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In this paper we obtain number of states with a given spin I and a given isospin T for systems with three and
four nucleons in a single-j orbit, by using sum rules of six-j and nine-j symbols obtained in earlier works.
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Recently, there have been efforts to obtain algebraic
formulas for the number of spin I states (denoted by DI

in this paper) for fermions in a single-j shell (with j a half
integer) [1–5]. So far most discussions have been restricted to
identical particles. In nuclear physics, there are two types of
valence nucleons: protons and neutrons. Therefore, it is also
interesting to obtain the formulas of number of states with a
given spin I and isospin T (denoted by DIT in this paper), which
automatically includes DI for identical particles because DI

for identical particles studied in earlier works equals DIT with
T = Tmax.

In Refs. [6] and [7] sum rules of six-j and nine-j symbols
were studied by using the summation (trace) of diagonal matrix
elements of individual J pairing interactions for three and four
identical particles in a single-j shell. If one takes all two-body
matrix elements to be 1 (i.e., the strength GJ of all J pairing
interactions equals 1), the summation of traces over J must
equal n(n − 1)/2 multiplied by the number of spin I states.
This is nothing but the trace of identity 1.

In this paper we shall go in the reverse direction: We obtain
formulas of DIT by using the sum rules of six-j and nine-j
symbols obtained in Refs. [6] and [7]. Similarly to Ref. [7],
we first define the J-pairing interaction HJT for nucleons in a
single-j shell as follows:

HJT = GJT

J∑
M=−J

A
(JT )†
MMT

A
(JT )
MMT

,

A
(JT )†
MMT

= 1√
2

[a†
j t a

†
j t ]

(JT )
MMT

,

(1)

A
(JT )
M = −(−1)M+MT

1√
2

[ãj t ãj t ]
(JT )
−M−MT

,

Ã(JT ) = − 1√
2

[ãj t ãj t ]
(JT ),

where [](JT )
MMT

means an operator in which two nucleons are
coupled to spin J and isospin T with spin projection M and
isospin projection MT . We take GJT = 1 throughout this
paper.
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In this paper we shall exemplify our method by using three
and four nucleons in a single-j orbit. The same method can be
applied to three and four bosons with F spin of the interacting
boson model (IBM) II [8], IBM-III, and IBM-IV [9].

First, one can prove that for n = 4 the summation of all
nonzero eigenvalues of H = HJT is the trace of the HJT

matrix with total spin I, and this trace is given by summing the
diagonal matrix elements

〈0|[A(JT2)A(KT ′
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MMT
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over K, T2, and T ′
2. Here T2 (T ′

2) and T are isospins for two
and four nucleons, respectively.

The procedure to obtain DIT is straightforward. From the
sum rule of two-body coefficients of fractional parentage, one
obtains n(n − 1)/2 multiplied by DIT , if one sums Eq. (2)
over all allowed J,K, T2, and T ′

2; namely,

∑
J
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= 6DIT . (3)

For n = 4, the maximum isospin T (Tmax) should be equal
to 2. For this case, T2 and T ′

2 in Eq. (3) equal 1, and J and K
must take even values. Then we have
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The right-hand side of Eq. (4) is just 6DI . This can be
easily understood by confirming that the right-hand side
of Eq. (4) is equal to Eq. (8) of Ref. [7]. Although
the formulas of DI (T =2) were available in Eqs. (3)–(5)
of Ref. [2], we present DI (T =2) in new forms that are
simpler than other forms in practice. For I � 2j − 3, the
formula of DI (T =2) in Ref. [2] is very simple and can be
easily applied. When I � 2j − 3, let us define I = 6k + κ,

L = [(j − 6k+3)
2 )/3], and m = [(j − (6k + 3)/2) mod 3] ≡

(j − 3/2) mod 3. We have

DI,T =2 = (3k + 1)L + km + 1 + 3

[
k

2

]([
k

2

]
+ 1

)

+ (k mod 2)

(
3

[
k

2

]
+ 2

)
(5)

when κ = 0;
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when κ = 2; and
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when κ = 4.
When κ = 4,DI (T =2) can be further simplified. If I =

12k + 4,

DI,T =2 = (2k + 1)j − 1
2 [34k + 18k(k − 1) + 3]

and if I = 12k + 10,

DI,T =2 = (2k + 2)j − 1
2 [26k + 9k(k − 1) + 8].

As in Ref. [7], we denote

SI (j 4, condition X on J and K)

=
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for sake of simplicity.
Now we discuss the case of T = 1. Here (T2, T

′
2) can take

the following values: (1,0), (0,1), and (1,1). Because of the
Pauli principle, there are requirements on J and K values. The
corresponding requirements for (J,K) are (J = even,K =
odd), (J = odd,K = even), and (J = even,K = even),

respectively. We obtain
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In the derivation of Eq. (9) we used following relations:
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To simplify Eq. (9), one should consider the number of combi-
nations of J and K, as exemplified in Ref. [7]. We note that J,K ,
and I must satisfy the triangle relation for vector couplings.

When n = 4 and T = 1, Imax equals 4j − 3 (odd value).
When I � 2j , let us define I = Imax − 2I0 for odd I and Imax −
2I0 − 1 for even I. Using Eqs. (9) and (22) of Ref. [7], one can
obtain

DIT =1 =
([

I0

2

]
+ 1

) ([
I0

2

]
+ 1 + (I0 mod 2)

)
. (10)

When I � 2j , we use Eqs. (9) and (21) of Ref. [7] and
obtain

DI (T =1) = (I0 + 1)j −
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)) /
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where I0 = (I − 1)/2 and I � 2j .
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Next we discuss the case of T = 0. Here (T2, T
′

2) can take
the values (1,1) and (0,0), and the corresponding requirements
for (J,K) are (J = even,K = even) and (J = odd,K =
odd), respectively. Similarly, we obtain the following results:
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In the derivation of Eq. (12) we used the following relations:
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To simplify Eq. (12), again one should consider the number of
combinations of J and K, which are very complicated. In the
following we show our final results.

When I � 2j and T = 0, we use Eq. (12), along with
Eqs. (11), (19) and (20) of Ref. [7], and obtain

DI (T =0) =
([

I0

3

]
+ 1

) (
3

2

[
I0

3

]
+ 1 + (I0 mod 3)

)
, (13)

where I0 = (Imax − I )/2 and I is even. When I is odd and
I � 2j , one has DI (T =0) = D(I+3)(T =0).

When I � 2j and T = 0, we use Eq. (12), along with
Eqs. (14), (15), (17) and (18) of Ref. [7]. Let us de-
fine I = 6k + κ, L = [(j − 6k+3

2 )/3], and m = {[j − (6k +
3)/2] mod 3} ≡ (j − 3/2) mod 3. For κ = 0, we obtain

DI = 6k(T = 0) = (2 + 6k)L+ (2k +1)m + 3
2k(k + 3) +1, (14)

and for κ = 3, we have

DI=6k+3(T =0) = (2 + 6k)L + (2k + 1)m + 3
2k(k + 1). (15)

We can see the following relation:

DI=6k(T =0) − DI=6k+3(T =0) = 3k + 1. (16)

For κ = 1, we have

DI=6k+1(T =0) = 2kj − 1
2k(9k + 1). (17)

Note that DI=1,T =0 = 0. For κ = 4 we obtain

DI=6k+4(T =0) = 2(k + 1)j − 1
2 (k + 1)(9k + 4). (18)

We have the following relation:

DI=6k+4(T =0) − DI=6k+7(T =0) = 3(k + 1). (19)

For κ = 2, we have

DI=6k+2(T =0) = (4 + 6k)L + (2k + 1)m + 1
2 (k + 1)(3k + 4),

(20)

and for κ = 5, we have

DI=6k+5(T =0) = (4 + 6k)L + (2k + 1)m + 1
2k(3k + 1). (21)

One can notice that

DI=6k+2(T =0) − DI=6k+5(T =0) = 3k + 2. (22)

We similarly obtain DI (T =1/2) for three nucleons:

DI (T =1/2) =
∑

even J

(
1 − 6(2J + 1)

{
j j J

j I J

}{
1/2 1/2 1

1/2 1/2 1
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+
∑
odd J

(
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=
∑
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(
1 − (2J + 1)

{
j j J

j I J

})

+
∑
odd J

(
1 + (2J + 1)

{
j j J

j I J

})
, (23)

where the following six-j symbols are used:{
1/2 1/2 1

1/2 1/2 1

}
= 1

6
,

{
1/2 1/2 0

1/2 1/2 0

}
= −1

2
. (24)

By using Eq. (23) and the sum rules of six-j symbols (Eqs. (A3)
and (A8) obtained in Ref. [6]), one can easily obtain DI (T =1/2)

for three nucleons. For I � j ,

DI (T =1/2) = 1 + 2

[
(I − 1/2)

3

]
+ δ[(I−1/2) mod 3],2, (25)

and for I � j , we have

DI (T =1/2) = 1 +
[

(Imax − I )

3

]
, (26)

where Imax = 3j − 1.
According to Eqs. (1) and (2) of Ref. [2], when I � j ,

DI (T =3/2) =
[

2I + 3

6

]
; (27)

and when I � j ,

DI (T =3/2) =
[

3j − 3 − I

6

]
+ δI , (28)

where

δI =
{

0 if [(3j − 3) − I ] mod 6 = 1,

1 otherwise.

Note that j � I � 3j − 3 in Eq. (28). Comparing Eqs. (27)
and (28) with Eqs. (25) and (26), one easily sees that
DI (T =1/2) − 2DI (T =3/2) has a a modular behavior. We obtain
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that when I � j

DI (T =1/2) − 2DI (T =3/2) =
{−1 if (I − 1/2) mod 3 = 1,

1 otherwise,

=
{−1 if 2I mod 3 = 0,

1 otherwise,
= 1 − 2δ2I mod 3,0, (29)

and when I � j

DI (T =1/2) − DI (T =3/2)

=




1 if (3j − 1 − I ) mod 6 = 0,

1 if (3j − 1 − I ) mod 6 = 1,

−1 if (3j − 1 − I ) mod 6 = 2,

2 if (3j − 1 − I ) mod 6 = 3,

0 if (3j − 1 − I ) mod 6 = 4,

0 if (3j − 1 − I ) mod 6 = 5

=
{([

3j − 1 − I

2

]
+ 1

)
mod 3

}

+
{−3 if (3j − 1 − I ) mod 6 = 2,

0 otherwise.
(30)

For n = 4, a modular behavior for DI (T =0) − DI (T =2) was
recently found in Ref. [10] by Zamick and A. Escuderos, who
proved that

DI (T =0) −2DI (T =2) = 2
∑

even J even K

(2J + 1)(2K+ 1)




j j J

j j K

J K I


.

(31)

We can prove that our results are consistent with this relation.
Let us take I = 12k (but I � 2j − 3) as an example. We
define L = [(j − 12k+3

2 /3)] and m = (j − 3/2) mod 3. By
using Eqs. (5) and (14), we obtain

DI=0(T =0) − 2DIT =2

= (12k + 2)L + (4k + 1)m + 3k(2k + 3) + 1

− 2 [(6k + 1)L + 2km + 1 + 3k(k + 1)]

= 3k + m − 1.

This is the right-hand side of Eq. (31) for I = 12k, according
to Eq. (14) of Ref. [7]. The cases of other I values can be
proved similarly.

To summarize, in this paper we obtained, for the first time,
algebraic formulas for the number of states with spin I and
isospin T for three and four nucleons in a single-j shell by
using the sum rules of six-j and nine-j symbols obtained in
Ref. [7] for identical particles and the well-known sum rule for
two-body coefficients of fractional parentage. We also showed
that DI (T =1/2) − 2DI (T =3/2) has a simple modular behavior for
n = 3. We note without details that the same procedures can
be applied to obtain the number of states with given spin I
and F spin for three and four bosons in the interacting boson
models.
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