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Isoscaling behavior in fission dynamics
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The fission processes of 112Sn+112Sn and 116Sn+116Sn are simulated with the combination of the Langevin
equation and the statistical decay model. The masses of two fission fragments are given by assuming the process
of symmetric fission or asymmetric fission by Monte Carlo sampling with the Gaussian probability distribution.
From the analysis of the isotopic/isotonic ratios of the fission fragments from both reactions, the isoscaling
behavior has been observed and investigated in detail. Isoscaling parameters α and β are extracted as a function
of the charge number and neutron number, respectively, in different widths of the sampling Gaussian probability
distribution. It seems that α is sensitive to the width of fission probability distribution of the mass asymmetrical
parameter, but β is not. Both α and β drop with increasing beam energy and reduced friction parameter.
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I. INTRODUCTION

The availability of exotic nuclear beams with extreme
neutron-to-proton ratios provides an opportunity to explore
the collision dynamics of isospin-asymmetric nuclear systems
[1]. To facilitate this kind of study, the suitable selection of
the sensitive experimental observables related to the isospin
degree of freedom is one of the key points. One such observable
is the isotopic/isobaric ratio [2,3], which has been used
before to probe the isospin equilibration at medium energies.
Recently, this kind of ratio has been systematically revisited
for two different reactions with the same charge number
and similar temperature, and a so-called isoscaling law has
been observed experimentally [4–6]. Isoscaling means that
the ratio of isotope yields from two different reactions, 1 and
2, R21(N,Z) = Y2(N,Z)/Y1(N,Z), is found to exhibit an
exponential relationship as a function of the neutron number
N and proton number Z [4]

R21(N,Z) = Y2(N,Z)

Y1(N,Z)
= C exp(αN + βZ), (1)

where C, α, and β are parameters. In the grand-canonical
limit, α = �µn/T and β = �µz/T , where �µn and �µz

are the differences between the neutron and proton chemical
potentials for two reactions, respectively. This behavior is
attributed to the difference of two reaction systems with
different isospin asymmetry. It is possible to probe the isospin-
dependent nuclear equation of state by the studies of isoscaling
[7]. So far, the isoscaling behavior has been experimentally
explored in various reaction mechanisms, ranging from the
evaporation [4], fission [8,9], and deep inelastic reactions
at low energies to the projectile fragmentation [10,11] and
multifragmentation at intermediate energy [4,12,13]. Also,
the isoscaling phenomenon has been extensively examined
in different theoretical frameworks ranging from dynamical
transport models, such as the Blotzmann-Uehling-Uhlenbeck
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model [12], quantum molecular dynamics model [14], and
antisymmetrical molecular dynamics model [15], to the sta-
tistical models, such as the expansion emission source model,
the statistical multifragmentation model, and the lattice gas
model [5,6,16–18]. In this work, we will focus on the detailed
simulation studies of the isoscaling behavior of the fission
fragments. A brief report has been published recently [19].

In this work, we present an analysis of fragments from
the fission process as simulated by the Langevin equation.
The isotopic or isotonic ratios of the different fragment yields
from the 116Sn+116Sn and 112Sn+112Sn systems are presented,
and the features of isoscaling behavior in fission dynamics are
investigated.

The paper is organized by the following structure. In Sec. II,
a brief description of the Langevin model is given and the
partition of masses of two fission fragments is assumed. In
Sec. III, the detailed results for the fission-fragment isotopic
and isotonic distribution are presented and the isoscaling
behavior is explored. Finally, we summarize this work in
Sec. IV.

II. BRIEF DESCRIPTION OF THE LANGEVIN MODEL

The process of fission can be described in terms of collective
motion using the transport theory [20–24]. The dynamics of
the collective degrees of freedom is typically described using
the Langevin or Fokker-Planck equation. In this work, we deal
with a combined dynamical and statistical model (CDSM)
which is a combination of a dynamical Langevin equation and
a statistical model to describe the fission process of a heavy
ion reaction [21]. This model is an overdamped Langevin
equation coupled with a Monte Carlo procedure allowing for
the discrete emission of light particles. It switches over to a
statistical model when the dynamical description reaches a
quasistationary regime.

We first specify the entrance channel through which a
compound nucleus is formed, i.e., the target and projectile
is complete fusion. The fusion process for simulating fission
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in each trajectory with angular momentum L = h̄l is des-
cribed by

σ (l) = 2π

k2

2l + 1

1 + exp[(l − lc)/δl]
, (2)

where the parameters lc and δl are according to an approxi-
mating scaling of Ref. [20]. Namely,

lc =
√
AP AT /ACN

(
A

1/3
P + A

1/3
T

)(
0.33 + 0.205

√
Ec.m. − Vc

)
,

(3)

when 0 < Ec.m. − Vc < 120 MeV; and when Ec.m. − Vc >

120 MeV, the term in the last bracket is set equal to 2.5. In
Eq. (3), AT and AP represent the mass of the target and
projectile, respectively; and ACN is the mass of the compound
nucleus. For the barrier Vc, the following ansatz is used:

Vc = 5

3
c3

ZP ZT

A
1/3
P + A

1/3
T + 1.6

, (4)

with c3 = 0.7053 MeV. The diffuseness δl is found to
scale as

δl =
{[

(AP AT )3/2 × 10−5
]

[1.5 + 0.02(Ec.m. − Vc − 10)] for Ec.m. > Vc + 10,[
(AP AT )3/2 × 10−5

]
[1.5 − 0.04(Ec.m. − Vc − 10)] for Ec.m. < Vc + 10.

A trajectory with the particular angular momentum L is
started at the ground-state position qgs of the entropy
S(qgs, E

∗
tot, A,Z,L), q is half of the distance between the

centers of masses of the future fission fragments. In this
work, the total initial excitation energy E∗

tot is given by
E∗

tot = EbeamAT /(AT + AP ) + Q, where Q is the fusion Q
value calculated by Q = MT + MP − MLD

CN. MT and MP are
the masses of the projectile and target, which come from
experimental data. If the mass is unavailable, it is calculated by
a macroscopic-microscopic model [25]. MLD

CN is the mass of the
compound nucleus, which is calculated from the liquid-drop
model.

The dynamical part of the CDSM model is described by the
Langevin equation which is driven by the free energy F. In the
Fermi gas model, F is related to the level density parameter
a(q) [26] by

F (q, T ) = V (q) − a(q)T 2, (5)

where V (q) is the fission potential and T is the nuclear
temperature.

The overdamped Langevin equation reads

dq

dt
= − 1

Mβ0(q)

(
∂F (q, T )T

∂q

)
+

√
D(q)�(t), (6)

where q is the dimensionless fission coordinate defined above.
β0(q) is the reduced friction parameter, which is the only
parameter of this model. The fluctuation strength coefficient
D(q) can be expressed according to the fluctuation-dissipation
theorem as

D(q) = T

Mβ0(q)
, (7)

where M is the inertia parameter which drops out of the
overdamped equation. �(t) is a time-dependent stochastic
variable with Gaussian distribution. Its average and correlation
function are written as

〈�(t)〉 = 0,

〈�(t)�(t ′)〉 = 2δε(t − t ′). (8)

The potential energy V (A,Z,L, q) is obtained from the
finite-range liquid-drop model [27]

V (A,Z,L,q) = a2

[
1 − k

(
N − Z

A

)2
]
A2/3[Bs(q) − 1]

+ c3
Z2

A1/3
[Bc(q) − 1] + crL

2A−5/3Br (q), (9)

where Bs(q), Bc(q), and Br (q) are surface, Coulomb, and
rotational energy terms, respectively, which depend on the
deformation coordinate q. a2, c3, k, and cr are parameters not
related to q. In our calculation, we take them according to
Ref. [20] to be.

a2 = 17.9439 MeV, c3 = 0.7053 MeV,

k = 1.7826, cr = 34.50 MeV.

We use c and h [28] to describe the shape of the nucleus in

ρ2(z) =
(

1 − z2

c2
0

) [(
1

c3
− b0

5

)
c2

0 + Bsh(c, h)z2

]
, (10)

where

c0 = cR, R = 1.16A1/3. (11)

The nuclear shape function Bsh(c, h) and the collective fission
coordinate q(c, h) of mass number A are expressed as

Bsh(c, h) = 2h + c − 1

2
,

q(c, h) = 3

8
c

[
1 + 2

15
Bsh(c, h)c3

]
. (12)

The fission process of the Langevin equation is propagated
using an interpretation of Smoluchowski [29] (λ = 1 in the
following equation) which is consistent with the kinetic form
which reads

qn+1 = qn +
[

T (q)

β0(q)M

dS(q)

dq

]
n

τ + λ

[
d

dq

(
T (q)

β0(q)M

)]
n

τ

+
√[

T (q)

β0(q)M

]
n

τwn. (13)
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Here τ is the time step of the Langevin equation, wn is a
Gaussian-distributed random number with variance 2. S(q) =
2
√

a(q,A)[Etot − V (q,A,Z, l)] is the entropy. The parameter
λ allows us to distinguish between the different possibilities to
discretize the Langevin equation. It is called interpretation in
the literature. In the analysis of the experiments on fission of
hot nuclei discussed in the reviews [20,30] and in the papers
quoted there, the Itô-interpretation (λ = 0) [31] has been used
exclusively. Also there are other interpretations, namely, that
of Stratonovich [32] (λ = 1/2), or an interpretation consistent
with the kinetic form of the Smoluchowski equation of [29]
(λ = 1). In this work, we take λ = 1.

In our calculation, we adopt the one-body dissipation
(OBD) friction form factor βOBD [33] as β0(q) which is
calculated with one-body dissipation with a reduction of the
wall term except for the special case which we claim. Here we
use an analytical fit formula developed in Ref. [34], i.e.,

βOBD(q) =
{

15/q0.43 + 1 − 10.5q0.9 + q2 if q > 0.38,

32 − 32.21q if q < 0.38.

In the dynamical part of the model, the emission of light
particles (n, p, d, α) and giant dipole γ are calculated at each
Langevin time step τ ; the widths for particle and giant dipole
γ decay are given by the parametrization of Blann [35] and
Lynn [36], respectively.

III. RESULTS AND DISCUSSIONS

A. Isotopic/isotonic distributions of the fission fragments

In Figs. 1(a) and 1(b), we demonstrate the ratio of
the prescission neutron number RN and of the pre-scission
proton number RP between 116Sn+116Sn and 112Sn+112Sn,
respectively, as a function of beam energy (Ebeam/A). First,
the values of RN are larger than 1 while those of RP are
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FIG. 1. Ratios of the pre-scission neutron number (a) and
of the pre-scission proton number (b) between 116Sn+116Sn and
112Sn+112Sn as a function of beam energy (Ebeam/A).

less than 1, indicating that the neutron is easier to be emitted
for the neutron-rich system while the proton is in a contrary
trend. Of course, this is a natural result of the chemical
composition of the reaction system [37,38]. Second, with the
increasing beam energy, RN shows a decreasing trend while
RP increases, which can be interpreted to mean that the isospin
effect weakens as the beam energy rises up.

Within the framework of the Langevin simulation, we chose
200 000 fission events which happen on the dynamic channel
(we gave up the events that happen in the statistical part of
CDSM model) and chose a Gaussian-distributed random num-
ber as the mass asymmetry parameter α0 = A1−A2

A1+A2
when the

system reaches the scission point. When α0 = 0, it means the
fission is symmetrical. It is taken from a Gaussian-distributed
random number from −1 to 1 with the mean value of zero.
A1 and A2 are the masses of the two fission fragments. In this
work, we assume the fission fragments have the same N/Z

as that of the initial system, and then Z1 or Z2 of the fission
fragments can be deduced from A1 or A2. This assumption
is similar to the case of deep inelastic heavy ion collisions at
low energies, where the isospin degree of freedom has been
found to reach equilibrium first [39]. Figure 2 shows the mass
distribution of the fission fragments from 112Sn+112Sn and
116Sn+116Sn reaction systems assuming the different width of
the sampling Gaussian probability for the mass asymmetrical
parameter of fission fragments σα0 . Naturally, the bigger the
σα0 , the wider the fragment mass distributions.

Samples for the isotopic and isotonic distributions in some
given Z and N are shown in Fig. 3. The square of the full widths
of these distributions shows a systematic increase with Z or N
as shown in Fig. 4, and the absolute value of the differences
of the centroid of the isotonic/isotopic distributions shows an
increasing trend, too (see later in Fig. 6). Apparently, the widths
are not sensitive to the width of the Gaussian probability for
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FIG. 2. (Color online) Fission-fragment mass distributions pro-
duced by the Langevin simulation for the reactions of 112Sn+112Sn
(open symbols) and 116Sn+116Sn (filled symbols) at 8.4 MeV/nucleon
with the different sampling width σα0 of Gaussian probability
distribution.
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FIG. 3. (Color online) Isotopic (a) and isotonic (b) distributions
of fission fragments in some given Z or N from the collisions of
116Sn+116Sn (filled symbols) and of 112Sn+112Sn (open symbols) at
8.4 MeV/nucleon. σα0 = 0.06. Notice that the x-axis scale is different.

the mass asymmetrical parameter of fission fragments, but the
differences of the centroid of the isotonic/isotopic distributions
shows the dependence on it.

From a practical point of view, the isoscaling behavior
occurs when two mass distributions for a given Z from two
processes with different isospin are Gaussian distributions
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FIG. 4. (Color online) Square of full width of the isotopic (a) and
isotonic (b) distribution as a function of Z and N, respectively, in
different σα0 . The width is the average value of the two systems (they
are almost the same for both systems).

with the same width but different mean mass. In this case, the
isotopic distribution in a given Z, namely Y (N )|Z , and isotonic
distribution in a given N, namely Y (Z)|N , can be described by
a single Gaussian distribution, respectively, i.e.,

Y (N )|Z ∼ exp

[
− (N − NZ)2

2σ 2
Z

]
,

(14)

Y (Z)|N ∼ exp

[
− (Z − NN )2

2σ 2
N

]
,

where NZ and NN are the centroid of isotopic and isotonic
distributions, and σ 2

Z and σ 2
N describe the variance of distri-

butions for each element of charge Z and neutron number N,
respectively. This leads to an exponential behavior of the ratio
R21. If the quadratic term in NZ or NN is neglected, it reads

ln(R21(N )|Z) ∼ [(NZ)2 − (NZ)1]N

σ 2
Z

,

(15)

ln(R21(Z)|N ) ∼ [(NN )2 − (NN )1]Z

σ 2
N

.

Note that Eq. (15) requires the values for σ 2
Z or σ 2

N to
be approximately the same for both reactions, which is a
necessary condition for isoscaling. Indeed, we observed this
case in our simulations for both Sn+Sn collisions. In the
Langevin equation, σ 2

Z and σ 2
N essentially depend on the

physical conditions reached, such as the temperature, density,
friction parameter, etc. Considering that R21(N )|Z ∼ exp(αN )
or R21(Z)|N ∼ exp(βZ) for a given Z or N, we can get

α ∼ (NZ)2 − (NZ)1

σ 2
Z

,

(16)

β ∼ (NN )2 − (NN )1

σ 2
N

.

Assuming other ingredients can be neglected, σ 2
Z or σ 2

N

could be considered to be proportional to temperature T of
the fission fragments according to the fluctuation-dissipation
theorem [23]; in this circumstance,

α ∼ (NZ)2 − (NZ)1

T
,

(17)

β ∼ (NN )2 − (NN )1

T
,

where [(NZ)2 − (NZ)1] and [(NN )2 − (NN )1] can be under-
stood as terms representing the average difference of the
neutron or proton chemical potential between two reactions.

As we already showed, both σ 2
Z and σ 2

N rise with Z and N,
respectively, and are almost independent of σα0 from Figs. 4(a)
and 4(b) in our calculation. On the other hand, we recognize
that the similar behavior of the Z dependence of σZ has
been experimentally observed in the spallation-fission data
of 208Pb (1 GeV/nucleon) + d or p, etc., in Gesellschaft für
Schwerionenforschung (GSI) [40,41]. According to the model
which is based on the modern version of the abrasion-ablation
model involving the fission nuclei by Benlliure et al. [42], the
square of the width of the symmetric fission fragment from the
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macroscopic potential can be expressed by

σ 2
Z = 1

2

√
E∗

bf√
aCmac

= Tfis

2Cmac
, (18)

where E∗
bf is the excitation energy above the the fission barrier,

a is the level energy parameter, Tfis is the temperature of
fissioning nuclei, and Cmac is the curvature of macroscopic
potential energy Vmac as a function of charge asymmetry. In
this way, the width of symmetric fission fragment distribution
increases with temperature. This is also the case in our present
model calculation. In other words, the temperature of the
fission fragments which mostly originates from the symmetric
fission seems to increase with the charge number of the
fragments. A recent systematic study of the experimental data
also displays that the variance of the fragment mass distribution
increases with the temperature of the compound nucleus and
the fission fragments [43].

To verify this relationship between the temperature and the
charge number of the fragments, we extract the temperature
of the fissioning nuclei in the scission point when the
system occurs on the dynamic channel. Figures 5(a) and 5(b)
demonstrate the mean temperature of two systems as a function
of Z and N for the fissioning nuclei, respectively. Obviously, the
temperature almost increases linearly with the charge number
Zfis or neutron number Nfis of the fissioning nuclei. Since we
assume the fission fragments have the same N/Z as the one of
the fissioning nuclei, the temperature of the fission fragments
shall increase with their charge number.

In Eq. (16), [(NZ)2 − (NZ)1] and [(NN )2 − (NN )1] can
be understood as the average difference of the neutron or
proton chemical potential between two reactions. Figures 6(a)
and 6(b) show [(NZ)2 − (NZ)1] and the absolute value of
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FIG. 5. (Color online) Extracted mean temperature of fissioning
nuclei of two reaction systems as a function of their charge number
(a) or neutron number (b).
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FIG. 6. (Color online)Values of (NZ)2 − (NZ)1 (a) and |(NN )2 −
(NN )1| (b) as a function of Z and N of the fission fragments,
respectively, between 116Sn+116Sn and 112Sn+112Sn with different
σα0 .

[(NN )2 − (NN )1] as functions of Z or N, respectively, in
different σα0 . Apparent increasing behavior with Z or N has
been observed. In order to understand the increasing behavior
of [(NZ)2 − (NZ)1] or |[(NN )2 − (NN )1]| as a function of the
charge number and the neutron number of fission fragments,
we investigate the fissioning nuclei. For example, Fig. 7(a)
shows the neutron number vs the charge number of the
fissioning nucleus for both reaction systems just before fission
takes place. The lines represent the second-order polynomial
fits to guide the eyes. From the above points, we can extract the
[(NZ)2 − (NZ)1]fis as a function of Zfis as shown in Fig. 7(b).
Since the fission fragments are assumed to have the same
N/Z as one of the fissioning nuclei, the fission fragments
will show a similar increasing behavior as the charge number
rises. In comparison to the insensitivity of σZ or σN to
σα0 , [(NZ)2 − (NZ)1] and [(NN )2 − (NN )1] show somewhat
stronger dependences on σα0 , i.e., [(NZ)2 − (NZ)1] has larger
values in the proton-rich side while |[(NN )2 − (NN )1]| shows
smaller values in the neutron-deficit side as σα0 becomes
smaller in Fig. 6. This essentially originates from the overlap of
the different mass partitions of two fission fragments according
to the sampling of the Gaussian probability distribution for
the mass asymmetry when fission takes place. The symmetric
fissions result in the strongest dependence of [(NZ)2 − (NZ)1]
and |[(NN )2 − (NN )1]| on the charge number or neutron
number.

B. Isoscaling behavior

Eq. (1) can be written as lnR21 = CZ + αN , where CZ =
lnC + βZ; if we plot R21 as a function of N on a natural
logarithmic plot, the ratio follows a straight line. In Fig. 8, this
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FIG. 7. (Color online) (a) Calculated neutron numbers as a
function of the charge numbers for the fissioning nuclei of two
reaction systems. (b) Difference of the neutron number of the
fissioning nuclei between two reaction systems as a function of the
charge number for the fissioning nuclei. Lines represent two-order
polynomial fits in (a) and a linear fit in (b).

isoscaling behavior is observed in the Langevin simulation.
Here each symbol with a line represents isotope an chain. From
there, the isoscaling parameter α can be extracted directly.
Similarly, the isoscaling parameter β can be extracted from
the isotonic ratio as shown in Fig. 9 by lnR21 = CN + βZ,
where CN = lnC + αN .

From Figs. 8 and 9, the relationship between α(|β|) and the
charge number Z(N) of the fission fragments can be deduced.
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FIG. 8. (Color online) Isotopic yield ratio of fission fragments
between 116Sn+116Sn and 112Sn+112Sn in the Langevin model with
σα0 = 0.06 and Ebeam/A = 8.4 MeV. Different symbols from left to
right represent the calculated results for the isotopes from Z = 37 to
59. The lines represent exponential fits to guide the eye.
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FIG. 9. (Color online) Same as Fig. 8, but for the isotonic yield
ratio and N = 46–73.

In order to investigate the effect of the width of the Gaussian
probability distribution on the isoscaling parameters, we use
the different widths of the sampling Gaussian distribution for
mass asymmetry parameter α0, namely, σα0 = 0.04, 0.06, 0.08,
and 0.20, with the random number from −1 to 1 and the mean
value of 0. Figure 10(a) shows the isoscaling parameter α

as a function of Z with different σα0 . From this figure, we
know that at low σα0 , i.e., when the symmetric fission is the
overwhelming mechanism, α increases with Z. This means
that the isospin effect becomes stronger as Z increases. A
recent analysis of fission with a simple liquid-drop model [8]
predicted a systematic increase of the isoscaling parameter
α with the proton number of the fragment element. In our
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FIG. 10. (Color online) (a) Isoscaling parameter α as a function
of Z in the different Gaussian widths σα0 of the mass asymmetry pa-
rameter α0 for fission fragments; (b) same as (a), but for [(NZ )2−(NZ )1]

σ 2
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simulation, this kind of increase of α with Z apparently stems
from the dominant symmetric fission mechanism. However,
in the other extreme in Fig. 10(a), i.e., at a large σα0 , α

shows a contrary trend with Z; i.e., it drops with increasing
Z. In this case, it seems that there exists a stronger isospin
effect for the fragments with lower Z. In a midrange case,
the rising and falling branches compete with each other,
the mediate isoscaling behavior appears, and a minimum
α parameter occurs around the symmetric fission point. We
note that the fission data of 238,233U targets induced by
14 MeV neutrons reveal the same backbending behavior of the
isoscaling parameter α around the symmetric fission point [9]
as just described. They interpreted the behavior as originating
from the temperature difference of fission fragments since the
isoscaling parameter is typically, within the grand-canonical
approximation, considered inversely proportional to the tem-
perature (α = �µn/T ) as stated above. In our case, this kind of
backbending of isoscaling parameter α apparently stems from
the moderate width of the probability distribution of the mass
asymmetrical parameter of the fissioning nucleus as shown in
Fig.10. In other words, it may stem from a moderate mixture of
the different weights between the symmetric and asymmetric
fission components. Essentially, the backbending originates
from the competition between the chemical potential and the
temperature since both parameters increase with the charge
number of fission fragments.

Besides the above direct method for extracting an isoscaling
parameter, we can also check the behavior of α in terms
of Eq. (17). Figure 10(b) shows [(NZ )2−(NZ )1]

σ 2
Z

as a function

of Z. With increasing σα0 , the Z dependence of [(NZ )2−(NZ )1]
σ 2

Z

shows from the upswing trend to the downswing trend. A
turning point at Z = 51 is also observed in medium σα0 , as
Fig. 10(a) shows. From the similarity of the behavior shown
in Figs. 10(a) and 10(b) as well as the approximate equality
of the values of α and [(NZ )2−(NZ )1]

σ 2
Z

, we can say that Eq. (17)
works well in the present calculation. In our case, the turning
point of α stems from the competition between the chemical
potential term [(NZ)2 − (NZ)1] and the temperature term σ 2

Z .
In general, the chemical potential term is more sensitive to the
Gaussian width of the mass asymmetry parameter α0 for fission
fragments (see Fig. 6). Overall, we find that the isoscaling
parameter α is sensitive to the width of the probability
distribution of mass asymmetrical parameter of the fission
fragments. In other words, we may say that the isoscaling
parameter is sensitive to the asymmetrical extent of both fission
fragments.

Similarly, from Fig. 9, the relationship between |β| and the
neutron number N of the fission fragments can be deduced for
different widths σα0 . This is shown in Fig. 11(a). Different from
the relationship of α and Z, the |β| always drops as the neutron
number increases, regardless of the change of σα0 . The quanti-
tative and qualitative similarity of [(NN )2−(NN )1]

σ 2
N

vs N [Fig. 11(b)]

has also been observed; i.e., it always decreases with increasing
N and is insensitive to σα0 .

However, the obtained isoscaling parameters are actually
very large in comparison to the usual isoscaling parameter
extracted from the data [9]. The reasons could be the model
itself, since the model is still too simple, or our assumption of a
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FIG. 11. (Color online) (a) Isoscaling parameter |β| as a function
of Z in the different Gaussian widths σα0 of the mass asymmetry pa-
rameter α0 for fission fragments; (b) same as (a), but for | (NN )2−(NN )1

σ 2
N

|.

Gaussian probability distribution of the fission fragments. Also
the post-fission evaporation component will, of course, play
some role in modification of the isoscaling parameters. The
present model calculation, however, does not include this in-
fluence of post-fission evaporation of fission fragments. Those
factor may result in larger apparent isoscaling parameters in
comparison to the data. Of course, the main aim of this work
is to show the isoscaling behavior of fission fragments and its
trend with the charge or neutron number of the fragments by
the Langevin dynamics.

C. The beam energy dependence of the isoscaling parameters

The simulations are systematically performed for different
beam energies. The values of α and |β| are extracted as
a function of beam energy for the fragments Z = 44–
54 and N = 58–68, respectively, as shown in Figs. 12(a)
and 12(b). It shows that both α and β decrease as the beam
energy increases, which means that the isospin effect fades
away with increasing Ebeam/A. This behavior is similar to the
fragmentation case in which the isoscaling parameter drops
with increasing temperature in the statistical models as well as
experiments [6,16,38,44].

D. The friction parameter dependence of the isoscaling
parameters

In addition, the influence of the reduced friction parameter
on the isoscaling parameters is investigated; we use a constant
value of β0 = 2, 4, 6, 8, and 10 instead of the one-body
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FIG. 12. (Color online) Isoscaling parameter α (a) and |β| (b)
as functions of beam energy for the fragments Z = 44–54 and
N = 58–68, respectively. The width σα0 of the Gaussian probability
is 0.06.

dissipation βOBD used earlier. In Figs. 13(a) and 13(b), we
plot α and |β| as a function of β0 for different elements
from Z = 44 to 54 or different isotones from N = 58 to 68,
respectively. Both α and |β| decrease as the reduced friction
parameter increases. It shows that α and β are sensitive to the
reduced friction parameter. Larger reduced friction makes the
Brownian particles spend more energy which is transferred to
the internal energy from ground state to the scission point, than
does the smaller reduced friction. Consequently, the system
will keep less memory at the initial entrance channel. As for
the isoscaling behavior, the isoscaling parameter also shows a
decrease with the larger reduced friction parameter. Therefore,
the study of the isoscaling behavior of the fission fragment
might be a good tool for exploring the friction effect in the
fission dynamics process.

IV. SUMMARY

In summary, we applied the Langevin model to investigate
the isoscaling behavior in the dynamical process of compound
nuclear fission. In order to treat the fission fragments, we
assume that the mass asymmetry parameter of the two fission
fragments from the fissioning nucleus is taken from a random
number with a Gaussian distribution whose width is σα0 .
The simulation illustrates that the isotopic and isotonic yield
ratios of fission fragments in the dynamical fission channels
of the 116Sn+116Sn and 112Sn+112Sn reaction systems show
the isoscaling behavior. The terms which are related to the
difference of neutron or proton chemical potential are also
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FIG. 13. (Color online) Same as Fig. 12, but plotted against the
reduced friction parameter β0.

extracted. It is interesting that the isoscaling parameter α

is strongly sensitive to the Gaussian width σα0 of the mass
asymmetry parameter but β is not. When σα0 is small, i.e.,
the fission is almost symmetric, α increases with the atomic
number of fission fragments, which is similar to the theoretical
prediction of a simple liquid-drop model [8]. In contrast, when
σα0 is large, for instance, σα0 = 0.20, α drops with increasing
Z of fission fragments. However, in the intermediate values of
σα0 , α shows a backbending with Z of fission fragments, which
is similar to the observation of the 238,233U fission data induced
by 14 MeV neutrons [9]. In this context, we could say that the
α parameter is sensitive to the asymmetric extent of the fission
fragments from the fissioning nuclei. However, β parameter is
insensitive to the width σα0 even though it always shows the
dropping trend with N.

In addition, the dependences of beam energy and the
reduced friction parameter for the isoscaling parameters are
systematically investigated. It is found that both α and β

drop with increasing beam energy of the projectile as well as
the reduced friction parameter, reflecting the temperature-like
dependence of isoscaling parameters in the fission dynamics.
The disappearance of isospin effect of fission dynamics is
expected in a certain higher beam energy or larger reduced
friction parameter. In general, the isoscaling analysis of the
fission data appears to be a sensitive tool for investigating the
fission dynamics.
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