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Orientation dependence of the heavy-ion potential between two deformed nuclei
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The deformation and orientation dependence of the real part of the interaction potential is studied for two
heavy deformed nuclei using the Hamiltonian energy density approach derived from the well-known Skyrme
NN interaction with two parameter sets SIII and SkM∗. We studied the real part of the heavy ion (HI) potential
for 238U+238U pair considering quadrupole and hexadecapole deformations in both nuclei and taking into
consideration all the possible orientations, coplanar and noncoplanar, of the two interacting nuclei. We found
strong orientation dependence for the physically significant region of the HI potential. The orientation dependence
increases with adding the hexadecapole deformation. The azimuthal angle dependence is found to be strong for
some orientations. This shows that taking the two system axes in one plane produces a large error in calculating
the physical quantities.
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I. INTRODUCTION

The microscopic calculation of the nucleus-nucleus po-
tential used to describe the different nuclear reactions be-
tween heavy ions (HI) is one of the main subjects that
have great interest in theoretical heavy ion physics [1–3].
Different theoretical models have been proposed to describe
the internuclear potential such as the folding model [1,4,5],
the liquid-drop model [6], the energy density formalism
[7,8], and the proximity model [9,10]. There are different
degrees of freedom of the colliding nuclei that should be
considered for describing well the heavy ion interaction
potential. The potential between two spherically symmetric
density distributions, uniform or nonuniform, is calculated
to an acceptable accuracy by using the Fourier transform
representation within the double folding potential which is one
of the successful approaches [1,4,5,11]. The static and dynamic
deformations give rise to significant changes in both Coulomb
and nuclear energies. Due to the six-dimensional integration in
the double folding model, it is difficult to handle the permanent
static deformations of interacting nuclei. On the other hand,
including some improvements like the density-dependence
[12,13] of the effective nucleon-nucleon (NN) interaction
increases the amount of calculations and its consumed time.
In several studies, such as the coupled channel calculations
of fusion cross section or the dynamic calculations of nuclear
reactions, we needed to calculate the ion-ion potential several
times, so there is a need for fast and at the same time
accurate calculations for the potential. Many authors tried to
calculate the interacting potential between spherical-deformed
and deformed-deformed nuclear distributions [10,11,14–16]
in an approximate way. Several recent studies are made to
describe the potential between two deformed nuclei. One

∗Electronic address: wseif@yahoo.com

of the studies [10] generalized the “pocket formula” for the
proximity potential for collisions of two equal or nonequal,
axially symmetric deformed nuclei with their symmetry axes
lying in one plane. In this case the azimuthal angles of the two
symmetry axes are assumed to be zero, φ = 0◦. Authors have
mentioned that their formulas may extend to be applicable
to oriented nuclei in two different planes. Another study [15]
provided a model to obtain approximate expressions for the
Coulomb potential between two coplanar deformed nuclei with
finite diffuseness and indicated a way to calculate the nuclear
potential approximately, based on a zero range NN interaction
of Migdal type [17]. In a more recent work the authors of
Ref. [16] studied the deformation and orientation effects in
the deriving potential of a two dinuclear system model having
the symmetry axes of the two deformed nuclei lie in the same
plane.

One of the methods for calculating the ion-ion potential is
the Hamiltonian energy density formalism derived from the
realistic density-dependent effective NN interaction [18,19].
This method has been applied successfully to derive the real
part of the interaction potential between spherical-deformed
[19,20] and coplanar deformed-deformed nuclei [21]. The
Skyrme interaction is an effective NN force where parameters
are chosen to fit the saturation properties of cold nuclear matter
and to reproduce static properties such as the total binding en-
ergies and charge radii of some nuclei [22,23]. This interaction
has been used frequently in nuclear structure calculations and
the structure of the super heavy nuclei [24]. The simple form
of the Skyrme interaction [25] has considerable advantages in
nuclear structure calculations and scattering problems [18–21].
The main advantage is that its simplicity allows one to write the
Hartree-Fock energy as a functional depending only on local
densities and their gradients. The energy density formalism
derived from the Skyrme density-dependent interaction has
been used to study the orientation dependence of the real part
of the ion-ion potential between two coplanar deformed nuclei
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[21,26]. This approach derived from the conventional Skyrme
force [22] together with the extended Skyrme force [27] has
been used to study the interaction potential between several
systems [28]. The double folding model with finite range NN
force played a fundamental role in deriving the HI potential
for spherical-spherical and spherical-deformed interacting
pairs. In these two cases the six-dimensional integral can
be simplified using Fourier transform representation. When
dealing with two deformed nuclei, it is impossible to simplify
the six-dimensional integral and the problem becomes too
hard to calculate with good accuracy. The energy density
formalism derived from realistic NN interaction reduces the
six-dimensional integral appearing in the double folding model
to a three-dimensional one. Moreover, the parameters of its
NN force were adjusted to reproduce the nuclear matter
data and the binding energy of some nuclei. In the present
work we use the energy density formalism derived from the
well-known Skyrme NN force with parameter sets SIII and
SkM∗ [19,23] to study the azimuthal angle dependence of
the interaction potential between two deformed nuclei. In the
next section we describe briefly the method of calculating
the HI potential in the framework of the energy density
formalism. In Sec. III we present and discuss the ori-
entation and deformation dependence of the HI potential
between two deformed nuclei calculated using Skyrme energy
density.

II. THEORY

In the energy density approach, the real part of the ion-ion
potential as a function of the separation distance R between
the centers of the two colliding nuclei is given by [19,20]

V (R) =
∫

[H (ρ, τ ) − H1(ρ1, τ1) − H2(ρ2, τ2)]dτ, (1)

where ρi and τi, (i = 1, 2), are, respectively, the density
distributions and the kinetic energy densities of the two
separated nuclei. ρ and τ are the same quantities for the
composite system. H (ρ, τ ) is the energy density functional
for the composite system, while Hi(ρi, τi), (i = 1,2), are
the energy density functions of the two separated nuclei. In
the sudden approximation, ρ is given by ρ = ρ1 + ρ 2. The
energy density functional H (ρ, τ ) for the conventional Skyrme
interaction is given by [22]

H (ρ, τ ) = h̄2
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where n and p denote neutron and proton, respectively,
t0, x0, t1, t2, and t3 are the Skyrme parameters, Jn and Jp denote
the spin-orbit density for neutrons and protons, respectively.
In this work we used the Skyrme interaction with parameter
sets SIII and SkM∗. Their parameters are given in Refs. [19]
and [23], respectively. For Skyrme energy density of SkM∗
and SIII, the term, in Eq. (2), resulting from the three-body
interaction force has value of α = 1

6 and 1, respectively. For
SkM∗ , the energy density, H (ρ, τ ), differs than that given by
Eq. (2), it is presented in Ref. [23].

For the volume part of the kinetic energy density of the
composite system we use the Thomas-Fermi approximation
[18,19]

τ ′
j = τTF

j = 3
5 (3π2)2/3(ρ1j + ρ2j )5/3, j = n, p. (3)

The same approximation is also used for kinetic energy density
of the individual nuclei [18]

τ ′
i = τTF

i = 3
5 (3π2)2/3ρ

5/3
i , i = 1, 2. (4)

The relation between τ appearing in Eq. (2) and τ ′ is
[19]

τ = τTF + 1

3
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ρ

;
1

4
� η �

1

36
. (5)

The Thomas-Fermi term in Eq. (5) takes account of the
antisymmetrization correction in the ion-ion potential. As the
value of η increases, the HI potential becomes more attractive
in the tail region.

The matter density distribution of the two axially symmetric
deformed nuclei is assumed to be the two parameter Fermi
form

ρ(r) = ρ0

1 + e(r−R(θ))/a
, (6)

where the half density radius of this Fermi distribution is given
by

R(θ ) = R0[1 + β2Y20(θ, 0) + β4Y40(θ, 0) + . . .]. (7)

β2 and β4 are the quadruple and hexadecapole deformation
parameters, respectively, and the angle θ is measured from the
symmetry axis of the deformed nucleus. ρ0 can be determined
from the normalization condition∫

ρ(r̄)dr̄ = mass number. (8)

We assume a system of coordinates with the z-axis in the
direction of the position vector, R̄, joining the centers of mass
of the target and projectile nuclei. R describes relative motion
of the two interacting nuclei (Fig. 1). Referring to Fig. 1, the
angles appearing in Eq. (7) for the target and projectile are
given, respectively, by

cos θ1 = cos θ cos θT + sin θ sin θT cos(φ − φT )
(9)

cos θ2 = (
⇀

r + ⇀

R) • 
̂P

|⇀r + ⇀

R|
.


̂T (θT , φT ) and 
̂P (θP , φP ) are unit vectors in the di-
rection of the symmetry axes of target and projectile,
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FIG. 1. Schematic representation of the two interacting axially
symmetric deformed nuclei. The unit vectors in the direction of
the symmetry axes of target and projectile are 
̂T (θT , φT ) and

̂P (θP , φP ), respectively.

respectively. 
̂(θ, φ) is a unit vector in the direction of the
vector r̄ .

In this work we propose to discuss the (θ, φ)-orientation
dependence of the real part of the nucleus-nucleus optical

potential taking into account the deformations of both colliding
nuclei. We choose the 238U+238U interacting deformed-
deformed pair to perform our study. The values of the
static parameters of 238U-nucleus used in the present work
are [29], R0 = 6.8054 fm, a = 0.6049 fm, β2 = 0.331, and
β4 = 0.087.

III. NUMERICAL RESULTS

For two fixed directions of the two symmetry axes of
the interacting nuclei, the interaction potential between them
is affected by the overlap volume of the two nuclei at
separation distance R = 0.0 fm, Fig. 2, and the value of the
separation distance R. Figure 2 shows the real part of the HI
potential for 238U+238U interaction pair at separation distance
R = 0.0 fm. The results in Fig. 2 are calculated using the
energy density approach for Skyrme force with parameter
set SIII. The figure presents the variation of the HI potential
when the two centers of mass of the two nuclei coincide,
V (R = 0.0 fm), with the azimuthal angle φT for the five
values of the symmetry axes orientation angles (θT , θP ) =
(30◦, 30◦), (60◦, 60◦), (90◦, 90◦), (60◦, 120◦), and (60◦, 90◦).
It is shown that complete overlap with maximum value of
the potential between the two nuclei occurs when θP = θT at
φT = 0◦. The overlap region becomes small at φT = 0◦ for
the two orientations (30◦, 90◦) and (60◦, 120◦) where partial
overlap occurs for these orientations. The figure shows that
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FIG. 2. The variation of the real part of
the nuclear potential at R = 0 with the angle
φT for different symmetry axes orientations for
interacting pair 238U + 238U.
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FIG. 3. (a) The real part of the nuclear
potential for 238U+238U calculated using Skyrme
force with parameter set SIII for various orienta-
tions with θT = θP of the two deformed nuclei.
(b) Same as (a) but for θT �= θP .

the smallest overlap region for R = 0.0 fm happens when
θP = θT = 90◦ and φT = 90◦. This is expected since the
two nuclei for these orientation angles cross each other at
right angles. As φT increases, the overlap between the two
nuclei changes, except when θT = 0◦, reaching a potential
value at φT = 180◦ depends on the angles θT and θP . We
found that the φ-dependence of V (R = 0 fm) is strongest
for θT = θP = 90◦ while it is too weak for (30◦, 90◦) and
vanishes at θT = 0◦ or θP = 0◦. For the case θT = θP =
90◦, the potential V (R = 0.0 fm) is symmetric around φT =
90◦ while for θT = θP = 60◦ and (θT , θP ) = (30◦, 60◦) the

HI potential has strong φT -variation with opposite behavior in
these two cases. This behavior of V (R = 0.0 fm) with variation
of both target and projectile orientations can be understood on
purely geometrical considerations.

The HI potential for two deformed nuclei was calculated
assuming coplanar symmetry axes and using the folding model
[11,14], energy density approach [26], and proximity method
[9,10]. The behavior of V (R) with the separation distance R
and the orientation of the two symmetry axes when existing
in the same plane was explained in Refs. [10,11,15,21,26].
Figure 3 shows our results for the 238U+238U interaction
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FIG. 4. (a) The φ-dependence of HI poten-
tial for 238U+238U calculated using SIII param-
eters of Skyrme force when the θP -orientation
is 0◦ or 180◦. (b) Same as (a) but when the
θP -orientation is 90◦.

potential assuming two coplanar symmetry axes and calculated
using Skyrme force with parameter set SIII. Figure 3(a)
presents the calculated potential for the orientation angles
θT = θP = 0◦, 30◦, 60◦, 90◦ while Fig. 3(b) shows the cal-
culations for the different projectile-target angles (θT , θP ) =
(0◦, 90◦), (30◦, 90◦), (60◦, 90◦), and (120◦, 30◦). As expected
the potential curve for fixed orientation angles starts with a
repulsive core followed by the attractive part. As pointed out
in Refs. [18,19], the repulsive core is due to the sudden ap-
proximation, where the lack of distortion in the single particle
wave functions is neglected, and the approximation used for

the density and kinetic energy density of the composite system.
The attractive part reaches a minimum value Vmin(Rmin) then
it becomes less attractive and vanishes at a large distance
between the two interacting nuclei. For equal values of θT and
θP , the minimum occurs when the two nuclei touch each other
and its value depends almost on the distances between nucleons
in the surface region of one nucleus interacting with nucleons
in the other nucleus surface. For θP = θT = 90◦ maximum
area of the target surface is exposed to the projectile while for
θP = θT = 0◦ the two surfaces exposed to each other is the
smallest. In the first case we have a strong attractive potential
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FIG. 5. (a) The φ-dependence of HI potential for 238U+238U calculated using SIII parameters of Skyrme force for the orientation
angles (θT , θP ) = (30◦, 30◦). (b) For the orientation angles (θT , θP ) = (30◦, 60◦). (c) For the orientation angles (θT , θP ) = (30◦, 120◦).
(d) For the orientation angles (θT , θP ) = (30◦, 150◦). (e) For the orientation angles (θT , θP ) = (60◦, 60◦).
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TABLE I. The φ-dependence the potential minimum value,Vmin, and its radius, Rmin, for the real part of HI potential for 238U+238U
interaction at the orientation angles (θT , θP ) = (30◦, 30◦). The calculations are made using SIII parameters set of Skyrme force (second and
third columns) and SkM∗ parameters set (fourth and fifth columns) considering both the quadruple and hexadecapole deformations in projectile
and target. The sixth and seventh columns present the same quantities calculated using SkM∗ parameters set but considering only the quadruple
deformation in both projectile and target.

φT (deg) SIII (β2 = 0.331, β4 = 0.087) SkM∗ (β2 = 0.331, β4 = 0.087) SkM∗ (β2 = 0.331, β4 = 0)

Rmin (fm) Vmin (MeV) Rmin (fm) Vmin (MeV) Rmin (fm) Vmin (MeV)

0 14.49 −102.96 13.87 −129.40 13.90 −126.31
30 14.53 −101.57 13.91 −127.93 13.92 −125.79
60 14.67 −97.67 14.02 −123.64 13.99 −124.35
90 14.88 −92.18 14.21 −117.18 14.07 −122.36

120 15.11 −86.48 14.45 −110.13 14.16 −120.37
150 15.30 −82.19 14.64 −104.67 14.23 −118.91
180 15.38 −80.61 14.72 −102.61 14.26 −118.38

minimum while the second case produces a less attractive
minimum. Since for θP = θT = 90◦ the separation distance R
when the two surfaces touch each other is small, the minimum
in this case occurs at small Rmin value compared to the case
when θP = θT = 0◦ where the range of the potential is the
longest for all orientation angles of the two symmetry axes of
the interacting nuclei.

Figure 3(b) shows that for nonequal values of θT and
θP the behavior of the potential is almost the same as the
case of equal values of the angles θT and θP . For θT = 0◦
and θP = 90◦, the number of interacting nucleons in the
two surface regions is small. So, a less deep minimum is
produced at larger radius. When θT increases to 60◦ this
number becomes larger and the potential has deeper minimum
at a smaller radius compared with the case of θT = 0◦. For
the cases of θT = 120◦ and θP = 30◦, the number of surface
nucleons at R = Rmin is less than the cases where θT = 60◦ and
θP = 90◦.

Concerning the azimuthal angle dependence of 238U+238U
HI potential calculated using the Skyrme energy density
approach we found that this dependence is not important
for some orientations of the two nuclei. For example,
Fig. 4(a) shows that it vanishes when either θT or θP has
the value 0◦ or 180◦. This is expected since the symmetry
axis, in this case, coincides with the z-axis. Also, we found
that the φ-dependence is negligible when any of the two
symmetry axes is perpendicular to the z-axis, Fig. 4(b). Strong

φ-dependence occurs for the orientation angles (θT , θP ) =
(30◦, 30◦), (30◦, 60◦), (30◦, 120◦), (30◦, 150◦), and (60◦, 60◦).
Figures 5(a), (b), (c), (d), and (e) show the φ-dependence
of the 238U+238U HI potential calculated using the SIII
parameters of Skyrme force for orientation angles (θT , θP ) =
(30◦, 30◦), (30◦, 60◦), (30◦, 120◦), (30◦, 150◦), and (60◦, 60◦),
respectively. We found weak φ-dependence of the HI potential
for other orientation angles.

The second and third columns of Tables I, II, and III, show
the φ-dependence of the value of potential minimum,Vmin,
and its radius, Rmin, for the orientation angles (θT , θP ) =
(30◦, 30◦), (30◦, 60◦), and (60◦, 60◦), respectively. These cal-
culations have been performed using a Skyrme force with
parameters set SIII and considering both the quadruple and
hexadecapole deformations in projectile and target. For θP =
θT = 30◦, changing the value of the azimuthal angle φT from
0◦ to 180◦ reduces the value of Vmin by about 22% and increases
its radius by 6%. It should be noted that when φT = 180◦ the
system of the two nuclei becomes equivalent to that with the
orientation set (θT , φT , θP ) = (150◦, 0◦, 30◦). The percentage
decrease in Vmin and its corresponding increase in Rmin as φT

changes from 0◦ to 180◦ are about 15% and 4.5%, respectively,
for the orientation θT = 30◦ and θP = 60◦. For this orientation
and at φT = 180◦ the system of the two nuclei becomes equiva-
lent to that with the orientation (θT , φT , θP ) = (30◦, 0◦, 120◦).
For θP = θT = 60◦, the corresponding decrease in Vmin and
increase in Rmin are about 11% and 4%, respectively. This

TABLE II. Same as Table I but for the orientation angles (θT , θP ) = (30◦, 60◦).

φT (deg) SIII (β2 = 0.331, β4 = 0.087) SkM∗ (β2 = 0.331, β4 = 0.087) SkM∗ (β2 = 0.331, β4 = 0)

Rmin (fm) Vmin (MeV) Rmin (fm) Vmin (MeV) Rmin (fm) Vmin (MeV)

0 13.44 −108.60 12.89 −133.35 12.92 −132.34
30 13.46 −108.18 12.91 −132.92 12.94 −131.62
60 13.52 −106.74 12.96 −131.40 13.01 −129.55
90 13.64 −103.78 13.06 −128.22 13.10 −126.52

120 13.81 −99.25 13.21 −123.12 13.22 −123.29
150 13.98 −94.69 13.37 −117.75 13.31 −120.83
180 14.05 −92.73 13.44 −115.39 13.34 −119.91
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TABLE III. Same as Table I but for the orientation angles (θT , θP ) = (60◦, 60◦).

φT (deg) SIII (β2 = 0.331, β4 = 0.087) SkM∗ (β2 = 0.331, β4 = 0.087) SkM∗ (β2 = 0.331, β4 = 0)

Rmin (fm) Vmin (MeV) Rmin (fm) Vmin (MeV) Rmin (fm) Vmin (MeV)

0 12.30 −120.49 11.81 −143.00 11.92 −138.49
30 12.31 −120.18 11.82 −142.78 11.94 −137.52
60 12.34 −119.28 11.84 −142.15 12.00 −134.60
90 12.40 −117.48 11.89 −140.67 12.13 −130.10

120 12.54 −114.10 12.01 −137.12 12.28 −125.09
150 12.70 −109.62 12.16 −131.79 12.42 −121.17
180 12.78 −107.33 12.24 −128.95 12.47 −119.69

indicates significant φ-dependence of the HI potential between
two deformed nuclei.

In our calculations using Skyrme energy density we
found that the θ -dependence of the HI potential between
two deformed nuclei is too strong. It can change the value
of the potential minimum and its radius by a maximum
percentage of 50% and 40%, respectively. The value of
the deepest potential minimum occurring for all possible
orientations is −120.49 MeV and its radius is 12.30 fm
while the corresponding less attractive potential minimum
has value −80.18 MeV and it occurs at separation distance
R = 16.51 fm. The deepest and the shallowest potential minima
occur at orientation angles (θT , φT , θP ) = (60◦, 0◦, 60◦) and
(0◦, 0◦, 0◦), respectively. The reason that the deepest minimum
occurs at θP = θT = 60◦ and not at θP = θT = 90◦ as expected
is the presence of hexadecapole deformation which makes
the surface as diamond shape. At the orientation
(θT , φT , θP ) = (90◦, 0◦, 90◦) the potential have a minimum
value −114.78 MeV at separation distance R = 11.70 fm.

The fourth and fifth columns in Tables I, II, and III present
the azimuthal angle dependence of 238U+238U potential
calculated using SkM∗ [23] parameters of Skyrme force
for orientation angles (θT , θP ) = (30◦, 30◦), (30◦, 60◦), and
(30◦, 60◦) considering both the quadruple and hexadecapole
deformations in projectile and target. Although the HI potential
derived from Skyrme SkM∗ parameters is more attractive
at Rmin compared to that calculated using parameter set
SIII, it has almost the same θ and φ variation. Tables I,
II, and III show that the maximum φ-variation of the
HI potential calculated using SkM∗ parameters, with β2

and β4 deformations, occurs at the relative symmetry axes
orientations θT = θP = 30◦ of the interacting nuclei. For
this orientation, the percentage variations in Vmin and Rmin

when φT changes from 0◦ to 180◦ are about 21% and 5.8%,
respectively. Also, the HI potential has a strong orientation
dependence which appears in the percentage variation of Vmin

and Rmin for the more and less deep minimum for all possible
orientations considered in the present work. The deepest
minimum occurs at θT = θP = 60◦ and φT = 0◦ where it
has the values Vmin = −143.00 MeV and Rmin = 11.81fm
while the shallowest one occurs for the orientation θT = θP =
0◦ and φT = 0◦ and has Vmin = −103.58 MeV and Rmin =
15.82 fm. The percentage difference between the two minima
are 38.1% for Vmin and 34.0% for Rmin.

We think that the presence of the hexadecapole deformation
strongly affects the orientation dependence of the HI potential
between two deformed nuclei. For this reason we calculated
the 238U+238U interaction potential using SkM∗ parameters
and assuming only the quadrupole deformation for both
the projectile and target. The sixth and seventh columns in
Tables I, II, and III show the azimuthal angle dependence of
Vmin and Rmin calculated using SkM∗ parameters of Skyrme
force for orientation angles (θT , θP ) = (30◦, 30◦), (30◦, 60◦),
and (30◦, 60◦) considering only the quadruple deformation
in projectile and target (β4 = 0). The tables show that the
maximum φ-variation of the HI potential occurs for θT =
θP = 60◦ where Vmin and Rmin vary by 13.6% and 4.4%,
respectively, when φT changes from 0◦ to 180◦. This shows
less φ-dependence of the HI potential compared to the case
when β4 = 0.087. For the case of β4 = 0. We found that the
deepest Vmin for all possible orientations of the deformed nuclei
symmetry axes occurs at θT = θP = φT = 90◦. Its value is
Vmin = −144.46 MeV and its radius has the value 11.13 fm, it
is deeper by about 24.0% compared with the smallest value of
|Vmin|. Moreover, its radius varies by about 20.8% compared
with the radius of the smallest |Vmin|.

In order to compare our results for orientation dependence
of the HI potential derived from the realistic Skyrme NN
potential with the same quantity derived in Ref. [10] using
the proximity approach, we calculated Vmin and Rmin at
orientation angles (θT , θP ) = (0◦, 0◦), (45◦, 45◦), (45◦, 135◦),
(30◦, 135◦), (0◦, 90◦), and (90◦, 90◦). Table IV shows our
results using SkM∗ force and assuming β4 = 0 for both

TABLE IV. The values of the potential minimum,Vmin, and its
radius, Rmin, calculated using SkM∗ parameters of Skyrme force
considering the quadruple deformation in both projectile and target for
the orientations (θT , θP ) = (0◦, 0◦), (45◦, 45◦), (0◦, 90◦), (45◦, 135◦),
and (90◦, 90◦).

φT (deg) φP (deg) Rmin (fm) Vmin (MeV)

45 135 13.45 −116.51
30 135 13.85 −117.83

0 0 14.95 −122.32
45 45 12.89 −131.81

0 90 13.01 −133.66
90 90 11.13 −144.46
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FIG. 6. Fusion cross sections for
238U+238U calculated at the three orientations
(θT , θP ) = (0◦, 0◦), (90◦, 90◦), and (0◦, 90◦) of
the symmetry axes of the two interacting nuclei.
The quadrupole deformations of both target
and projectile are considered with the value
β2 = 0.331. The thick solid curve shows the
average fusion cross section over all possible
orientations. The thin solid curve is the fusion
cross section calculated assuming two spherical
nuclei.

interacting nuclei. Our results show strong orientation de-
pendence compared to the results in Ref. [10]. For example,
Table IV shows large differences in Vmin for the orientations
(θT , θP ) = (0◦, 0◦), (45◦, 45◦), (45◦, 135◦), (30◦, 135◦), and
(0◦, 90◦) while in Ref. [10] Vmin is almost the same for all
these orientations.

Many authors studied the effect of deformation of a
deformed target nucleus on some physical quantities such
as fusion, fission, and reaction cross sections. Most of
these studies consider deformation of one nucleus while the
other is assumed spherical. This is because the potential
between two deformed nuclei which is input for these studies
depends on many different possible orientations besides that
its microscopic derivation needs the numerical calculation of
six-dimensional integral [10,15]. Since the present paper deals
with the nuclear heavy ion potential between two deformed
nuclei, it is interesting to show the effect of deformation of both
nuclei on the fusion cross section. For this purpose we consider
the fusion cross section, σF , for the reaction 238U+238U.

Beside the nuclear part of the HI potential between two
deformed nuclei we need to calculate the Coulomb potential
for this system. The latter is needed to determine the fusion
barrier parameters which are input to calculate σF. To simplify
the calculations we calculate σF using Wong’s formula [30]
and we assume coplanar symmetry axes for the nuclei. This
assumption reduces the amount of calculations needed to
calculate the Coulomb potential. The Coulomb interaction
between two deformed nuclei is calculated by the method
of Ref. [11] which is based on multipole expansion of two
deformed density distributions. This method of calculating the
Coulomb potential is more accurate than other methods based

on expanding the potential in terms of deformation parameters
[31,32]. Figure 6 shows the calculations of the 238U+238U
fusion cross section for the three orientation angles (θT , θP ) =
(0◦, 0◦), (90◦, 90◦), and (0◦, 90◦) of the symmetry axes of
the two interacting nuclei. We considered the quadrupole
deformations of both target and projectile with the value
β2 = 0.331. The figure also indicates the fusion cross section
averaged over all possible orientations, σav , and the fusion
cross section calculated assuming two spherical nuclei, σ sph,
with the same root mean square, matter radii, rrms, as the
interacting deformed nuclei. The figure shows strong orien-
tation dependence of the fusion cross section at sub-barrier
energies. This is clear from the difference between σF (0◦, 0◦)
and σF (90◦, 90◦). For the orientations (θT , θP ) = (0◦, 0◦)
and (θT , θP ) = (90◦, 90◦) the Coulomb barrier heights are
646.46 MeV and 773.08 MeV, respectively, while the fusion
radii occur at RB = 17.99 fm and 13.65 fm, respectively. These
large differences between lowest and largest Coulomb barriers
produce a too strong orientation dependence. In Ref. [33],
the orientation dependence of σF from θT = 0◦ to θT = 90◦
for the spherical-deformed interacting pair 16O+154Sm at
Ec.m. = 54.3 MeV (≈ the spherical-spherical barrier height
of 16O+154Sm) is a factor about 103. In our case the
orientation dependence of σF from (θT , θP ) = (0◦, 0◦) to
(θT , θP ) = (90◦, 90◦) at Ec.m. = 770 MeV [≈ the maximum
barrier height of 238U+238U at (θT , θP ) = (90◦, 90◦)] is a
factor of about 107. Also, in Ref. [33] the deformation depen-
dence at Ec.m. = 54.3 MeV, σF (β2)/σF (0) ≈ 18. In our study
the deformation dependence at Ec.m. = 713.6 MeV (≈ the
spherical-spherical barrier height of 238U+238U), σ av

F (β2)/
σF (0) ≈ 36.
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IV. CONCLUSION AND OUTLOOK

In most calculations of the nuclear physical quantities such
as fusion cross section, reaction cross section, and angular
distribution the authors neglect the deformation of one of the
interacting nuclei to avoid heavy numerical calculations. In
almost all the cases it is assumed that the two interacting
nuclei have coplanar symmetry axes [10,11,14,16,21] and
even θP = θT . In the present work we used the Hamilto-
nian energy density approach derived from the well-known
Skyrme interaction to study the orientation dependence of
the HI potential between two deformed nuclei. We found

strong θ -dependence of the HI potential beside non-negligible
φ-dependence. In most calculations, the physical quantity is
calculated first at fixed orientation angles then it is averaged
over all possible orientations. In the averaging process, the
quantity at a given value of θ is multiplied by sin θ while
for φ the average process takes equal contributions from all
φ values. Since we found in the present calculations that
large φ-dependence occurs at θ = 30◦ or θ = 60◦ whose sine
values equal 1/2 and

√
3/2, respectively, and no φ-dependence

at θ = 0◦, 180◦ and too small φ-dependence at θ = 90◦ we
conclude that the present work is important to show both θ

and φ dependences of the HI potential.
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