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Extraction of structure functions from quasielastic electron
scattering (e, e′) off medium and heavy nuclei
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Using a relativistic mean-field single-particle knockout model for (e, e′) reactions on nuclei, we investigate
approximate treatments of Coulomb distortion effects and the extraction of longitudinal and transverse structure
functions. We show that an effective momentum approximation when coupled with a focusing factor provides
a good description of the transverse contributions to the (e, e′) cross sections for electron energies above
300 MeV on 208Pb. This approximation is not as good for the longitudinal contributions even for incident
electron energies above 1 GeV, and if one requires very precise extraction of longitudinal and transverse structure
functions in the quasielastic region, one must utilize distortion factors based on a nuclear model and a more
accurate inclusion of Coulomb distortion effects.
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I. INTRODUCTION

There continues to be considerable theoretical and ex-
perimental interest in extracting longitudinal and transverse
structure functions as a function of energy loss for fixed
three-momentum transfer for a range of nuclei [1]. For low to
medium electron energies (200 < E < 600 MeV), the (e, e′)
cross section is significantly affected by the static Coulomb
field of the target nucleus for Z > 20, and it is necessary
to use some method of removing the so-called Coulomb
distortion effects in order to investigate the underlying physical
processes in quasielastic scattering. For a precise extraction of
the longitudinal response even at incident electron energies
of 2 GeV, some correction for Coulomb distortion effects
is needed. It would be very appealing if Coulomb effects
could be removed by shifting the value of the experimental
energy or scattering angle so as to compensate for the Coulomb
distortion [2]. While it is quite clear that this cannot be done
exactly, the question is whether one can find some approximate
treatment of Coulomb distortion effects that improves with
increasing electron energy.

In this paper, we investigate this question and report very
good success in handling the Coulomb distortion effects in the
transverse parts of the quasielastic cross section, but with less
success in the longitudinal portion of the cross section unless
we utilize a nuclear model of the transition current arising from
the quasielastic knockout of nucleons.

In order to frame the discussion, it is useful to note that in the
plane wave Born approximation (PWBA), the inclusive (e, e′)
cross section for electrons or positrons (assuming nuclear
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current conservation) is given by
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= σM
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(1)

where q2
µ = ω2 − q2 = −Q2 is the four-momentum transfer,

σM is the Mott cross section given by σM = ( α
2Ei

)2 cos2 θe
2

sin4 θe
2

,

and SL and ST are the longitudinal and transverse structure
functions which depend only on the momentum transfer q
and the energy transfer ω. As is well known, by keeping
the momentum and energy transfers fixed while varying the
electron energy Ei and scattering angle θe, it is possible to
extract the two structure functions with two measurements.
The longitudinal and transverse structure functions in Eq. (1)
are squares of the Fourier transform of the components of
the nuclear transition current density integrated over outgoing
nucleon angles. Explicitly, the structure functions for knocking
out nucleons from a nucleus are given by

SL(q, ω) =
∑
αbsp

Sαb
ρp

∫
|N0|2d�p, (2)

ST (q, ω) =
∑
αbsp

Sαb
ρp

∫
(|Nx |2 + |Ny |2)d�p, (3)

where the nucleon density of states ρp = pEp

(2π)2 , sp is the spin
projection of the continuum nucleon, the z axis is taken to
be along q, and Sαb

contains the spectroscopic and averaging
factors for each bound orbital. The Fourier transform of the
nuclear current Jµ(r) is simply

Nµ =
∫

Jµ(r)eiq·rd3r. (4)

In Eqs. (2) and (3), the continuity equation has been used to
eliminate the z component Nz via the equation Nz = −ω

q
N0.
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As noted above, the PWBA calculation breaks down for cases
when the static Coulomb potential at the surface of the nucleus
is not negligible when compared to the incident and outgoing
electron energy. To set the scale, note that the Coulomb
potential at the surface of 208Pb is about 20 MeV.

Based on our previous investigations of inclusive quasielas-
tic scattering and a new appreciation of a focusing factor [3–8],
we investigate an improved effective momentum approxima-
tion with focusing (EMA-f) in this paper. Our goal is to
seek a procedure for extracting the longitudinal and transverse
structure functions from experimental data with minimal use
of nuclear models.

II. COULOMB DISTORTION EFFECTS IN INCLUSIVE
QUASIELASTIC SCATTERING

As discussed in a previous paper [7], we found a treatment
of Coulomb distortion, labeled approximate DW, for (e, e′)
from medium and heavy nuclei that agrees to within a few
percent to a full DWBA partial wave analysis which includes
the static Coulomb field of the target exactly in the electron
(or positron) wave functions. In this approximation, we define
an r-dependent momentum for the incoming and outgoing
electron wave functions, p′

i,f (r) = (pi,f − 1
r

∫ r

0 Vc(r)dr)p̂i,f ,
where Vc(r) is the potential energy of the lepton moving in
the static Coulomb field of the target nucleus. This implies an
r-dependent momentum transfer q′(r) = p′

i(r) − p′
f (r). The

choice of an r-dependent momentum allows the distorted
partial wave solutions of the Dirac equation with the static
Coulomb potential present to be approximated by spherical
Bessel functions with argument x = p′(r)r quite well from
the origin out to more than 3 times the nuclear radius R. An
additional requirement of approximating Coulomb distorted
waves is to incorporate the Coulomb scattering phase shifts
into the problem. As discussed in previous papers [5,7], we
were able to achieve this by fitting the phase shifts as a
function of the square of the Dirac quantum number κ for
the incoming and outgoing electron energies for the nucleus
under investigation and then to replace κ2 by the classical
angular momentum squared (r × p)2 so that “plane-wave-like”
lepton wave functions can be constructed that contain the
effects of Coulomb distortion in the local momentum and the
parametrized phase shifts which lead to what other authors
refer to as focusing. Using this plane-wave-like wave function,
we obtained an approximate “Møller-like” potential given by,

Aappro.DW
µ (r) = 4πe

q2 − ω2
ei[δi+δf ]ei(
i−
f )eiq′(r)·rūf γµui,

(5)
where the phase-shift parametrization is given by

δ(κ2) =
[
a0 + a2

κ2

(pR)2

]
e
− 1.4κ2

(pR)2

− αZ

2

(
1 − e

− κ2

(pR)2

)
ln(1 + κ2), (6)

where κ2 = (r×p)2, p is the electron momentum (for the
initial and final kinematics), and the nuclear radius is R =
1.12A1/3 − 0.86A−1/3. The two constants a0 and a2 are fitted

to two of the elastic scattering phase shifts [κ = 1 and
κ = Int(pR) + 5] for the incident and final electron energy.
The parameter 
 = a[p̂·r̂]L2 denotes a small higher order
correction to the electron wave number, which we have written
in terms of the parameter a = −αZ( 16 MeV/c

p
)2. The potential

in Eq. (5) cannot be easily decomposed into a multipole
expansion because of the angular dependence of the vector r
in the expression for the phase shifts. However, when com-
bined with the nuclear transition current density Jµ(r) as in
Eq. (4), the modified Fourier transform can be obtained by
three-dimensional integration since the volume is limited to
a sphere with radius of 3–4 times the nuclear radius R. We
confirmed that use of the potential given in Eq. (5) reproduces
the full DWBA results for the cross section very well for
electron energies above 300 MeV and for momentum transfer
greater than about 250 MeV. With this approximate DW four
potential Aµ, it is straightforward to calculate the exclusive
(e, e′p) cross sections and modified structure functions. We
showed [6] that using this new phase shift we can reproduce
the full DWBA cross sections for (e, e′p) from medium and
heavy nuclei very well.

Again as noted in our previous paper [7], this approximate
DW potential which includes the local value of the potential
(i.e, a function of r) and the focusing effect due to the phase
shifts is very time consuming for the inclusive (e, e′) reaction
since we need to integrate over the solid angle of the outgoing
nucleons. Thus, we proposed making further approximations
for the inclusive process. In order to allow a straightforward
multipole expansion, we must remove any angular dependence
from the phase shifts in Eq. (5). We investigated various
methods of achieving this and found that neglecting the phase
shifts entirely but including a focusing factor was sufficient for
the transverse contribution. However, this was not sufficient
for the longitudinal term, so we chose to include some of
the effects of the phase shifts by averaging over the angles
of the vector r in the phase-shift parametrization. With these
further approximations, we were able to write the (e, e′) cross
section [7] as(

d2σ

d�edω

)ad hoc

= σM

{
Q4

q4
S ′

L(q ′, ω) +
[

tan2 θe

2

+ Q′2

2q ′2

]
S ′

T (q ′, ω)

}
, (7)

where the Fourier transforms of the transition current in S ′
L

and S ′
T are replaced by

Nad hoc
0 =

∫ (
q ′

µ(r)

Q

)2 (
q

q ′(r)

)2

ei〈δi+δf 〉eiq′(r)·rJ0(r)d3r,

(8)

Nad hoc
T =

(
p′

i(0)

pi

) ∫
eiq′(r)·rJT (r)d3r.

Here 〈δi,f 〉 denotes an average of δ(κ2) over the angles of
the vector r. That is, the argument of the parametrization for
the phase shifts in Eq. (6) is given by 〈κ2

i,f 〉 = 〈(r × pi,f )2〉 =
r2p2

i,f (3 − cos2θpi,f
)/4. In addition, we fix the direction of

q′ to be equal to the asymptotic momentum transfer, but
we use q ′2(r) = p′2

i (r) + p′2
f (r) − 2p′

i(r)p′
f (r) cos θe for the
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magnitude. We confirmed that for the kinematics under
consideration this change is negligible. Using a toy model
and the full three-dimensional integration for the longitudinal
terms and by comparing to the full DWBA for the cross section,
we found that this so-called ad hoc model works very well for
(e, e′) on medium and heavy nuclei.

However, use of an r-dependent momentum transfer re-
quires a nuclear model to extract longitudinal and transverse
structure functions. The challenge is to find some approx-
imation with a constant shift of momentum transfer which
approximates Coulomb distortion. One such approximation,
referred to as the effective momentum approximation (EMA)
replaces the r-dependent momentum for the incoming and
outgoing lepton wave functions with a fixed value given by
p′ = p − Vc(Rc), where Rc is usually taken to be equal to
0 or the nuclear radius R. Then one calculates the effective
momentum transfer in terms of these momenta and the
electron scattering angle. It is convenient to calculate Vc(Rc)
for a uniform charge distribution of radius R = 1.12A2/3 −
0.86A−1/3 containing a charge of Ze. The result for Rc < R

is simply, Vc(Rc) = −Zα
2R

(3 − R2
c /R

2) for electrons. However,
this approximation does not include the effect of the phase
shifts which result in what other authors refer to as focusing.
As discussed in some detail by the Basel group [8], the effects
of focusing can be included by multiplying the potential arising
from the EMA wave function by the factor p′

i(0)/pi . We will
refer to this approximation as EMA-f and we note that the
(e, e′) cross section for EMA-f is simply this factor squared
times the EMA cross section. Thus, the EMA-f cross section
is given by

(
d2σ

d�edω

)EMA-f

=
(

p′
i(0)

pi

)2

σM

{
Q′4

q ′4 SL(q ′, ω)

+
[

tan2 θe

2
+ Q′2

2q ′2

]
ST (q ′, ω)

}
. (9)

The structure functions depend on the standard Fourier
transforms of the nuclear transition current except that they are
calculated as a function of q ′ rather than q. Note that Q′2 =
q ′2 − ω2. Since the sign of Vc changes for positron-induced re-
actions, clearly one can shift Ei for positron-induced reactions
as compared to electron-induced reactions such that q ′

e− = q ′
e+ ,

and therefore the quantity ( d2σ
d�edω

)EMA-f/[σM (p′
i (0)
pi

)2] is the
same for electrons and positrons in this approximation. That
is, the focusing factor must be removed before the overall
structure functions are equal for electrons and positrons.

We have investigated the validity of the EMA-f approx-
imation for different choices of Rc, the argument of Vc, by
calculating the longitudinal and transverse contributions to
the cross section using a relativistic nuclear model that we
have successfully used to describe a great deal of (e, e′)
data [2,7,9]. In Fig. 1, we compare the cross section for
the inclusive reaction (e, e′) on 208Pb for an incident electron
energy of 310 MeV at a backward angle (θ = 143◦). We show
three curves in addition to black circles representing the full
DWBA calculation. As we have noted before, even at these
low energies, our ad hoc result agrees quite well with the full
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FIG. 1. Theoretical quasielastic scattering cross sections for 208Pb
with incident electron energy Ei = 310 MeV and electron scattering
angle θ = 143◦ as a function of energy transfer. Black circles are the
results of our full DWBA partial wave calculation.

DWBA results. We also show two EMA-f results. In one case,
we evaluated the Coulomb potential energy at the origin; and in
the other, at two thirds of the nuclear radius, which is in better
agreement with the full DWBA results. Note that the cross
section at such a large angle is dominated by the transverse
contributions. In Fig. 2, we compare our ad hoc results to
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FIG. 2. Theoretical quasielastic scattering partial cross sections
for 208Pb with incident electron energy Ei = 485 MeV and electron
scattering angle θ = 60◦ as a function of energy transfer. Upper panel
shows the longitudinal contribution to the cross section; lower panel
shows the transverse contribution.
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FIG. 3. Combined longitudinal and transverse contributions for
the kinematics described in Fig. 1.

EMA-f for the same two choices of the Coulomb potential
for the longitudinal (upper panel) and transverse (lower panel)
contributions to the cross section for 485 MeV electron on
208Pb at a scattering angle of 60◦. Note that the longitudinal
and transverse contributions are of similar magnitude, but the

0

1

2

3

4

200 300 400 500

d2 σ L
/d

ω
dΩ

e 
(n

b/
sr

 M
eV

)

ω (MeV)

E=800 MeV
θ=60o

ad hoc DWBA
EMA-f V(0)

EMA-f V(2R/3)

2

4

6

8

10

12

200 300 400 500

d2 σ T
/d

ω
dΩ

e 
(n

b/
sr

 M
eV

)

ω (MeV)

E=800 MeV

θ=60o

ad hoc DWBA
EMA-f V(0)

EMA-f V(2R/3)

FIG. 4. Quasielastic longitudinal and transverse contributions to
the cross section for 208Pb with incident electron energy of Ei =
800 MeV and electron scattering angle θ = 60◦ calculated with the
ad hoc DWBA as compared to the EMA-f with two different values
of the Coulomb potential energy.

transverse cross section is much better described by the EMA-f
than is the longitudinal cross section. Furthermore, using the
Coulomb potential at 2/3R to calculate q ′ is a somewhat
better approximation than using the origin value. In Fig. 3,
we show the full cross section for this case as compared to
the full DWBA calculation (where we cannot separate out the
longitudinal and transverse terms) and we note that the ad hoc
result is very good and the EMA-f does not look so bad since
over half the cross section comes from the transverse term,
which is reasonably well described by EMA-f. Of course, if
you were to use EMA-f to make a Rosenbluth separation, the
differential quality of the description of the longitudinal and
transverse terms would lead to large errors.

In Fig. 4, we examine the two separated contributions as in
Fig. 2, except that we have increased the electron energy to
800 MeV. Clearly the EMA-f approximation is much better at
this higher energy, although the discrepancy in the longitudinal
case is still almost 10% at the quasielastic peak. In Fig. 5, we
increased the electron energy up to 2 GeV while reducing the
scattering angle to 20◦. In all cases, we used 208Pb as the target.
The EMA-f is almost exact for the transverse contribution
to the cross section (lower panel), while the longitudinal
contribution (upper panel) continues to have problems.
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FIG. 5. Same as Fig. 4, except that Ei = 2.0 GeV and the electron
scattering angle θ = 20◦.
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FIG. 6. Ratio of the longitudinal and transverse (DL and DT )
contributions to the quasielastic cross section calculated using the
ad hoc DWBA method of including Coulomb effects and the EMA-f
method of approximating Coulomb distortion for 485 MeV electrons
on 208Pb at a scattering angle of θ = 60◦.

III. PROPOSED SOLUTION AND CONCLUSIONS

Our results show that even at rather high electron energies,
the longitudinal contributions to the quasielastic cross section
are not well described by the EMA approximation even with
a focusing factor. Based on these results, we do not believe
that a model-independent EMA-like approach can be used
to extract the longitudinal structure function in quasielastic
scattering. However, as the electron energy increases, the
EMA-f approach does get better so perhaps it can be used
as the basic analysis tool, but with some model-dependent
corrections to the Coulomb distortion effects [10]. In
Fig. 6, we show the ratio of the contributions to the quasielastic
cross section for 485 MeV electrons on 208Pb at a scattering
angle of 60◦ calculated using our ad hoc model over the
EMA-f calculation using the Coulomb potential at 2

3R for
the longitudinal and transverse contributions. As was clear in
Fig. 2, the distortion factor DT for the transverse contributions
differs from 1 by only a few percent over the quasielastic
peak. However, the distortion factor DL varies considerably
from 1 at this energy. In Fig. 7, we repeat this calculation
for incident electrons of 800 MeV. At this higher energy, DT

differs from 1 by less than 3% across the quasielastic peak,
while DL deviates from 1 by up to about 7%. Based on these
results and our results at higher energies, we propose that the
quasielastic scattering cross section for (e, e′) be written as

(
d2σ

d�edω

)
= σM

{
Q′4

q ′4 DLSL(q ′, ω) +
[

tan2 θe

2

+ Q′2

2q ′2

]
DT ST (q ′, ω)

}
, (10)

where the distortion factors DL and DT are given by

DL =
(

Q

Q′

)4 (
q ′

q

)4
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L(q ′, w)

SL(q ′, ω)
, (11)
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FIG. 7. Ratio of the longitudinal and transverse DT contributions
to the quasielastic cross section calculated using the ad hoc DWBA
method of including Coulomb effects and the EMA-f method of
approximating Coulomb distortion for 800 MeV electrons on 208Pb
at a scattering angle of θ = 60◦.

DT =
(

p′
i(0)

pi

)2
S ′

T (q ′, ω)

ST (q ′, ω)
. (12)

Note that in the factor before the transverse structure function
in Eq. (10), we are using the factor Q2/2q2 rather than primed
values so as to more easily define the distortion factor DT .
Clearly, by using distortion factors DL and DT calculated
from any reasonable nuclear model, Eq. (10) can be used in a
Rosenbluth mode to extract the longitudinal and transverse
functions as a function of q′ and ω from experimental
data.

In conclusion, we have shown that the effective momentum
approximation (using the Coulomb potential at 2

3R) with

an overall focusing factor of
[
p′

i(0)/pi

]2
is a very good

approximation of the Coulomb distortion effects for the
transverse contributions to the quasielastic cross section.
However, for electron energies less than about 600 MeV, it is
not a good approximation of the longitudinal contributions. At
higher electron energies, this approximation does get better for
the longitudinal contribution; but for accurate extraction of the
longitudinal structure function, it is necessary to use distortion
factors calculated from a nuclear model. The procedure we
have proposed minimizes the model dependence by only
using the model to evaluate the Coulomb distortion effects
not included in EMA-f. Based on the cases we have examined,
we believe the errors in the extracted structure functions arising
from Coulomb distortion effects using our proposed procedure
should be less than 5% for incident electron energies above
600 MeV.
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