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Based on the extended optical model approach in which the polarization potential is decomposed into direct
reaction (DR) and fusion parts, simultaneous χ2 analyses are performed for elastic scattering, DR, and fusion
cross section data for the 9Be + 208Pb system at near-Coulomb-barrier energies. Similar χ2 analyses are also
performed by taking into account only the elastic scattering and fusion data as was previously done by the present
authors, and the results are compared with those of the full analysis including the DR cross section data as well.
We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable
predictions of cross sections, particularly when the DR cross section data are incomplete. Discussions are also
given on the results obtained from similar analyses made earlier for the 9Be + 209Bi system.
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I. INTRODUCTION

In our recent study [1], we have carried out simultaneous
χ2 analyses of elastic scattering and fusion cross section data
for the 6Li + 208Pb [2–4] and 9Be + 209Bi [5,6] systems
at near-Coulomb-barrier energies in the framework of an
extended optical model [7–9] by introducing two types of
complex polarization potentials: the direct reaction (DR) and
fusion potentials. In such analyses, it is indispensable and
essential to include the experimental data for the total DR cross
section σ

exp
D and the fusion cross section σ

exp
F , in addition to

the elastic scattering cross section dσ
exp
E /d�, for the separate

determination of the DR and fusion potentials. However, when
the previous study was made [1], reliable data of σ

exp
D for

6Li + 208Pb and 9Be + 209Bi were not available, and thus the
analyses proceeded in two steps. In the first step, we carried
out χ2 analyses of only the elastic scattering data by assuming
just one simple Woods-Saxon-type complex potential. Using
these fixed potential parameters, we could then generate the
total reaction cross section σR , which we called the semi-
experimental total reaction cross section σ

semi-exp
R . As has been

shown in a number of publications, such σ
semi-exp
R predicted

from the optical potential that fits the elastic scattering data
usually reproduces σ

exp
R very well. This is the case for reactions

induced by the proton [10,11], the deuteron [12], the α particle
[13], and also heavy-ions [14]. We then used σ

semi-exp
R to further

extract semi-experimental total DR cross sections σ
semi-exp
D by

using the relation σ
semi-exp
D = σ

semi-exp
R − σ

exp
F . In the second

step, use was made of these extracted σ
semi-exp
D in place of the

experimental DR cross section σ
exp
D to carry out simultaneous

analyses of dσ
exp
E /d�, σ

semi-exp
D , and σ

exp
F for determining

the full extended optical model potential composed of two
polarization potentials.

The DR and fusion potentials determined by this process
revealed interesting characteristic features of these potentials.
First, both potentials satisfy separately the dispersion relation
[15]. Second, the fusion potential is found to exhibit a threshold
anomaly [15,16], as was observed for tightly bound projectiles
[17–19], but the DR potential does not show a pronounced
threshold anomaly. Third, at the strong absorption radius, the
magnitudes of the fusion potential were found to be much
smaller than those of the DR potential. As a consequence,
the resulting total polarization potential dominated by the
DR potential becomes rather smooth as a function of the
incident energy. This has solved a long-standing puzzle of why
the threshold anomaly has not been seen in the polarization
potentials determined for systems involving loosely bound
projectiles such as 6Li and 9Be [2,5].

The extracted DR potentials have provided us with a
unique opportunity to study the effects of breakup (DR) on
fusion by comparing σF calculated from either including or
neglecting the real and imaginary parts of the DR potential.
Such studies were made in Ref. [1], which showed that, in
the sub-barrier region, breakup is not the main reason for
the sub-barrier enhancement of σ

exp
F and that the mechanism

that governs the enhancement is neutron flow, as originally
suggested by Stelson et al. [20]. In our approach, this effect
is phenomenologically implemented in the imaginary part of
the DR potential. However, in the above-barrier region, the
breakup suppresses σ

exp
F and the observed suppression factors

for 6Li and 9Be were fairly well accounted for in terms of the
breakup [1].

After completing our work of Ref. [1] for the 9Be + 209Bi
system, elastic scattering data for 9Be + 208Pb, a system similar
to 9Be + 209Bi, have become available [21]. Thus, for the
9Be + 208Pb system we now have data available for the elastic
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scattering [21] and fusion [22] cross sections as well as the
sum of cross sections of breakup, transfer, and incomplete
fusion [23]. For a loosely bound projectile such as 9Be, we may
assume that these observed summed cross sections correspond
to the total DR cross sections. This has provided us with an
opportunity to carry out χ2 analyses by taking into account all
three sets of experimental data (i.e., the elastic scattering, DR,
and fusion data). We can then compare these χ2 analysis results
with those obtained by considering only two sets of data (i.e.,
the elastic scattering and fusion data without the experimental
DR data). We shall henceforth call the case where all three
data sets are included in the χ2 analyses the EDF (elastic, DR,
and fusion) approach and the case where only two data sets
are considered the EF (elastic scattering and fusion) approach.
Note that in the EF approach we do, however, include σ

semi-exp
D ,

which is essential to fix the DR potential parameters. The aim
of the present study is to make a comparison between these
two approaches and study the validity of the EF method used in
our previous work. By extending our EF method proposed in
the previous work on 9Be + 209Bi to the 9Be + 208Pb system,
where we have DR data as well as elastic and fusion data,
we shall show that the EF approach gives us very reliable
predictions of cross sections.

In Sec. II, we first generate σ
semi-exp
D for the EF approach

case by following the method described in Ref. [1]. Two types
of χ2 analyses (EDF and EF) are then carried out in Sec. III and
the results are compared and discussed in Sec. IV. Section V
concludes the paper.

II. EXTRACTING THE SEMI-EXPERIMENTAL
DR CROSS SECTION

Our method of generating σ
semi-exp
D relies on the empirical

fact [24] that the total reaction cross section calculated from the
optical model fit to the available elastic scattering cross section
data, dσ

exp
E /d�, usually agrees well with the experimental σR ,

in spite of the well-known ambiguities in the optical potential.
Let us call the total reaction cross section generated by this
method the semi-experimental reaction cross section σ

semi-exp
R .

Then, σ
semi-exp
D is generated by

σ
semi-exp
D = σ

semi-exp
R − σ

exp
F . (1)

This approach seems to work even for loosely bound projec-
tiles, as demonstrated recently by Kolata et al. [14] for the
6He + 209Bi system.

Following Ref. [1], we first carry out rather simple optical
model χ2 analyses of elastic scattering data solely for the
purpose of deducing σ

semi-exp
R . For these preliminary analyses,

we assume the optical potential to be a simple sum of two
volume-type potentials V0(r) and U1(r, E), where V0(r) is
the real, energy-independent bare potential and U1(r, E) is
a complex potential with common geometrical parameters
for both real and imaginary parts. The elastic scattering data
are then fitted with a fixed radius parameter r1 for U1(r, E)
and with three other adjustable parameters: the real and the
imaginary strengths V1 and W1 and the diffuseness parameter
a1. The χ2 fitting is done for three choices of the radius
parameter: r1 = 1.3, 1.4, and 1.5 fm. These different choices

TABLE I. Measured and extracted fusion, DR, and total reaction
cross sections for the 9Be + 208Pb system. σ

exp
F and σ

exp
D are from

Refs. [22] and [23], respectively. σ
exp
R is the sum of σ

exp
F and σ

exp
D .

σ
semi-exp
R is extracted from the elastic scattering data [21] as explained

in the text. σ
semi-exp
D is then obtained by using Eq. (1).

Elab Ec.m. σ
exp
F σ

exp
D σ

semi-exp
D σ

exp
R σ

semi-exp
R

(MeV) (MeV) (mb) (mb) (mb) (mb) (mb)

38 36.4 10 109 71 119 81
40 38.3 58 180 198 238 256
42 40.3 145 267 320 412 465
44 42.2 248 300 368 548 616
46 44.1 355 300 423 655 778
48 46.0 458 360 541 818 999
50 47.9 580 410 597 990 1177

of the r1 value are made to examine the dependence of the
resulting σ

semi-exp
R on the value of r1.

As observed in Ref. [1], the values of σ
semi-exp
R extracted in

this manner for three different r1 values agree with the average
within 1%, implying that σ

semi-exp
R is determined without much

ambiguity. We then identified the average as the final value
of σ

semi-exp
R . Using these determined σ

semi-exp
R , we generated

σ
semi-exp
D by employing Eq. (1). The resultant values of σ

semi-exp
R

and σ
semi-exp
D are presented in Table I, together with σ

exp
F [22],

σ
exp
D [23], and σ

exp
R . As seen from Table I, the values of σ

semi-exp
D

and σ
semi-exp
R are systematically larger than the corresponding

experimental values, except for the lowest energy of Ec.m. =
36.4 MeV. The reason why σ

semi-exp
D is larger than σ

exp
D

except for the lowest energy may be ascribed to the fact that
σ

exp
D includes contributions from only breakup, transfer, and

incomplete-fusion events [23], but not from inelastic scattering
and other simple quasi-elastic processes such as pickups. The
difference between σ

exp
R and σ

semi-exp
R becomes larger with

energy, implying that there are more open, but not identified,
DR channels as the incident energy increases.

It is worth remarking at this point that there is a reason
to question the accuracy of the extracted value of σ

semi-exp
D

at Ec.m. = 36.4 MeV. The experimental values of the ratio
PE of the elastic scattering to the Rutherford cross section
at forward angles are systematically larger than unity [21]
at this energy. The average value of PE at small angles is
about 1.033. This suggests that there may be a problem in the
overall normalization constant in the measured data. In fact,
it is indicated [21] that there are experimental uncertainties
of a few percent in the absolute normalization. Even just
a few percent uncertainty in the normalization is critical,
particularly at low energies, in extracting σ

semi-exp
D . To confirm

this, we have reanalyzed the elastic scattering data by reducing
the cross section by a factor of 1.033 so that the values
of PE at forward angles become around unity. This newly
extracted σ

semi-exp
R turns out to be 122 mb, which in turn gives

us σ
semi-exp
D = 112 mb. This value is significantly greater than

the 71 mb given in Table I and is also larger than the experi-
mental value of σ

exp
D = 109 mb. It is thus very plausible that

the true values of σ
semi-exp
D and σ

semi-exp
R at this energy could be

larger than σ
exp
D and σ

exp
R , respectively. However, in the present
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χ2 analyses, use is made of the σ
semi-exp
D values as listed in

Table I.

III. SIMULTANEOUS χ 2 ANALYSES

Simultaneous χ2 analyses are then performed for two
data sets: (dσ

exp
E /d�, σ

exp
D , σ

exp
F ) and (dσ

exp
E /d�, σ

semi-exp
D ,

σ
exp
F ), where dσ

exp
E /d�, σ

exp
D , and σ

exp
F are from the literature

[21–23]. As mentioned in Sec. I, the former (latter) case
with σ

exp
D (σ semi-exp

D ) is called the EDF (EF) analysis. In
calculating the χ2 value, we simply assume 1% errors for
all the experimental data. The 1% error is roughly the average
of errors in the measured elastic scattering cross sections, but
it is much smaller than the errors in the DR (∼5%) and fusion
(∼10%) cross sections. The choice of 1% error for DR and
fusion cross sections is thus equivalent to increasing the weight
for the DR and fusion cross sections in evaluating the χ2 values
by factors of 25 and 100, respectively. Such a choice of errors
may be reasonable, since we have only one datum point for
each of these cross sections, whereas there are more than 50
data points for the elastic scattering cross sections.

A. Necessary formulaes

The optical potential U (r, E) we use in the present work
has the following form;

U (r; E) = VC(r) − [V0(r) + UF (r; E) + UD(r; E)], (2)

where VC(r) is the usual Coulomb potential with rC =
1.25 fm and V0(r) is the bare (Hartree-Fock) nuclear potential.
UF (r; E) and UD(r; E) are, respectively, fusion and DR
parts of the polarization potential [25] originating from
couplings to the respective reaction channels. Both UF (r; E)
and UD(r; E) are complex and their forms are assumed to be of
volume type and surface-derivative type [8,26], respectively.
V0(r), UF (r; E), and UD(r; E) are explicitly given by

V0(r) = V0f (X0), (3)

UF (r; E) = [VF (E) + iWF (E)]f (XF ), (4)

and

UD(r; E) = [VD(E) + iWD(E)]4aD

df (XD)

dRD

, (5)

where f (Xi) = [1 + exp(Xi)]−1 with Xi = (r − Ri)/ai

(i = 0, D and F ) is the usual Woods-Saxon function, and
VF (E), VD(E),WF (E), and WD(E) are the energy-dependent
strength parameters. We assume that the geometrical param-
eters of the real and imaginary potentials are the same, and
thus the strength parameters Vi(E) and Wi(E) (i = F or D)
are related through a dispersion relation [15],

Vi(E) = Vi(Es) + E − Es

π
P

∫ ∞

0
dE′ Wi(E′)

(E′ − Es)(E′ − E)
,

(6)

where P stands for the principal value and Vi(Es) is the value
of Vi(E) at a reference energy E = Es . Later, we will use

Eq. (6) to generate the final real strength parameters VF (E) and
VD(E), after WF (E) and WD(E) are fixed from χ2 analyses.
Note that the breakup cross section may include contributions
from both Coulomb and nuclear interactions, which implies
that the direct reaction potential includes effects coming
from not only the nuclear interaction but also the Coulomb
interaction.

V0(r) in Eq. (3) may also have an energy dependence
coming from the nonlocality owing to the knockon-exchange
contribution. We ignore such effects as they are expected to
be small for heavy-ion scattering [27], and we employ the
real potential parameters used in Ref. [28], assuming that
all the unusual features of the potential may be put into the
polarization parts, particularly in the DR part. The parameters
used for V0(r) are V0 = 18.36 MeV, r0 = 1.22 fm, and
a0 = 0.57 fm [28]. Note that this potential is shallow, which
is often required in fitting elastic scattering data of such
projectiles as 6Li and 9Be [29].

In performing the optical model calculation, one can
evaluate σF and σD by using the following expression [7–9,30]:

σi = 2

h̄v
〈χ (+)|Wi(r)|χ (+)〉 (i = F or D), (7)

where χ (+) is the usual distorted wave function that satisfies
the Schrödinger equation with the full optical model potential
U (r, E) in Eq. (2). σF and σD are thus calculated within the
same framework as dσE/d� is calculated. Such a unified
description enables us to treat different types of reactions on
the same footing.

B. Threshold energies of sub-barrier fusion and DR

As in Ref. [1], we also utilize as an important ingredient
the so-called threshold energies E0,F and E0,D of sub-barrier
fusion and DR, respectively, which are defined as zero
intercepts of the linear representation of the quantities Si(E),
defined by

Si ≡
√

Eσi ≈ αi(E − E0,i) (i = D or F ), (8)

where αi is a constant. Si with i = F (i.e., SF ) is the quantity
introduced originally by Stelson et al. [20], who showed
that in the sub-barrier region SF from the measured σF can
be represented very well by a linear function of E (linear
systematics) as in Eq. (8). In Ref. [26], we extended the linear
systematics to DR cross sections. In fact the DR data are also
well represented by a linear function.

In Fig. 1(a), we present the experimental SF (E) and SD(E).
From the zeros of Si(E), one can deduce E

exp
0,D = 30.0 MeV and

E
exp
0,F = 35.0 MeV. For both i = F and i = D, the observed Si

are very well approximated by straight lines in the sub-barrier
region and thus E0,i can be extracted without much ambiguity.
Another determination of E

exp
0,D can be made by using the semi-

experimental DR cross section instead of the experimental
DR cross section, as shown in Fig. 1(b). The resultant value,
which we shall denote by E

semi-exp
0,D , is found to be E

semi-exp
0,D =

32.5 MeV, close to E
exp
0,D .
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FIG. 1. The Stelson plot of Si = √
Ec.m.σi for DR (i = D, open

circles) and fusion (i = F , solid circles) cross sections with (a)
the experimental and (b) the semi-experimental DR cross sections.
The straight lines are drawn to show the extraction of the threshold
energies E0,i .

E0,i may then be used as the energy where the imaginary
potential Wi(E) becomes zero [i.e., Wi(E0,i) = 0] [26,31].
This procedure will be used later in obtaining a mathematical
expression for Wi(E).

C. χ 2 analyses

All the χ2 analyses performed in the present work are
carried out by using V0(r) as given in Sec. III A and by using the
fixed geometrical parameters for the polarization potentials,
rF = 1.40 fm, aF = 0.30 fm, rD = 1.50 fm, and aD = 0.70 fm,
which are close to the values used in our previous study [1].
Small changes of these values from the ones used in Ref. [1]
are made to improve the χ2 fitting.

As in Ref. [1], the χ2 analyses are done in two steps; in the
first step, all four strength parameters, VD(E),WD(E), VF (E),
and WF (E), are varied. In this step, we have been able to fix the
strength parameters of the DR potential, VD(E) and WD(E),
fairly well in the sense that the extracted VD(E) and WD(E)
turn out to be smooth as functions of E. This is particularly the
case for the imaginary strength WD(E). The values of VD(E)
and WD(E) are presented in Figs. 2 and 3 by open circles
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FIG. 2. The strength parameters Vi (upper panel) and Wi (lower
panel) for i = D and F as functions of Ec.m. in the EDF case. The
open and solid circles are the strength parameters extracted by χ2

fitting for i = D and F, respectively. The dotted and solid lines in the
lower panel denote WD and WF from Eqs. (9) and (11), respectively;
the dotted and solid curves in the upper panel represent VD and VF

calculated by using the dispersion relation of Eq. (6) with Wi given by
Eqs. (9) and (11). The reference energies,Es for VF (Es) and VD(Es)
are chosen as 4.0 and 0.85 MeV, respectively.

for the EDF and EF cases, respectively. It is remarkable that
the resultant WD(E) can be fairly well represented by the
following functions of E(= Ec.m.) (in units of MeV):

WD(E) =



0 for E � E
exp
0,D = 30.0,

0.037(E − 30.0) for 30.0< E � 39.0,

0.33 for 39.0< E

(9)

in the EDF case and

WD(E) =



0 for E � E
semi-exp
0,D = 32.5,

0.052(E − 32.5) for 32.5 < E � 40.0,

0.39 for 40.0 < E

(10)

in the EF case. Note that the threshold energies where WD(E)
become zero are set equal to E

exp
0,D and E

semi-exp
0,D as determined

in the previous subsection and are indicated by the open half
circles sitting on the axis of Ec.m. in Figs. 2 and 3. The dotted
lines in the lower panels of Figs. 2 and 3 represent Eqs. (9)
and (10), respectively. The dotted curves in the upper panels of
Figs. 2 and 3 denote VD as predicted by the dispersion relation,
Eq. (6), with WD(E) given by Eqs. (9) and (10), respectively.
As seen, the dotted curves reproduce the open circles fairly
well, indicating that VD(E) and WD(E) extracted by the χ2

analyses satisfy the dispersion relation.
In this first step of χ2 fitting, however, VF (E) and WF (E)

are not well fixed in the sense that the extracted values fluctuate
considerably as functions of E. This is understandable from
the expectation that the elastic scattering data can probe most
accurately the optical potential in the peripheral region, which
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FIG. 3. The same as in Fig. 2, but for the EF case. The dotted
(solid) line in the lower panel denotes WD (WF ) from Eq. (10)
[Eq. (12)]. The dotted (solid) curve in the upper panel represents
VD (VF ) obtained by the dispersion relation. The reference energy Es

for VF (Es) and VD(Es) are taken as 3.2 and 0.85 MeV, respectively.

is nothing but the region characterized by the DR potential with
rD = 1.5 fm. The part of the nuclear potential responsible for
fusion with rF = 1.4 fm is thus difficult to pin down in this
first step.

To obtain more reliable information on VF and WF , we have
therefore performed the second step of the χ2 analysis. This
time, instead of doing a four-parameter search we use VD and
WD determined by the first step of the χ2 fitting. But, rather
than using VD and WD exactly as determined by the χ2 fitting,
we use WD(E) given by Eqs. (9) and (10) and VD(E) given
by the dispersion relation. We then perform a two-parameter
χ2 analyses, treating only VF (E) and WF (E) as adjustable
parameters. The values determined are presented in Figs. 2
and 3 by solid circles. As seen, both VF (E) and WF (E) are
determined to be fairly smooth functions of E. The extracted
WF (E) may be represented by

WF (E) =



0 for E � E
exp
0,F = 35.0,

0.879(E − 35.0) for 35.0 < E � 38.3,

2.90 for 38.3 < E

(11)

in the EDF case and by

WF (E) =



0 for E � E
exp
0,F = 35.0,

0.771(E − 35.0) for 35.0 < E � 38.5,

2.70 for 38.5 < E

(12)

in the EF case, respectively. As is done for WD(E), the
threshold energy where WF (E) becomes zero is set equal to
E

exp
0,F and is indicated in Figs. 2 and 3 by the solid half circle

on the axis of Ec.m.. As seen, the WF (E) values determined
by the second χ2 analyses are fairly well represented by the
functions given by Eqs. (11) and (12). Note that the energy
variations of WF (E) and VF (E) are quite rapid compared to

those of WD(E) and VD(E) and are similar to those observed
in tightly bound projectiles [17–19].

Using WF (E) given by Eqs. (11) and (12), one can
generate VF (E) from the dispersion relation. The results
are shown by the solid curves in the upper panels of Figs.
2 and 3, which reproduce well the solid circles extracted
from the χ2 fitting. This means that the fusion potential
determined from the present analysis satisfies the dispersion
relation.

D. Final calculated cross sections in comparison with the data

Using WD(E) given by Eqs. (9) and (10) and WF (E) given
by Eqs. (11) and (12) together with VD(E) and VF (E) gener-
ated by the dispersion relation, Eq. (6), we have performed
the final calculations of the elastic, DR, and fusion cross
sections. Thus, instead of using the potential parameters just
as extracted by the χ2 analyses we have used these dispersive
potentials for the final calculations. The results are presented in
Figs. 4 and 5 in comparison with the experimental data. All
the data are well reproduced by the calculations, though there
are subtle differences between the fits obtained by two types
of the analyses, as will be discussed in detail in Sec. IV B.

IV. DISCUSSION

A. Fusion and DR potentials

The characteristic features of the polarization potentials
determined in the present χ2 analyses are very similar to
those obtained in our previous analyses [1]. The real and
imaginary parts of both fusion and DR potentials satisfy
well the dispersion relation, and the fusion potential displays
the threshold anomaly. As already presented in Figs. 2
and 3, these features are seen in the strength parameters,
VF (E),WF (E), VD(E), and WD(E).

Another important feature of the extracted potentials is that
at the strong absorption radius of Rsa = 12.3 fm both the
real and imaginary parts of the DR potential are considerably
greater than those of the fusion potential, although the strength
parameters VD(E) and WD(E) are smaller than VF (E) and
WF (E). Thus, the energy dependence of the net polarization
potential (sum of the fusion and DR potentials) at Rsa becomes
dominated by the DR potential, which has a relatively smooth
energy dependency. Consequently, the net potential does not
show a threshold anomaly such as seen in the net potential for
systems with tightly bound projectiles [17–19]. However, after
separating the polarization potential into DR and fusion parts,
we clearly observe the characteristic threshold anomaly in the
fusion potential.

B. Comparison of EDF and EF cross sections

Both EDF and EF approaches reproduce the experimental
elastic scattering cross sections very well, as shown in Fig. 4.
The calculated cross sections shown in the left and right panels
of Fig. 4 agree well with each other. It may then be naturally
expected that the resultant total reaction cross sections also
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FIG. 4. Ratios of the elastic scattering
cross sections to the Rutherford cross section
calculated with our final dispersive optical po-
tential for (a) the EDF case and (b) the EF case
shown in comparison with the experimental
data. The data are taken from Ref. [21].

agree with each other. This is indeed the case; the values of the
calculated total reaction cross sections from the EDF approach
are approximately equal to those from the EF approach, as
shown by the dashed curves in Figs. 5(a) and 5(b).

Since σ
semi-exp
R is extracted from the fit to the elastic

scattering data, our final calculation results using the dispersive
potential naturally reproduce σ

semi-exp
R , as shown by the dotted

curves in Fig. 5(b). In the EF case, the calculations also
reproduce both DR and fusion cross sections as well. This
is, however, not the case for the EDF approach; calculated
cross sections using the dispersive potential somewhat exceed
the experimental data of all three cross sections, as Fig. 5(a)
shows.

It may thus be concluded that the overall fit to the data
obtained in the EF case is better than that in the EDF case
and that the main source of problems in getting a good overall
fit in the EDF case comes from inconsistency between the
elastic scattering [21] and the DR reaction [23] data; the
elastic scattering data require more absorption (larger total
reaction cross section) than what the measured total absorption
(reaction) cross sections tell us. In view of this, it is important
that measurements be made of inelastic scattering and some
other quasi-elastic reactions that are not taken into account in
the total DR cross section used in the present analyses.

C. Effects of breakup on fusion

We now turn to the effect of breakup on the fusion cross
section. As has been argued, there are two competing physical
effects of breakup on the fusion cross section σF . The first
is the lowering of the fusion barrier, which tends to enhance
σF . The other is the removal of flux from the elastic into
the breakup channel, which suppresses σF . Since the breakup
channel dominates DR, these two competing breakup effects
may be represented by the real [VD(r; E)] and the imaginary
[WD(r; E)] parts of the DR potential; VD(r, E) can describe
precisely the effect of lowering the barrier, whereas WD(r, E)
describes the removal of the flux from the elastic channel.

To see the effects quantitatively, we have introduced in
Ref. [1] the following suppression factor:

Rth = σF /σF (VD = WD = 0), (13)

where σF (VD = WD = 0) is σF obtained by setting VD =
WD = 0 (i.e., neglecting both barrier-lowering and flux-loss
effects) and σF is our final calculated cross section, which
includes both VD and WD . In the above-barrier region, Rth

becomes almost constant and here we present just the average
of the Rth-values at the three highest energies considered
in the present study. The values are 0.87 and 0.82 for the
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FIG. 5. DR and fusion cross sections calculated with our final
dispersive optical potential for the (a) EDF and (b) EF cases shown
in comparison with the experimental data. σ

semi-exp
D , denoted by the

open circles in the EF case, are obtained as described in Sec. II. σ
exp
D ,

denoted by the open circles in the EDF case, are the experimental DR
cross sections [23]. The fusion data are from Ref. [22].

EDF and EF cases, respectively. Setting VD = 0 reduces σF ,
whereas setting WD = 0 increases σF . Thus, the fact that the
Rth values are smaller than unity indicates that the flux-loss
effect surpasses the barrier-lowering effect in the above-barrier
region. The theoretical values may be compared with the
experimental values of Rexp = 0.79, where Rexp is defined
as

Rexp = σ
exp
F

/
σF (VD = WD = 0), (14)

by using σF (VD = WD = 0) fixed from the EF case. Rexp in
the EDF case is 0.77, quite close to Rexp in the EF case.

Note that the theoretical suppression factor Rth = 0.82 in
the case of EF agrees very well with the experimental value of
Rexp = 0.79. This is natural because the calculated σF agrees
with σ

exp
F in the EF case, as shown in Fig. 5(b). Similarly,

the difference between Rth = 0.87 and Rexp = 0.77 in the
EDF case originates from the discrepancy between σ

exp
F and

the calculated σF , seen in Fig. 5(a). In either case, both Rth

and Rexp are consistently and considerably smaller than unity,
implying that the observed suppression of σF can be ascribed
to the flux loss in the elastic channel to breakup. A similar
result was also obtained in Ref. [1].

Although breakup (or DR) is the dominant factor in
the suppression of σF in the above-barrier region, this is
not the case in the sub-barrier region, where the neutron
flow affects fusion dominantly [20], generally enhancing
sub-barrier fusion. In Ref. [1], it was proposed that a good
measure for the sub-barrier fusion enhancement is the quantity

� defined as

� = VB − E0,F , (15)

where VB is the Coulomb-barrier height and E0,F is the sub-
barrier threshold energy discussed in Sec. II B. In Ref. [1], it
is demonstrated that � is very well proportional to the neutron
transfer Q value.

D. Comments on the analyses of the 9Be + 209Bi system
reported in Ref. [1]

In Ref. [1], we presented our analyses on the 9Be + 209Bi
system using only the elastic scattering [5] and fusion cross
section data [6] (the EF-type analysis). Since the target nucleus
209Bi differs from 208Pb only by one proton, it is naturally
expected that the experimental cross sections for the two
systems should be very similar. This is indeed the case for
the elastic scattering cross sections; no noticeable difference
can be found in the data measured for the Pb target [21] and
Bi target [5]. In contrast to this, the values of the fusion cross
section for the Bi target we used from Ref. [6] at the time of
our analyses [1] are significantly larger than those for the Pb
target reported in Ref. [4]. Recently, however, the fusion cross
sections for the Bi target were revised [32], and the revised
values are now very much the same as those of the Pb target.

Because of this change in the experimental values of σ
exp
F

for 209Bi, we have repeated our previous analyses for the
9Be + 209Bi system, obtaining now essentially the same results
as in the present work for 9Be + 208Pb. Therefore, we take this
opportunity to revise our previous values of the suppression
factor R; the new theoretical value obtained with the revised
data is Rth = 0.81, which can be compared with the new
experimental value of Rexp = 0.79. The corresponding values
reported previously in Ref. [1] were Rth = 0.89 and Rexp =
0.92.

V. CONCLUSIONS

In summary, we have carried out simultaneous χ2 analyses
of elastic scattering, DR (breakup plus incomplete fusion),
and fusion cross sections for the 9Be + 208Pb system at near-
Coulomb-barrier energies within the framework of an extended
optical model that introduces the DR and fusion potentials.
Two types of analyses are made: one using the experimental
DR cross section σ

exp
D (EDF case), and the other using the semi-

experimental DR cross section σ
semi-exp
D (EF case), together

with the measured elastic scattering and fusion cross sections
for both cases. In the second type of analyses, σ

semi-exp
D is first

extracted from simple optical model fits to the elastic scattering
data only. The extracted σ

semi-exp
D are found to be significantly

larger than σ
exp
D . In spite of this difference between σ

exp
D and

σ
semi-exp
D , the resultant DR and fusion potentials show common

features and satisfy fairly well the dispersion relation [15]. The
fusion potentials show the threshold anomaly as seen in the
potentials for systems with tightly bound projectiles [16–19].

For both EDF and EF cases the elastic scattering cross sec-
tions are equally well reproduced. However, the calculated DR,
fusion, and total reaction cross sections fit the corresponding
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experimental data well in the EF case, but not in the EDF
case. In the latter case, the calculated cross sections exceed
the experimental DR, fusion, and total reaction cross sections.
This is because there are some reaction channels that are not
taken into consideration in the present experimental DR data.

Thus, as long as we do not have comprehensive σ
exp
D

available, the EF analysis gives us better overall results than the
EDF analysis. We believe that if the cross section of inelastic
scattering and some other missing reactions that are not taken
into account in the present data of σ

exp
D [23] are measured and

used in the analyses, both types of analyses will lead to equally
good fits to the data. It is thus highly desirable that such DR

data be acquired in the near future to test our expectation and
to justify the validity of the EF method proposed in Ref. [1].
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