nave
κ (N ), (28)

where nave
κ (N ) is the average multiplicity arising from any

single blob. Furthermore, the variance in the total multiplicity
nκ has the following form,

σ 2
κ = N ′

[
σ var

κ (N ) + N ′ − 1

N − 1
σ cov

κ (N )

]
, (29)

where σ var
κ (N ) is the variance in multiplicity from any single

source and σ cov
κ (N ) is the covariance between the multiplicity

from any one source and the combined multiplicity from the
all the other N − 1 sources. The overall restriction of the total
strangeness to zero reduces the individual multiplicities {n(i)

κ },
leading to smaller values of both nave

κ and σ var
κ . Furthermore,

a higher-than-average strangeness in one blob introduces a
bias toward lower-than-average values in the others, in that
particular “event,” thus producing an anticorrelation among
the individual strangeness values {Sn}. This in turn leads to
negative covariances, σ cov

κ < 0.
To illustrate these effects, we consider the production of

positive kaons and show in Fig. 8 the dependence of the
coefficients nave, σ var, and σ cov on N, the total number of
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FIG. 8. (Color online) The dependence of the coefficients
nave, σ var, σ cov on the total number of blobs that are subject to the
global strangeness constraint, Stot =0, for K+ in a scenario having
µB = 300 MeV, Tq = T0, and χ = 2, as in Fig. 7.

blobs that are subject to the global constraint. (We may
here employ either analytical recursion relations or statistical
simulation, as discussed in Appendix C.) For N =1 the
strangeness of each blob must vanish and we obtain the
restricted canonical scenario considered earlier. In the opposite
extreme, N → ∞, the global constraint becomes ineffective
and the standard grand-canonical scenario is recovered. To a
good approximation, the deviations of the coefficients from
their grand-canonical values are inversely proportional to N,
for example,

σ var
κ (N ) ≈ σ var

κ (∞) + 1

N

[
σ var

κ (1) − σ var
κ (∞)

]
. (30)

One may then readily judge the effect for a given N on the
basis of the change in going from N = ∞ to N =1. For
the average number of K+ emitted by each blob, nave, this
drop is only about 4.5% (2.5%), whereas it amounts to 25%
(16%) for the corresponding variance, σ var (the numbers in
paranthesis refer to χ = 3). This behavior may be contrasted
with the approximate constancy of σ var + σ cov, the variance
of the total K+ multiplicity divided by N, which decreases by
only 4% (2%) when going from N  1 to N =1. These results
illustrate the fact that the variance in the total multiplicity is
always smaller than the corresponding mean when the system
is subject to a canonical constraint.

Figure 9 illustrates the dependence of the canonical effect
on the ratio N ′/N by displaying the ratio of the variance to
the mean for the K+ multiplicity resulting from a combined
system of N blobs of which N ′ are being observed. For any
given value of the expansion ratio χ = Vh/Vq , which governs
the effective statistical weight of the plasma relative to that
of the hadron gas, the change from the limit where only
a small fraction of the combined system is being observed
to the situation when all the kaons are collected is seen to
follow a universal curve that is linear in N ′/N , to a very good
aproximation.
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FIG. 9. (Color online) The ratio of the variance to the mean for
the K+ multiplicity resulting from a combined system of N blobs of
which N ′ are being observed, plotted as a function of N ′/N . These
results were obtained for µB = 300 MeV and Tq = T0 with either
χ = 2 (upper curve) or χ = 3 (lower curve).
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FIG. 10. The variance of the K+/π+ ratio for a single blob,
multiplied by the mean π+ multiplicity, when the combined net
strangeness of N blobs is required to vanish. These results were
obtained for µB = 300 MeV and Tq = T0 with either χ = 2 (upper
curve) or χ = 3 (lower curve), as in Fig. 9.

The corresponding effect on the fluctuations of the
K/π ratio is illustrated in Fig. 10. It shows the value of
〈π+〉σ 2(K+/π+) obtained for the hadrons emitted from a
single blob when N such blobs satisfy a combined canoncial
constraint on their total strangeness contents, Stot = 0. The
canonical constraint is obviously most effective in the extreme
case of a single blob, N =1, where it is identical to the
restricted scenario in which only S0 = 0 is allowed for each
individual blob (bottom curve in Fig. 7). As more blobs share
the burden of the constraint, its effect rapidly diminishes
and the results approach those of our standard spinodal
scenario, where the strangeness of each individual plasma
blob is determined grand-canonically (top curve in Fig. 7);
this approach occurs approximately as ∼1/N . Thus already
at N ≈ 5 the effect is hardly significant. Consequently, if a
given blob represents less than 20% of the total system, the
vanishing of the overall strangeness should have no noticeable
effect on the observables considered here.

V. CONCLUDING DISCUSSION

Most observables considered so far in high-energy col-
lision experiments behave rather smoothly as functions of
the control parameters, such as bombarding energy and
centrality. However, preliminary data analysis of fixed-target
experiments at the SPS by the NA49 collaboration [7] have
revealed two intriguing exceptions. First, there appears to
be a significant enhancement of the K/π ratio at beam
energies of 20–30A GeV. Second, in the same energy range,
the fluctuation of this ratio (expressed relative to mixed events)
is strongly enhanced [19]. Both enhancements are localized
within about 10A GeV in beam energy. Though otherwise
rather successful in describing the hadron yields, statistical
models cannot reproduce the observed energy dependence
of these enhancements [19,20]. Nor does a hadron gas and

its resonance-induced correlations account for the strong
enhancement in the ratio fluctuations [21,22]. One might then
wonder whether these strong fluctuations might result from
the enhanced fluctuations associated with a second-order phase
transition [5]. However, if this were the case, one would expect
particularly strong fluctuations in the pions. However, while
the fluctuations of the K/π ratio are observed to be enhanced,
those of the p/π ratio follow the expectations from transport
models [23].

If the statistical models [15] indeed provide reasonable
estimates for the relation between beam energy and the thermo-
dynamic parameters characterizing the chemical freeze-out,
i.e., the temperature and the chemical potentials, then the
anomalous behavior reported by NA49 would be consistent
with a first-order phase transition having occurred prior to the
chemical freeze-out, at a somewhat higher temperature and
about the same chemical potential. To evaluate the plausibility
of such a speculation, we have in this article studied the effects
on yields and fluctuations if the bulk of the system indeed
undergoes a spinodal-like breakup as it hadronizes. The key
physical effect is then that the amount of strangeness residing
within the plasma that forms a given blob remains effectively
trapped, thus imposing a canoncial strangeness constraint on
its conversion into hadrons.

Considering idealized scenarios in which an equilibrated
plasma forms a number of separate blobs that subsequently
expand and hadronize independently, we have developed the
relevant statistical tools. These results may be of general
applicability. With a view toward the specific observations
at the SPS, we have studied the production of pions and kaons
in such a scenario relative to the standard picture in which
statistical equilibrium is maintained through freeze-out. While
the average hadron yields are essentially unaffected by the
breakup, the fluctuations in the strange-particle multiplicities
are significantly enhanced, especially at larger values of the
chemical potential. From the experimental perspective, the
yield ratios are particularly interesting and we have especially
studied the K/π ratio. Depending on the degree of expansion
during the stage of strangeness trapping, the fluctuations
in the K+/π+ ratio can be enhanced significantly (of the
order of 10%) relative to the standard scenario where global
equilibrium is maintained.

Thus, the present (rather idealized) studies suggest that a
spinodal decomposition might indeed lead to enhancements
of the magnitude observed by NA49. However, before such
a conclusion could be made with confidence, further studies
would be required. In particular, both strong resonance decays
and weak decays must be taken into account. Moreover, the en-
hancement of the K/π fluctuations should be correlated with
other expected effects, such as N-body kinematic correlations
[11]. Of particular interest are more precise calculations of the
equation of state in the relevant baryon-rich environments, to
better ascertain the location of the expected phase coexistence
region, as well as refined calculations of the collision dynamics
to determine whether the spinodal region is in fact likely
to be encountered and, if so, to what degree the phase
decomposition may actually develop. We hope that the present
findings will provide added incentive for these challenging
undertakings.
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APPENDIX A

Canonical fermions

We discuss here the canonical treatment of fermions, in
which the total number of quanta present is kept fixed to a given
value N0 (the number of particles). The appropriate partition
function is then

ZN0 (β) =
∏

i


 1∑

ni=0

e−βniεi


 δ

(∑
i

ni − N0

)

=
∑
{ni }N0

e−βE{ni }, E{ni} =
∑

i

niεi . (A1)

Here ni is the number of quanta present in the particular
“single-particle” state i of energy εi . Furthermore, {ni}N0

denotes the subset of all configurations {ni} whose total
particle number is constrained to be equal to the specified
value N0, N{ni} ≡ ∑

i ni
.= N0. The fermionic restriction on

n to be at most one complicates the evaluation of the partition
function. However, it is possible to derive the following
recursion relation,

ZF
N (β) = 1

N

N∑
n=1

(−)n−1ZF
N−n(β)ZF

1 (nβ), (A2)

with ZF
0 (β) = 1. N can be readily sampled numerically on

the basis of P (N ) = ZN/Z , where ZF = ∑
N� 0 ZF

N is the
grand-canonical partition function.

One way to derive the above recursion relation reorganizes
the basic expression for ZN ,

ZN =
∑

i1<i2<···<iN

eai1 +ai2 +···+aiN (A3)

= 1

N !

∑
i1 
=i2 
=···
=iN

eai1 +ai2 +···+aiN , (A4)

where ai ≡ −βεi and no indices may be equal in the second
sum. With ζn ≡ Z1(nβ), the first few terms are as follows:

Z2= 1

2!

∑
i 
=j

eai+aj = 1

2


∑

ij

eai+aj −
∑

i

e2ai




= 1

2

[
Z1(β)2 − Z1(2β)

] = 1

2
[Z1ζ1 − Z0ζ2] , (A5)

Z3= 1

3!

∑
i 
=j 
=k

eai+aj +ak = 1

3!


∑

ijk

eai+aj +ak − · · ·



= 1

3
[Z2ζ1 − Z1ζ2 + Z0ζ3], (A6)

The first term is the classical limit, ZN = ZN
1 /N ! + · · ·.

Another approach starts from the expansion of lnZ ,

lnZ =
∑

i

ln[1 + e−βεi ] =
∑

i

∑
n� 0

(−)n−1 1

n
e−nβεi

=
∑
n� 0

(−)n−1 1

n
ζn = ζ1 − 1

2
ζ2 + 1

3
ζ3 + · · · , (A7)

then exponentiates lnZ = [ζ1 − 1
2ζ2 + 1

3ζ3 + · · ·],

Z = e[ · ] =
∑
N� 0

1

N !
[ · ]N

= 1 + [ · ]
{
1 + 1

2 [ · ]
[
1 + 1

3 [ · ]
(
1 + 1

4 [ · ](1 + · · ·))]},
(A8)

and finally reorganizes the series in powers of eβε ,

Z =
∑
N� 0

ZN = 1 + ζ1 + 1
2

[
ζ 2

1 − ζ2
]︸ ︷︷ ︸

Z2

+ 1
3

[
1
2 (ζ 2

1 − ζ2)︸ ︷︷ ︸
Z2

ζ1 − ζ1ζ2 + ζ3
]+ · · · . (A9)

1. Degeneracy and volume

The above derivations have been made for nongenerate
systems, g = 1. In the general case, when g > 1, the situation
is more complicated because a given energy level may
accommodate up to g quanta. There is then no simple relation
between Z[g = 1] and Z ′ ≡ Z[g > 1]. However, using the
above expansion [Eq. (A7)] of lnZ in terms of ζn we find

lnZ ′ = g
∑

i

ln[1 + e−βεi ] = · · · = ζ ′
1 − 1

2
ζ ′

2 + 1

3
ζ ′

3 + · · · ,
(A10)

where ζ ′
n ≡ gζn = gZ1(nβ). The partition function may thus

be obtained by replacing ζn by ζ ′
n = gζn in the above

procedure,

Z ′ =
∑
N

Z ′
N, Z ′

N = ZN {ζn → ζ ′
n = gζn}. (A11)

Consequently, the recursion relation takes the form,

Z ′
N = 1

N

N∑
n=1

(−)n−1Z ′
N−nζ

′
n, Z0 = 1, (A12)

with ζ ′
n ≡ gζn = g

∑
i e

−nβεi , and Z ′
N becomes an N th order

polynomial in the degeneracy g,

Z ′
0 = 1,Z ′

1 = gζ1,Z ′
2 = 1

2g2ζ 2
1 − 1

2gζ2, (A13)

Z ′
3 = 1

6g3ζ 3
1 − 1

2g2ζ1ζ2 + 1
3gζ3, . . . . (A14)

We note that the dependence on the volume V is similar to the
dependence on the degeneracy g, since both enter as overall
factors in the elementary partition functions, ζn ∼ gV .

2. Multiplicity distribution

The mean multiplicity is enhanced/reduced for bosons/
fermions,

〈N〉 = 1

Z
∑
N

NZN = g

2π2

V T 3

h̄3c3

∑
n>0

(±)n−1 1

n3
K̃2

(nm

T

)
=
∑
n>0

(±)n−1ζn = ζ1 ± ζ2 + · · · , (A15)
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and so is the corresponding multiplicity variance,

σ 2
N = g

2π2

V T 3

h̄3c3

∑
n>0

(±)n−1 1

n2
K̃2

(nm

T

)
=
∑
n>0

(±)n−1nζn = ζ1 ± 2ζ2 + 3ζ3 ± · · · , (A16)

and both are strictly proportional to both the volume V and the
degeneracy g, because ζn ∼ gV , as just noted above.

3. Chemical potentials

The above results apply in the absence of a chemical
potential. The presence of a chemical potential effectively re-
places the energy εi by a shifted value εi − µ and consequently
all the manipulations can be carried through as above. So, with

ζn(α, β) ≡ ζ ◦
n (β) e−αn, ζ ◦

n (β) ≡ Z1(nβ) =
∑

i

e−nβεi ,

(A17)
we see that all the terms in ZN contain the same power of the
fugacity e−α and we find

ZN (α, β) = ◦
ZN { ◦

ζ (nβ)} e−αN . (A18)

However, the multiplicity moments have a complicated α

dependence,

〈N〉 = ζ ◦
1 e−α ± ζ ◦

2 e−2α + ζ ◦
3 e−3α ± · · · , (A19)

σ 2
N = ζ ◦

1 e−α ± 2ζ ◦
2 e−2α + 3ζ ◦

3 e−3α ± · · · . (A20)

Furthermore, the corresponding expressions for the associated
antiparticle are

〈N̄〉 = ζ ◦
1 e+α ± ζ ◦

2 e+2α + ζ ◦
3 e+3α ± · · · , (A21)

σ 2
N̄

= ζ ◦
1 e+α ± 2ζ ◦

2 e+2α + 3ζ ◦
3 e+3α ± · · · . (A22)

In the case of a plasma blob, which has no strangeness bias,
the distributions of N and N̄ must be identical. Consequently,
in that situation, we must have α = 0. Thus, if the s and s̄

quarks are embedded in an environment where µB (and/or µQ)
have finite values, a strangeness symmetric distribution can be
established by adjusting µS appropriately: µS = 1

3 (µB − µQ)
(since Bs = 1

3 ,Qs = − 1
3 , and Ss = − 1

3 ).
It may seem odd to introduce a chemical potential within

the context of a canonical treatment, but a given scenario
may well require a canonical treatment with respect to one
attribute (e.g., strangeness), while a grand-canonical treatment
suffices with respect to another (e.g., baryon number). Of
course, as the above analysis brings out, the consideration
of several attributes is relevant only when the system contains
several species that combine the attributes differently. (The
inherent correlation between baryon number and strangeness
in the quark-gluon plasma was recently proposed as a useful
diagnostic for strongly interacting matter [24].)

APPENDIX B

General statistical treatment of strange hadrons

We derive here the expressions needed for the general (clas-
sical) statistical treatment of a gas of hadrons characterized
by a temperature T and chemical potentials for baryons and

electric charge, µB and µQ, with its total strangeness S0 being
kept fixed. The strategy will be to group the strange hadrons
species {κ} together according to their strangeness Sκ and then
build up the complete partition function by pairwise inclusion
of classes having opposite value of their strangeness.

1. Generic multiplicities

The one-particle partition function for a given strange
hadronic specie κ is given by

ζκ (T ,µB,µQ) = ζ ◦
κ (T )e(µBBκ+µQQκ )/T , (B1)

where its value for vanishing chemical potentials is

ζ ◦
κ (T ) = gκ

2π2

V T 3

h̄3c3

(
mκc

2

T

)2

K2

(
mκc

2

T

)
. (B2)

The effective one-particle partition function for a class of
hadrons having a common strangeness S is then

ζS(T ,µB,µQ) =
∑

κ

δSκ ,Sζκ (T ,µB,µQ)

=
∑

κ

δSκ ,Sζ
◦
κ (T ) e(µBBκ+µQQκ )/T , (B3)

which generally differs from ζ−S . The number of hadrons
having the strangeness S in a given system is denoted by
NS and the probability that such a hadron belongs to the
particular specie κ is given by ζκ/ζS . The associated first and
second multiplicity moments are then 〈nκ ′ 〉 = 〈NS ′ 〉ζκ ′/ζS ′ and
〈nκ ′nκ ′′ 〉 = 〈NS ′NS ′′ 〉ζκ ′ζκ ′′/ζS ′ζS ′′ . We may therefore concen-
trate on finding the generic multiplicities {NS}.

We first combine two conjugate classes {+S} and {−S} to
form the class {±S}. The partition function for the resulting
combined system of hadrons having Sκ = ±S is then

Z {±S}
S0

=
∑

N+S ,N−S

ζ
N+S

+S

N+S!

ζ
N−S

−S

N−S!
δ(N+S−N−S )S,S0

=
(

ζ+S

ζ−S

) 1
2 S0

IS0 (2ζ0), (B4)

where N±S � 0 denotes the number of hadrons having the
strangeness Sκ = ±S and ζ 2

0 = ζ+Sζ−S . We note that Z {±S}
S0

and the corresponding multiplicity moments vanish unless S0

is a multiple of S, i.e., S0 = 0,±S,±2S, . . . . The factorial
multiplicity moments can also readily be obtained,

〈N+S(N+S − 1) . . . (N+S − m + 1)〉{±S}
S0

= ζm
+S

(
ζ−S

ζ+S

) 1
2 mS

IS0−mS(2ζ0)

IS0 (2ζ0)
. (B5)

Furthermore, the mixed multiplicity moments can be obtained
by use of the constraint (N+S − N−S)S = S0.

These relations provide a complete treatment of one
pair of conjugate classes. Imagine now that we have thus
obtained the partition functions Z {±S}

S0
and the corresponding

multiplicity moments 〈Nm
±S〉{±S}

S0
for |S| = 1, 2, 3. The classes

{±S} may then be combined recursively. Thus, combining
first {±1} with {±2}, we find the partition function for
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the combined ensemble {±1,±2},
Z {±1,±2}

S0
=

∑
S2=0,±2,...

Z {±1}
S0−S2

Z {±2}
S2

, (B6)

where S0 is the specified total strangeness. It follows that if
we have a self-conjugate system (i.e., for each hadron specie κ

included, the corresponding antispecie κ̄ is also included) with
strangeness Sκ = ±1,±2 and whose total strangeness is S0,
then the probability that those with Sκ = ±1 have a combined
strangeness of S ′ is given by

P
{±1,±2}
S0

(S{±1} = S ′) = Z {±1}
S ′ Z {±2}

S0−S ′
/
Z {±1,±2}

S0
, (B7)

which vanishes unless S0 − S ′ is even. Consequently, after the
classes {±1} and {±2} have been combined, the multiplicity
moments for hadrons with Sκ = ±1 are〈
Nm

S=±1

〉{±1,±2}
S0

= (
Z {±1,±2}

S0

)−1

×
∑

S ′=S0,S0±2,...

Z {±1}
S ′ Z {±2}

S0−S ′
〈
Nm

S=±1

〉{±1}
S ′ , (B8)

whereas those for hadrons with Sκ = ±2 are〈
Nm

S=±2

〉{±1,±2}
S0

= (
Z {±1,±2}

S0

)−1

×
∑

S2=0,±2,±4,...

Z {±1}
S0−S2

Z {±2}
S2

〈
Nm

S=±2

〉{±2}
S2

. (B9)

Similar expressions hold for the mixed moments, e.g.,

〈N−1N+1〉{±1,±2}
S0

= (
Z {±1,±2}

S0

)−1

×
∑

S ′=S0,S0±2,...

Z {±1}
S ′ Z {±2}

S0−S ′ 〈N−1N+1〉{±1}
S ′ .

(B10)

It is straightforward to verify the following sum rule
expressing strangeness conservation,∑

S=±1,±2

〈NS〉{±1,±2}
S0

S = S0. (B11)

We note that the above recursion scheme holds even if there
are no hadrons with S = ±2. In that case, the corresponding
effective partition functions vanish, ζ±2 = 0, and, as noted
earlier, the combined partition function is unity for S0 = 0
and vanishes otherwise, Z {±2}

S0
= δS0,0. As a consequence, the

combined partition function remains unchanged by the incor-
poration of S = ±2,Z {±1,±2}

S0
= Z {±1}

S0
, and the multiplicity

moments remain unchanged as well.
Further conjugate strangeness classes may be incorporated

analogously. Thus, the inclusion of S = ±3 yields the follow-
ing partition function for {±1,±2,±3},

Z {±1,±2,±3}
S0

=
∑

S3=0,±3,

Z {±1,±2}
S0−S3

Z {±3}
S3

, (B12)

and the generic multiplicity moments are given by〈
Nm

S=±1

〉{±1,±2,±3}
S0

= (
Z {±1,±2,±3}

S0

)−1

×
∑

S ′=S0,S0±3,...

Z {±1,±2}
S ′ Z {±3}

S0−S ′
〈
Nm

S=±1

〉{±1,±2}
S ′ , (B13)

〈
Nm

S=±2

〉{±1,±2,±3}
S0

= (
Z {±1,±2,±3}

S0

)−1

×
∑

S ′=S0,S0±3,...

Z {±1,±2}
S ′ Z {±3}

S0−S ′
〈
Nm

S=±2

〉{±1,±2}
S ′ , (B14)

〈
Nm

S=±3

〉{±1,±2,±3}
S0

= (
Z {±1,±2,±3}

S0

)−1

×
∑

S3=0,±3,±6,...

Z {±1,±2}
S0−S3

Z {±3}
S3

〈
Nm

S=±3

〉{±3}
S3

. (B15)

and the sum rule becomes∑
S=±1,±2,±3

〈NS〉{±1,±2,±3}
S0

S = S0. (B16)

Recursion expressions for the correlations between the generic
multiplicities can be obtained in a similar manner. For example,
the correlations between N−1 and N+1 follow from the
corresponding mixed moment,

〈N−1N+1〉{±1,±2,±3}
S0

= (
Z {±1,±2,±3}

S0

)−1

×
∑

S ′=S0,S0±3,...

Z {±1,±2}
S ′ Z {±3}

S0−S ′ 〈N−1N+1〉{±1,±2}
S ′ . (B17)

This procedure readily generalizes to the combination of any
number of self-conjugate classes.

2. Individual hadron species

The above treatment allows us to determine the canonical
moments of the generic hadron multiplicities {NS} in any
blob with a specified strangeness S0. We now consider the
multiplicities of the individual hadron species.

For a given value of S0, the mean number of a particular
species κ ′ is given by

〈nκ ′ 〉S0 = 1

ZS0

∏
κ


∑

nκ � 0

ζ nκ
κ

nκ !


nκ ′δ

(∑
κ

Sκnκ − S0

)
, (B18)

and the correlation between the multiplicities of any two
species κ ′ and κ ′′ is given by a similar expression with nκ ′

replaced by nκ ′nκ ′′ . To use these expressions with the above
expressions for the generic multiplicities {NS}, which no
longer contain the individual species multiplicities {nκ}, we
note that the probability that a generic hadron of strangeness
S = Sκ is of a particular specie κ is given by pκ ≡ ζκ/ζSκ

.
Consequently,

〈nκ ′ 〉S0 = pκ ′
〈
NSκ′

〉
S0

. (B19)

The second multiplicity moments are more complicated
to obtain, because they receive contributions both from the
correlated internal multiplicity fluctuations within the separate
S classes characterized by each particular generic multiplicity
set {NS} and from the correlated fluctuations of these generic
multiplicities. It is convenient to introduce the correlation
coefficient σκ ′κ ′′ ≡ δS ′S ′′ pκ ′ (δκ ′κ ′′ − pκ ′′) that expresses the
degree of correlation between two species in the same
strangeness class. Thus it vanishes if S ′ 
= S ′′. When S ′ = S ′′
we have σκ ′κ ′′ = −pκ ′pκ ′′ when the two species differ, κ ′ 
= κ ′′,
whereas σκ ′κ ′′ = pκ ′qκ ′ when κ ′ = κ ′′, where pκ ′ ≡ ζκ ′/ζS ′ is
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the probability that a hadron of the class S ′ belongs to the
specie κ ′ and qκ ′ ≡ 1 − pκ ′ is its complement. We then find

〈nκ ′nκ ′′ 〉S0 = pκ ′pκ ′′ 〈NS ′NS ′′ 〉S0 + δS ′S ′′ 〈NS ′ 〉S0σκ ′κ ′′ . (B20)

The multiplicity covariances then involve both the intraclass
correlations σN ′N ′′ and the interclass correlations σn′n′′ =
δS ′S ′′ 〈N ′〉S0σκ ′κ ′′ ,

σS0
nκ′ nκ′′ ≡ 〈nκ ′nκ ′′ 〉S0 − 〈nκ ′ 〉S0〈nκ ′′ 〉S0

= pκ ′pκ ′′σN ′N ′′ + δS ′S ′′ 〈N ′〉S0σκ ′κ ′′ . (B21)

The above expressions allow us to evaluate the average
multiplicities of individual hadron species as well as the
associated (co-)variances, for any given value of the fixed
strangeness of the blob, S0.

APPENDIX C

Global-canonical treatment

We consider here the more complicated situation where N
individual blobs are subject to a global-canonical constraint
on their combined strangeness, Stot ≡ ∑

n Sn. We specialize to
the relevant case of Stot =0, but the treatment can readily be
adapted to any value.

Assuming, as we have throughout, that all the blobs are
similar, the joint probability for finding the combined system
with νn s quarks and ν̄n s̄ antiquarks in the blob n is then
given by

P (ν1, ν̄1; . . . ; νN ν̄N )

= 1

I0(2Nζs)

ζ ν1
s

ν1!

ζ ν̄1
s

ν̄1!
· · · ζ νN

s

νN !

ζ ν̄N
s

ν̄N !
δν1+···+νN ,ν̄1···+ν̄N

. (C1)

This expression can be used as a basis for a direct Metropolis
sampling of the individual multiplicities {νn, ν̄n}, starting for
example from {0, 0}. However, this may not be optimally
efficient, because in fact we only need to know the distribution
of the differences Sn = ν̄n − νn, which is given by

P (S1, . . . , SN ) =
N∏

n=1

[∑
νnν̄n

δν̄n−νn,Sn

]
P (ν1, ν̄1; . . . ; νN ν̄N )

= δS1+···+SN ,0

I0(2Nζs)

N∏
n=1

[∑
νnν̄n

ζ νn+ν̄n
s

νn!ν̄n!
δν̄n−νn,Sn

]

= δS1+···+SN ,0

I0(2Nζs)

N∏
n=1

[
ISn

(2ζs)
]
.

(C2)

The corresponding Metropolis sampling could then start
from {Sn} = {0}, for example, and repeatedly exchange
one unit of strangeness between two selected subsystems,
Si → S ′

i = Si ± 1 and Sj → S ′
j = Sj ∓ 1, with the corre-

sponding ratio of weights being given in terms of ra-
tios of Bessel functions of neighboring order, W ′/W =
[ISi±1(2ζs)/ISi

(2ζs)][ISj ∓1(2ζs)/ISj
(2ζs)].

A much simpler procedure is based on the fact that the
entire set of configurations {νn, ν̄n} can be organized according

to the total number of s quarks present, M (which equals the
total number of s̄ when Stot =0). The class having M = 0
contains only the empty configuration {0, 0}, whereas the class
having M = 1 has N2 members, and so on. Thus, class M has
(NM/M!)2 members, each of which has the relative weight
ζ 2M
s , and it is readily checked that the sum of weights is

I0(2Nζs), the total partition function. The expected number of
s quarks is Nζs and the most likely value of M is [Nζs]. It is easy
to sample M by a Metropolis procedure based on the weight
ratios for adjacent values of M,WM+1/WM = (Nζs/M + 1)2

and WM−1/WM = (M/Nζs)2.
Alternatively, M could be sampled directly from its an-

alytical distribution P (M) = ζ 2M
s (NM/M!)2/I0(2Nζs) in a

standard manner. Once M has been selected, it is straight-
forward to distribute the M quarks and M antiquarks randomly
among the N subsystems and thus obtain their strangenesses
as Sn = ν̄n − νn.

The above discussion brings out the fact that the total
plasma partition function can be calculated by either dis-
tributing νn quarks and ν̄n antiquarks in each subsystem n
or distributing M quarks and M̄ antiquarks anywhere within
the combined system,

N∏
n=1

[∑
νnν̄n

ζ νn
s

νn!

ζ ν̄n
s

ν̄n!

]
δν1+...+νN ,ν̄1+...+ν̄N

=
∑
MM̄

(Nζs)M

M!

(Nζs)M̄

M̄!
δM,M̄ = I0(2Nζs). (C3)

In any case, once the individual blob strangenesses {Sn}
have been selected, the various hadron multiplicities can be
sampled as in the standard case discussed in Appendix B. It
is thus possible, in this manner, to make a complete statistical
sampling of the combined system and then perform any
analysis of interest.

However, such a full similation is not always necessary. In
particular, as is often the case, when the quantities of interest
can be expressed in terms of first and second moments of
the multiplicity distributions of specified hadron species, it is
possible to employ recursion relations in analogy with those
derived in Appendix B for {〈n(i)

κ 〉Si
}, the average multiplicities

of the hadron species κ emitted by the particular blob i, and the
corresponding second moments, {〈n(i)

κ n
(i)
κ ′ 〉Si

}. (This approach
can of course be extended to higher moments.)

We first note that the canonical partition function for N
blobs can be expressed recursively in terms of those for fewer
blobs. For example, with N = N ′ + (N − N ′),

IS(2Nζs) =
∑
S ′

IS ′ (2N ′ζs)IS−S ′ [2(N − N ′)ζs]. (C4)

The inclusive probability for one particular blob to have a
given strangeness can then be expressed as follows,

P
(1···N)
1 (S1) =

∑
S2···SN

P (S1, . . . , SN )

(C5)

= IS1 (2ζs)I−S1 [2(N − 1)ζs]

I0(2Nζs)
,
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while the inclusive joint probability for two given blobs to
have specified strangenesses is of the following form,

P
(1···N)
12 (S1, S2) =

∑
S3···SN

P (S1, S2, . . . , SN )

(C6)

= IS1 (2ζs)IS2 (2ζs)I−S1−S2 [2(N − 2)ζs]

I0(2Nζs)
,

It is then straightforward to express the average multiplicity
of the hadron species κ arising from a given blob,〈

n(1)
κ

〉(1···N)
0 =

∑
S1

P
(1···N)
1 (S1)

〈
n(1)

κ

〉
S1

. (C7)

A similar expression holds for the average of any power of
that multiplicity, (n(1)

κ )m. It also readily follows that the mixed
multiplicity moment for two hadron species emitted from the
same blob is〈

n(1)
κ n

(1)
κ ′
〉(1···N)
0 =

∑
S1

P
(1···N)
1 (S1)

〈
n(1)

κ n
(1)
κ ′
〉
S1

, (C8)

while the corresponding expression for emission from two
different blobs is〈

n(1)
κ n

(2)
κ ′
〉(1···N)
0 =

∑
S1S2

P
(1···N)
12 (S1, S2)

〈
n(1)

κ

〉
S1

〈
n

(2)
κ ′
〉
S2

. (C9)

These expressions allow us to use the canonical partition
functions for individual blobs obtained in Appendix B
to calculate the average multiplicities of specific hadron
species and any desired (co-)variances in terms of the cor-
responding expressions for canonical emission from a single
blob.
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