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New model of binding energies of heavy nuclei with Z � 90
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A new form of the binding energy formula of heavy nuclei with Z � 90 is proposed where new terms beyond
the standard Bethe and Weizsäcker formula are introduced by analytical expressions. This can be considered an
interesting development of the Bethe and Weizsäcker mass formula for heavy nuclei with Z � 90. Two versions
of the formulae are presented. The first version of the formula can reproduce the 117 known binding energies
of nuclei with Z � 90 and N � 140 with an average deviation 0.118 MeV. This is the first time that the binding
energies of heavy nuclei with Z � 90 and N � 140 can be calculated very accurately by a formula with only seven
parameters. The binding energies, α-decay energies, and α-decay half-lives of unknown superheavy nuclei are
predicted. The second version of the formula is obtained by fitting the 181 data of nuclei with Z � 90 with nine
parameters and good agreement with experimental binding energies is also reached for all nuclei with Z � 90.
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I. INTRODUCTION

The binding energy of a nucleus or nuclear mass is one of
the most important quantities of nuclear ground properties. It
plays a crucial role for the stability of a nucleus on β decay,
α decay, and spontaneous fission of heavy-mass region with
Z � 90. The half-life of an unstable nucleus is directly related
to the value of its binding energy or to the difference of the
binding energies of neighboring nuclei. For the production of
a new superheavy nuclide by nuclear reactions one needs to
estimate the production cross section before experiments. In
calculations of reaction cross sections the binding energies
of unknown nuclei are the key input quantities of nuclear
reaction models. Therefore the very accurate prediction on
binding energies of unknown superheavy nuclei is important
not only for estimating the half-life of unknown nuclei but
also for estimating the production cross section of superheavy
nuclei.

Since the discovery of the neutron at the beginning of the
1930s nuclear physicists have spent much time developing
various nuclear models to calculate accurately the binding
energies of nuclei [1–12]. The original studies on nuclear
masses are the semiempirical mass formula proposed by
Weizsäcker and Bethe in the middle of 1930s [1,2]. This
formula successfully gave the experimental average binding
energy curve of nuclei (B/A) and led to the successful
explanation of large energy release of the 235U fission by
Bohr and Wheeler in 1939 [13]. At present, various studies on
variations of nuclear masses are still the hot points of nuclear
physics [4–12,14–20]. A large number of mass models were
available for the whole range of Z and A numbers of present
and future interest and a complete review on them was made by
Haustein in 1989 [4,5]. New progress on nuclear masses can be
found in review articles by Mittig et al. [16], Lunney et al. [19],
and Audi et al. [12]. Here we simply discuss a few theoretical
models in this field. Swiatecki et al. and Möller et al. have made
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pioneering work on reliable calculations of nuclear binding
energies [6–8]. Myers and Swiatecki [6] calculated the binding
energies of many nuclei by the Thomas-Fermi model. Möller
et al. [8] calculated the ground-state properties of nuclei by the
finite-range droplet model and folded-Yukawa single particle
potential (FRDM). Self-consistent mean-field calculations
have been also carried out for the ground-state properties
of many nuclei [9–11]. These calculations successfully re-
produce the experimental binding energies with root-mean-
square deviations �B ≈ 0.67–2.0 MeV where the numbers
of the adjusting parameters of models range from 10 to 29. We
consider that these models are very successful for the global
behavior of nuclear binding energies of the whole mass range.
We further consider that it is very difficult to find a new model
to replace these successful models for the global behavior of
the whole mass range. However, it is strongly hoped that a more
refined model of binding energies is used for a very accurate
prediction of nuclear binding energies in a local unknown
mass range. This is the case of transuranium nuclei where very
expensive experiments on superheavy nuclei are being done
[21–27]. Usually few events of α decays of a new superheavy
nuclide have been observed at the expense of running a big
accelerator in weeks or even months [21–27]. For transuranium
range the half-lives of nuclei are extremely sensitive to their
decay energies that are the differences of binding energies of
neighboring nuclei. For example, Möller et al. pointed out [8]
that an uncertainty of 1 MeV in α-decay energy corresponds
to an uncertainty of α-decay half-life ranging from 105 to 103

times for the heavy-element region. This is further supported
by the model calculations of α decay [28–30]. According to
the Swiatecki’s formula of spontaneous fission half-life and
the new formula of spontaneous fission half-life [31–33], an
uncertainty of 1 MeV of the binding energy can also lead to
the uncertainty of the half-life of spontaneous fission with a
factor 104 or 105. So a new formula of the binding energies
with precisions 0.1 or 0.2 MeV is very useful for studies of
superheavy elements. This is the motivation of this article.

This article is organized in the following way. Section II is
the first version of the new form of binding energy formula
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where the range of nuclei is Z � 90 and N � 140. We choose
this special mass range because we think that the nuclei with
Z � 90 and N � 140 are the neighboring nuclei of superheavy
nuclei. The formula of binding energies obtained from these
neighboring nuclei could have good predicting ability for
superheavy nuclei. We expect the values of binding energies
of nuclei with A � 229 are not closely related to those of
superheavy nuclei because the nuclei with A � 229 are far
from superheavy nuclei. The region with Z � 90 and N � 140
is also a smooth area that is suitable to establish systematic
behavior by an analytical equation with few parameters. This
region also covers the long-lifetime nuclei such as 230,232Th and
234,235,238U because we are interested in the possible existence
of long-lived superheavy nuclei. In Sec. III we loosen this limit
of the mass range by including all known binding energies of
nuclei with Z � 90 (181 nuclei). In this way we obtain the
second version of the formula where the experimental binding
energies of lighter isotopes with Z = 90–92 can also be well
reproduced and the nuclei around magic number N = 126 are
included. A short summary is given in Sec. IV.

II. NEW FORM OF BINDING ENERGY FORMULA OF
HEAVY NUCLEI WITH Z � 90 AND N � 140

Our starting point is the well-known Bethe and Weizsäcker
formula of nuclear binding energies [1–3,34]:

B(Z,A) = avA − asA
2/3 − acZ

2A−1/3

− aa

(
A

2
− Z

)2

A−1 + apδA−1/2. (1)

In above formula av, as, ac, aa, ap correspond to the
coefficients of the volume energy, the surface energy, the
Coulomb energy, the symmetry energy, and the pairing
energy [3,34], δ = 1, 0, −1 for even-even, odd-A, and odd-
odd nuclei, respectively. In standard textbooks [3,34] the
values of av, as, ac, aa, ap are usually determined by fitting
experimental binding energies of nuclei from the light nucleus
16O to the heavy nucleus such as 238U. To obtain a local mass
formula of heavy nuclei (with Z � 90) with high precision,
here we use a novel way to determine the parameter values
by choosing the experimental binding energies of nuclei with
Z � 90 and N � 140 as a reference. It is known that for nuclei
with Z � 90 and N � 140 there are 117 data of experimental
binding energies [12]. At first, we use the 117 experimental
data to fit the values of the coefficients av, as, ac, aa, ap. This
is a standard minimization with χ2 = �i=1,117(Bi

exp − Bi
cal)

2.
In this way, we obtain a new set of parameters in the Bethe
and Weizsäcker formula for the nuclei with Z � 90. The new
values of parameters are as follows:



av = 15.7226 MeV
as = 17.7523 MeV
ac = 0.7062 MeV
aa = 96.2350 MeV
ap = 10.6028 MeV

The formula with the above parameters is now accurate
for the binding energies of nuclei with Z � 90 and N � 140
where no shell effect is included. The average deviation and

the root-mean-square deviation of the binding energies are as
follows:

〈σ 〉 = �i=1,117

∣∣Bi
exp − Bi

cal

∣∣/117 = 0.227 MeV (2)

√
σ 2 = (

�i=1,117
(
Bi

exp − Bi
cal

)2/
117

)1/2 = 0.290 MeV. (3)

This is a much improvement of the agreement between
experimental binding energies and calculated ones by the
formula. Although the much improvement is reached, the
agreement between experimental data and calculated ones
is not perfect for some nuclei. The maximum deviation of
the binding energy is 0.7 MeV and this happens around
Z = 100 and N = 152. This should be the shell influence
around Z = 100 and N = 152. Consequently, we introduce
two new terms to simulate the shell effect on binding energies
of heavy nuclei. The new form of the Bethe and Weizsäcker
formula of nuclear binding energies is as follows:

B(Z,A) = avA − asA
2/3 − acZ

2A−1/3 − aa

(
A

2
− Z

)2

A−1

+ apδA−1/2 + a6|A − 252|/A − a7|N − 152|/N.

(4)

Now we use this new form of Bethe and Weizsäcker
formula to fit the binding energies of 117 nuclei. The values
of parameters are as follows:



av = 15.65636 MeV
as = 17.15717 MeV
ac = 0.70887 MeV
aa = 97.15094 MeV
ap = 10.45136 MeV
a6 = 5.9427 MeV
a7 = 23.1377 MeV.

The new fitting is also equivalent to a renormalization of
effective parameters and the shell influence can be suitably
included by the fitting process of parameters. We expect that
the important role of the Coulomb interaction on binding
energies of heavy nuclei with Z � 90 has been taken into
account during the fitting process. The average deviation and
the root-mean-square deviation of the binding energies with
new form of the formula are as follows:

〈σ 〉 = �i=1,117

∣∣Bi
exp. − Bi

cal.

∣∣/117 = 0.118 MeV (5)

√
σ 2 = [

�i=1,117
(
Bi

exp. − Bi
cal.

)2/
117

]1/2 = 0.150 MeV (6)

It is interesting to note that the deviation has been reduced
to the half by including the shell influence [see Eq. (2) and
Eq. (6)]. In Fig. 1 we draw the numerical results of the
deviations without shell influence and with shell influence for
comparison. As shown in Fig. 1, the new form of the Bethe and
Weizsäcker formula is very accurate for the 117 data of nuclei
with Z � 90 and N � 140. The average deviation of binding
energies is only 0.118 MeV (see above equations) and this is
almost perfect for the total binding energy with a value around
2000 MeV. This is the first time that the binding energies of
heavy nuclei with Z � 90 have been reproduced with such high
precision (δB/B ≈ 0.118/2000 ≈ 0.006%).
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(a)

(b)

FIG. 1. The variation of the deviations between experimental
binding energies and calculated ones for the cases with shell influence
and without shell influence in the formula of binding energies of the
117 heavy nuclei with Z � 90 and N � 140.

The maximum deviation of the binding energies is only
0.30 MeV and this appears only for a few nuclei around
N = 152. In Table I we list experimental binding energies
and calculated values with the new form of the formula for
117 nuclei from 230Th to 264Hs. It is seen again from Table I
that calculated binding energies are approximately equal to
experimental ones and therefore the new form of the binding
energy formula is very accurate. This is the first local mass
formula that is specially designed for the properties of heavy
and superheavy nuclei.

It is stressed that the calculations of binding energies by
above formula are very clear. This means that the calcula-
tions are completely transparent. Any nuclear physicist can
repeat these calculations within an hour, although we spent
many months in constructing a very accurate mass formula.
Experimental physicists themselves can judge the reliability
of numerical results for unknown superheavy nuclei before
planing an experiment to synthesize new superheavy nuclei.
This can effectively avoid the possible misleading role of
the very complicated numerical calculations on experiments
where experimental physicists cannot repeat the results of very
complicated calculations.

We have proposed the new idea to obtain a local mass
formula by fitting the experimental data of the nuclei with
Z � 90 and N � 140 and reached a success. This idea to
improve the agreement of binding energies can be further
developed in future with the accumulation of more and more
data of binding energies. This idea can also be used for other
models to improve the precisions of agreement and to predict
the binding energies of unknown superheavy nuclei reliably.
For example, the effective parameters in the Thomas-Fermi
model and in the finite-range droplet model can also be
determined in this way and this will lead to a new set of
parameters for heavy nuclei with Z � 90 in the two models.
It is believed that the new parameters obtained in this way
will works very well for superheavy nuclei. For the use of
the idea in other models the new effective parameters in

FIG. 2. The variation of the experimental and calculated α-decay
energies with neutron number for even-even heavy nuclei with
Z � 92.

Skyrme-Hartree-Fock model and in relativistic mean-field
model can also be obtained based on the fitting of binding
energies of heavy nuclei with Z � 90. So this will pave a
new way for the very accurate prediction of the ground-state
properties of superheavy nuclei. This will also lead to more
accurate prediction of the reaction cross section of superheavy
nuclei where binding energies are input quantities.

After comparing the calculated binding energies with
experimental ones, we now see the variations of α-decay ener-
gies, two-neutron separation energies, one-neutron separation
energies, and one-proton separation energies of heavy nuclei
with Z � 90. The α-decay energies of even-even nuclei with
Z � 90 are drawn in Fig. 2. In Fig. 2 the x axis is the neutron
number and the y axis is the decay energy. The experimental
data are denoted by hollow circles and calculated ones by solid
circles. It is seen that the agreement between experimental data
and theoretical ones is very good. This very good agreement is
not accidental because the α-decay energies are the differences
of the binding energies of parent nuclei, daughter nuclei, and
the α particle. The very accurate values of binding energies by
the new form of the formula lead to the very accurate values
of α-decay energies.

It is also seen from Fig. 2 that calculated α-decay energies
follow experimental curve well around the deformed magic
number N = 152. This clearly shows that our treatment on
shell correction in the formula is correct. So the experimental
magic number N = 152 can be reproduced by the new
formula. For the superheavy nuclei 270Ds and 266Hs, the
calculated α-decay energies agree well with the experimental
data, although the two nuclei have not been included in the
fitting parameters because their experimental binding energies
are unknown in the 2003 mass table [12]. This shows that
the new form of the Bethe and Weizsäcker formula has the
predicting ability for superheavy nuclei.

In Fig. 3 we plot the variation of two-neutron separation
energies with neutron number for even-even nuclei. One
sees again that the very good agreement is reached between
the experimental curve and theoretical curve. Especially the
sudden decrease of the two-neutron separation energies at N =
154 can be reproduced and this is because of the deformed
subshell effect of N = 152.

In Fig. 4 we show the even-odd effect of one-proton
separation energy for the N = 152 isotonic chain. Because
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TABLE I. The experimental and calculational binding energies of heavy and superheavy nuclei (Z = 90–108) by the new form of the Bethe
and Weizsäcker formula.

Elt. A Bexp (MeV) Bcal (MeV) Elt. A Bexp (MeV) Bcal (MeV)

Th 230 1755.130 1755.023 Cm 243 1829.041 1828.943
231 1760.246 1760.153 244 1835.842 1835.818
232 1766.686 1766.523 245 1841.363 1841.224
233 1771.472 1771.387 246 1847.820 1847.837
234 1777.663 1777.489 247 1852.976 1852.990
235 1782.092 1782.094 248 1859.189 1859.347

Pa 231 1759.855 1760.092 249 1863.902 1863.950
232 1765.404 1765.450 250 1869.735 1869.759
233 1771.933 1772.044 251 1874.147 1874.128
234 1777.153 1777.134 Bk 243 1826.751 1826.845
235 1783.236 1783.458 244 1832.799 1832.730
236 1788.290 1788.287 245 1839.770 1839.820
237 1794.066 1794.347 246 1845.689 1845.443
238 1799.011 1798.922 247 1852.237 1852.269

U 232 1765.959 1766.052 249 1864.021 1864.204
233 1771.721 1771.635 250 1868.990 1869.019
234 1778.566 1778.450 251 1874.784 1875.036
235 1783.863 1783.763 Cf 242 1817.251 1817.345
236 1790.409 1790.306 244 1831.252 1831.293
237 1795.534 1795.355 245 1837.416 1837.395
238 1801.689 1801.631 246 1844.782 1844.697
239 1806.495 1806.424 247 1850.808 1850.533
240 1812.425 1812.441 248 1857.777 1857.569

Np 233 1769.910 1770.159 249 1863.362 1863.148
234 1775.973 1775.970 250 1869.987 1869.923
235 1782.957 1783.009 251 1875.096 1874.947
236 1788.694 1788.548 252 1881.268 1881.170
237 1795.271 1795.311 253 1886.072 1886.003
238 1800.759 1800.583 254 1892.104 1892.032
239 1806.974 1807.078 Es 251 1873.936 1873.861
240 1812.043 1812.091 252 1879.224 1879.097
241 1818.167 1818.325 253 1885.577 1885.575
242 1823.083 1823.085 254 1890.670 1890.617

Pu 234 1774.798 1775.161 255 1896.644 1896.851
235 1781.034 1781.196 Fm 246 1837.170 1837.483
236 1788.387 1788.456 248 1851.546 1851.746
237 1794.268 1794.216 250 1865.520 1865.469
238 1801.268 1801.198 251 1871.679 1871.472
239 1806.914 1806.689 252 1878.920 1878.664
240 1813.449 1813.400 253 1884.459 1884.156
241 1818.690 1818.630 254 1890.976 1890.838
242 1825.000 1825.077 255 1896.152 1896.086
243 1830.034 1830.052 256 1902.536 1902.522
244 1836.055 1836.241 257 1907.504 1907.533
245 1840.827 1840.967 Md 255 1894.326 1894.337
246 1846.609 1846.905 256 1899.625 1899.794

Am 238 1798.228 1798.055 257 1906.315 1906.435
239 1805.330 1805.257 258 1911.695 1911.652
240 1811.282 1810.971 No 252 1871.292 1871.568
241 1817.929 1817.899 254 1885.592 1885.696
242 1823.466 1823.349 255 1891.534 1891.605
243 1829.831 1830.012 256 1898.634 1898.698
244 1835.197 1835.204 257 1904.288 1904.360
245 1841.250 1841.606 Rf 256 1890.657 1890.952
246 1846.228 1846.547 261 1923.935 1923.933

Cm 238 1796.472 1796.574 Sg 260 1909.029 1909.115
240 1810.285 1810.199 265 1943.152 1942.883
241 1816.379 1816.132 Hs 264 1926.735 1926.682
242 1823.348 1823.276
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FIG. 3. The variation of the experimental and calculated two-
neutron separation energies with neutron number for even-even nuclei
with Z � 90.

there are only four experimental data of proton separation
energies (denoted by the hollow circles with an arrow in Fig. 4),
we have also added the estimated values (denoted by the hollow
circles without an arrow) of the 2003 mass table by Audi
et al. [12]. It is concluded from Fig. 4 that the experimental
even-odd effect of N = 152 isotonic chain is reproduced by
the calculations. This conclusion is also valid for other isotonic
chains.

The even-odd effect of one-neutron separation energy of
the Pu isotopic chain is plotted in Fig. 5. The experimental
even-odd effect can be well described by the calculations. This
holds true for the even-odd effect of other isotopic chains. Here
we do not repeat them.

Based on the very good agreement of binding energies, of
α-decay energies, and of the nucleon separation energies, we
consider that the new form of the formula is reliable and it can
be generalized into superheavy region. In Table II we predict
the binding energies, α-decay energies, and α-decay half-lives
of superheavy nuclei with Z = 108–112 by the new form of
the Bethe and Weizsäcker formula.

In Table II the first column is the nucleus and the second
column is the calculated binding energy (in megaelectron
volts). The third column is the calculated α-decay energy
(in megaelectron volts). The fourth column is the calculated

FIG. 4. The variation of the experimental (or estimated) and
calculated one-proton separation energies with proton number for
N = 152 isotonic chain.

FIG. 5. The variation of the experimental and calculated one-
neutron separation energies with neutron number for Z = 94 isotopic
chain.

α-decay half-life and the fifth column is the experimental
α-decay half-life. To calculate the α-decay half-lives from
the α-decay energies, we use the Viola-Seaborg formula
[35,36] with new parameters for numerical calculations. The
Viola-Seaborg formula [35,36] is as follows:

log10 Tα = (aZ + b)Q−1/2
α + (cZ + d) + hlog, (7)

where a = 1.64062, b = −8.54399, c = −0.19430, and d =
−33.9054 and the hindrance factors [36] are as follows:

hlog =




0, Z even, N even
0.8937, Z even, N odd
0.5720, Z odd, N even
0.9380, Z odd, N odd

(8)

For the calculated binding energies and α-decay energies
in Table II they agree well with the available experimental
data (see Figs. 1 and 2). These calculated binding energies
can be used as the inputs of future calculations of reaction
cross sections. The experimental half-lives are listed in the last
column for comparison where many data are from Ref. [12].
At present, experiments on superheavy nuclei are very difficult
and experimental error bars are large. The appearance of the
isomers also leads to the experimental difficulty to identify the
branch ratio of the ground-state decay. In some cases only few
events of decays are observed. Therefore a few experimental
half-lives of the 2003 mass table [12] may be changed in
future with the improvement of experimental precision. For
269Hs (Z = 108) and 271Ds (Z = 110), we consider that it is
useful to list the other choice of the values and the related
references.

In Table II the calculated decay energies are used as inputs
and the calculated half-lives agree with the data within a factor
of 40. This is because of the extreme sensitivity of the decay
half-lives to the decay energies. Möller et al. pointed out [8]
that an uncertainty of 1 MeV in α-decay energy corresponds
to an uncertainty of α-decay half-life ranged from 105 to 103

times for the heavy-element region. Here the new form of
the Bethe and Weizsäcker formula has on average reduced
the uncertainty of decay energy to 0.1–0.2 MeV (see Fig. 2).
So the deviation between calculated half-lives with calculated
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TABLE II. The calculated binding energies, α-decay energies and α-decay half-lives of superheavy nuclei (Z = 108−112). The α-decay
half-lives are calculated by the Viola-Seaborg formula. The number in the bracket is the reference where experimental half-lives are from.

Nuclide Bcal (MeV) Qcal
α (MeV) T V −S

α,cal T exp
α (Ref.)

264Hs 1926.681 10.730 0.39 ms 1.08 ms [12]
265Hs 1933.324 10.573 7.38 ms 2.1 ms [12]
266Hs 1941.124 10.426 2.18 ms 2.7 ms [12]
267Hs 1947.517 10.268 42.9 ms 32 ms [12]
268Hs 1955.067 10.120 13.3 ms
269Hs 1961.218 9.961 0.27 s 27s [12]/7s [24]
270Hs 1968.523 9.810 89.9 ms
271Hs 1974.436 9.649 1.97 s
272Hs 1981.502 9.497 0.68 s
273Hs 1987.183 9.335 15.9 s
274Hs 1994.014 9.182 5.82 s
275Hs 1999.468 9.018 2.42 m
276Hs 2006.069 8.864 56.8 s
277Hs 2011.300 8.699 0.422 h
278Hs 2017.677 8.544 10.63 m
279Hs 2022.691 8.378 5.14 h
280Hs 2028.848 8.221 2.35 h
266Mt 1933.962 11.015 1.45 ms
267Mt 1941.962 10.871 1.36 ms
268Mt 1948.557 10.716 7.45 ms 53 ms [12]
269Mt 1956.305 10.570 7.32 ms
270Mt 1962.656 10.413 42.0 ms
271Mt 1970.158 10.265 43.3 ms
272Mt 1976.269 10.107 0.26 s
273Mt 1983.529 9.957 0.28 s
274Mt 1989.406 9.797 1.81 s
275Mt 1996.430 9.646 2.07 s
276Mt 2002.078 9.485 14.0 s
277Mt 2008.870 9.333 16.9 s
278Mt 2014.294 9.172 2.0 m
279Mt 2020.860 9.018 2.6 m
280Mt 2026.065 8.854 0.34 h
267Ds 1935.460 11.461 0.25 ms 0.01 ms [12]
268Ds 1943.658 11.319 16.5 µs
269Ds 1950.452 11.167 1.16 ms 0.23 ms [12]
270Ds 1958.397 11.023 0.32 ms 0.16 ms [12]
271Ds 1964.944 10.868 5.84 ms 210 ms [12]/1.3 ms [12,23]
272Ds 1972.640 10.723 1.67 ms
273Ds 1978.946 10.567 1.9 ms 0.36 ms [12]
274Ds 1986.399 10.420 9.59 ms
275Ds 1992.469 10.263 0.19 s
276Ds 1999.683 10.114 60.5 ms
277Ds 2005.523 9.956 1.27 s
278Ds 2012.504 9.806 0.42 s
279Ds 2018.118 9.646 9.36 s
280Ds 2024.870 9.494 3.30 s
272111 1965.544 11.309 1.19 ms 2.0 ms [12]
273111 1973.435 11.166 1.10 ms
274111 1979.939 11.013 5.84 ms
275111 1987.585 10.868 5.60 ms
276111 1993.852 10.713 31.1 ms
277111 2001.258 10.567 31.1 ms
278111 2007.291 10.411 0.18 s
279111 2014.463 10.263 0.19 s
280111 2020.268 10.105 1.16 s
272112 1960.052 11.902 13.1 µs
273112 1966.995 11.753 0.22 ms
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TABLE II. (Continued.)

Nuclide Bcal (MeV) Qcal
α (MeV) T V −S

α,cal T exp
α (Ref.)

274112 1975.080 11.612 56 µs
275112 1981.779 11.461 0.95 ms
276112 1989.616 11.319 0.26 ms
277112 1996.075 11.167 4.54 ms 1.1 ms [12]
278112 2003.671 11.023 1.27 ms
279112 2009.896 10.869 23.5 ms
280112 2017.255 10.723 6.88 ms

decay energies and experimental half-lives has been reduced
within a factor of 40. In many cases the deviation is within a
factor of 10. Even so, the deviation of decay energies could
be as large as 0.3–0.5 MeV for few nuclei (see Fig. 2). The
corresponding deviation of the half-lives could be close to
100 times in few cases. At first we focus on the half-lives
of Z = 110 chains. For superheavy nuclei around 270Ds there
are some isomers [12,22]. Different decay chains have been
observed from a same nucleus and this makes the situations
very complicated [21,22]. It is very difficult to classify the
decays from isomeric states and from the ground state by
current experiments. Therefore a few assignments on the half-
lives of ground states can belong to the half-lives of isomeric
states. This is also the cause that the data of half-lives in
different publications may be different for superheavy nuclei
with Z � 108. For example, it is considered that the half-life
of the ground state of 270Ds is 0.16 ms and the half-life of its
isomeric state is 10 ms in the 2003 mass table [12,22]. This
means that ground-state half-life is shorter than the half-life of
its isomer for 270Ds. But for 271Ds the half-life of the ground
state is 210 ms and that of its isomeric state is 1.3 ms in the
2003 mass table [12]. This is contrary to the case of 270Ds. For
273Ds the half-life of the ground state is 0.36 ms and that of its
isomeric state is 120 ms in the 2003 mass table [12]. It is again
similar to the case of 270Ds where the ground-state half-life
is shorter than its isomeric one [12]. It is not clear what is
new physics on this. We may guess that the half-lives of the
ground-state of 270,271,273Ds are shorter than their isomeric
states and therefore the half-life of the ground state of 271Ds
should be 1.3 ms. With this guess the variation of the half-lives
of the ground states in the Ds chain will be smooth. Otherwise,
an abnormal increase of half-life (approximately 103 times)
appears between 270Ds and 271Ds (the blocking effect leads to
an increase of several times or tens for α-decay half-life in
ordinary cases). It is interesting to note that above discussions
on 271Ds are consistent with Hofmann’s views [23]. For 269Hs
and 270Hs we may guess that there are isomers in them and
a similar phenomenon like 270Ds may occur because they are
the neighboring nuclei of 270Ds. The further experiments on
269Hs and 270Hs are being done at GSI to check the previous
results and to measure the half-lives of 270Hs [37]. If it is finally
confirmed that the ground-state half-lives are shorter than the
half-lives of isomers around 270Ds, this will be very interesting
in physics. It will mean that there is a new inversion island
of superheavy nuclei around 270Ds, where the isomers have

longer lifetime than the ground states. This will suggest that
there exists shape coexistence in superheavy region and it will
be very important for future studies of the mechanism of the
existence of superheavy islands. For superheavy nuclei 268Mt,
272111, and 277112, the calculated half-lives in Table II are in
good agreement with experimental data [12]. This shows the
good predicting ability of the new form of the binding energy
formula. It is concluded from the reasonable agreement of
half-lives of Table II that the new form of the formula can be
used to predict the binding energies, decay energies, and decay
half-lives of unknown superheavy nuclei.

Before ending this section, let us make a short discussion
on the shell effect of superheavy nuclei. At present there
are different predictions on the possible existence of nuclear
shell effects from different models or from a same model
with different force parameters. Macroscopic-microscopic
models favor the existence of spherical magic numbers with
Z = 114 and N = 184. Skyrme-Hartree-Fock models with
some parameters sets predict the nuclei around Z = 114 and
N = 184 are spherical but the shell effect around Z = 114
and N = 184 is not evident [38]. Skyrme-Hartree-Fock models
concludes that there are the spherical magic numbers Z = 126
and N = 184 [38]. As the number of parameters sets of
Skyrme-Hartree-Fock model is more than 40, the predictions
are strongly dependent on the inputs of the parameters. For
the relativistic mean-field models, many force parameters
favor the existence of shape coexistence of superheavy nuclei
[10,11,39]. This can be the new mechanism of the existence
of superheavy nuclei [10,11,39–41]. The RMF model favors a
deformed magic number with Z = 120 and N = 184 or a de-
formed subshell with Z = 114 and N = 184. We consider that
these magic numbers are only hypothesis before experimental
confirmation of their existence. These predictions of magic
numbers are made mainly based on the α-decay properties,
the β-decay properties, and the distributions of single particle
levels. In many cases there are no detailed calculations on
spontaneous fission half-lives when these predictions are made
by models. This is because we do not have a reliable model
for the calculation of spontaneous fission half-lives even for
nuclei with Z = 90–104. Although one can make dramatic
extrapolations of calculations of spontaneous fission from
known nuclei with Z = 90–104 to unknown ones around
298114, the reliability of the extrapolations is completely
unknown because we are not very clear about the possible
role of the isospin on spontaneous fission (SF). Especially, it
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is difficult to demonstrate the sudden change of the fission
modes around N = 158 for known Fm, No, and Rf isotopes
where the symmetrical fissions of these isotopes dominate for
N � 156–158 [42,43]. This leads to a sudden decrease of SF
half-lives when N � 156–158 [42,43]. With more and more
knowledge on SF [32,33,42,43], we gradually believe that
SF will strongly influence both the properties of superheavy
nuclei and the existence of possible magic numbers. This is the
essential difference between the magic number of superheavy
nuclei and that of heavy nuclei such as 132Sn and 208Pb. This
is because SF has never been observed for the ground-state
nuclei below Z = 90. At the moment, N = 152 is the only
deformed magic number of ground-state nuclei beyond N =
126, which is confirmed by experimental physicists. N = 146
is possibly the deformed magic number of the isomeric states
of transuranium nuclei. Although N = 162 is predicted to
be a deformed magic number around Z = 106 − 110, its
existence will be challenged by the possible existence of
symmetric fission around N = 164 (N = 164 = 82 + 82). At
GSI, there are primary indications that SF half-lives of the
nuclei with Z = 106−108 and N = 158−162 may be shorter
than previously believed [37]. Because the magic number of
superheavy nuclei is an open problem, we pursue it not further
in this article. Our formula of binding energies of this section
shows the systematic behavior of nuclear binding energies
for nuclei with Z � 90 and Z � 140. It should be reliable
for predictions of neighboring nuclei such as Z = 106−110
and N = 150−170. It may be invalid for the magic nuclei
in superheavy region such as Z = 114 or Z = 120, 126 if
these numbers are really confirmed to be magic numbers by
future experiments. Usually a very sensitive change of nuclear
structure and binding energies appears near magic numbers
and this belongs to an extreme quantum effect of many-body
systems (this holds true for spherical shell effect but the
variation of deformed shell effect cannot be very sensitive).
It is very difficult to trace the sensitive effect by an analytical
formula because the analytical formula is a law of systematic
behavior. Even so one can try to simulate this sensitive change
in a special case and we make this test in next section. Finally
we would like to mention that it is also possible that the nuclear
shell effect of superheavy nuclei is not evident as compared
with that of 208Pb.

III. NEW FORM OF BINDING ENERGY FORMULA
OF HEAVY NUCLEI WITH Z � 90

In previous section we obtain the formula of binding
energies of nuclei with Z � 90 and N � 140. This is a special
mass range based on the special interest of superheavy nuclei
which usually have Z � 106 and N � 150. In this section we
demonstrate the second version of the formula that includes
all known experimental data of binding energies of nuclei
with Z � 90. The number of data used in fit is 181 [12].
Because the mass range is enlarged and the nuclei around
magic number N = 126 are included, we should introduce a
new term to reduce the total deviation between experimental
data and calculated values to a similar level as that in previous
section. The formula obtained in this section is called as the

second version of the formula for convenience. The second
version of the formula is as follows:

B(Z,A) = avA − asA
2/3 − acZ

2A−1/3 − aa

(
A

2
− Z

)2

A−1

+ apδA−1/2 + a6|A − 252| /A − a7|N − 152| /N
+ a8

(A − 214)2 + a9
, (9)

where an additional term (the last term of above equation) is
introduced as compared with the formula in previous section.
This term is the simulation of the spherical shell effect around
216Th. The values of parameters are obtained by fitting the 181
data of nuclei ranged from 209Th to 264Hs [12].



av = 15.63284 MeV
as = 17.23767 MeV
ac = 0.70479 MeV
aa = 96.19350 MeV
ap = 11.46055 MeV
a6 = 5.92378 MeV
a7 = 30.70391 MeV
a8 = 296.192 MeV
a9 = 43.997.

The average deviation and root-mean-square deviation of
the 181 nuclei are as follows:

〈σ 〉 = �i=1,181

∣∣Bi
exp − Bi

cal

∣∣/181 = 0.269 MeV (10)

√
σ 2 = (

�i=1,181
(
Bi

exp − Bi
cal

)2/
181

)1/2 = 0.370 MeV. (11)

These deviations of the 181 nuclei are also satisfying although
they are slightly larger than the deviations of the 117 nuclei
in the previous section. Usually the standard Bethe and
Weizsäcker formula leads to anomalously large deviations
near the magic number N = 126. Here the deviations near
N = 126 are reduced greatly because of the introduction of
additional terms. To see the details of deviations we calculate
the deviations for two regions with the second version of the
formula. One region corresponds to 117 nuclei with N � 140
and another corresponds to the nuclei with N � 139 (Z � 90).
The deviations for the two regions are as follows:

〈σ 〉 = �i=1,117

∣∣Bi
exp − Bi

cal

∣∣/117 = 0.216 MeV (12)
√

σ 2 = [
�i=1,117

(
Bi

exp − Bi
cal

)2/
117

]1/2 = 0.268 MeV (13)

and

〈σ 〉 = �i=1,64

∣∣Bi
exp − Bi

cal

∣∣/64 = 0.367 MeV (14)
√

σ 2 = [
�i=1,64

(
Bi

exp − Bi
cal

)2/
64

]1/2 = 0.507 MeV. (15)

These results of the deviations clearly show that the main
deviation between the formula and the data appears for the
64 nuclei with N � 139. The deviation in the region N � 140 is
significantly less than the deviation in the region of N � 139.
So we expect that the second version of the formula is also
accurate for superheavy nuclei which are current interests.
This demonstrates that both versions of the formulas can be
applied for superheavy nuclei because their results are stable
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FIG. 6. The variation of the deviations between experimental
binding energies and calculated ones from the formula of binding
energies of the 181 heavy nuclei.

and close. Of course the second version of the formula could
also be used for calculations of the binding energies of lighter
isotopes with Z = 90–100 although the deviation in this range
could be slightly larger than that in superheavy region.

The detailed results from the second version of the formula
are also drawn in Figs. 6–9. In Fig. 6 the y axis is the deviation
of the 181 nuclei and x axis is the mass number. One sees again
that the deviation is very small for superheavy region. The
variations of average binding energies of even-even nuclei are
plotted in Figs. 7 and 8 for Th, U, Pu, Cm, Cf, and Fm isotopes.

FIG. 7. The variation of the experimental and calculated average
binding energies of even-even nuclei with Z = 90–94 where the
second version of the formula is used.

FIG. 8. The variation of the experimental and calculated average
binding energies of even-even nuclei with Z = 96–100 where the
second version of the formula is used.

The theoretical curves are very close to experimental ones. For
light and medium isotopes with Z � 83 the maximum of the
average binding energies on an isotopic chain usually lies near
the β stable line and the nuclei with the maximum are stable
or have very long half-lives. It is not clear what will happen
for superheavy nuclei because the maximum of the average
binding energies on an isotopic chain will not situate on the
predicted center of the superheavy island. Because the nuclei
with the maximum are tightly bound in quantum many-body
problems, we do not know which nucleus will live the longest
on an isotopic chain when α decay, β decay, and spontaneous
fissions compete each other in superheavy regions. This may
also influence the predictions of existence of magic numbers.

In Fig. 9 we draw the variations of the two-neutron separa-
tion energies, two-proton separation energies, and α-decay
energies for the uranium isotopic chain. The black circles
in the figure denote the calculated values from the second
version of the formula. The hollow circles denote the experi-
mental data or estimated values by Audi et al. [12]. The arrow
near the hollow circle denotes that the circle corresponds to an
estimated value. One can see that theoretical curves follows the
trend of experimental data well. For heavier U isotopes around
N = 148, the calculated values approximately coincide with
experimental ones. So it is concluded again that the results
from the second version of the formula agree well with the
data.
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FIG. 9. The upper part of this figure is the variation of the
experimental (or estimated) and calculated two-neutron separation
energies of the uranium isotopes where the second version of the
formula is used. The hollow circles with an arrow are estimated
values from Audi et al. when experimental data are not available. The
middle one of this figure is the variation of two-proton separation
energies and the low one is that of α-decay energies of the uranium
isotopes.

IV. CONCLUSIONS

In summary, we have proposed new local mass formulas
of heavy nuclei with Z � 90 by introducing new terms on
the Bethe and Weizsäcker formula. This can be considered a
new form of the Bethe and Weizsäcker formula for heavy
and superheavy region. The first version of the formula
can very accurately reproduce the binding energies of the
117 nuclei with Z � 90 and N � 140. The average devia-
tion between the experimental data and calculated ones is

0.118 MeV where the binding energies themselves are as
high as 2000 MeV in this mass range. The calculated α-decay
energies and two-neutron separation energies agree well with
experimental data of heavy nuclei with Z � 90. Both the proton
even-odd effect and neutron even-odd effect of one-nucleon
separation energies are also well reproduced by the formula.
This is the first time that experimental data of heavy nuclei
can be reproduced with a very high precision (δB/B ≈
0.118/2000 ≈ 0.006%). The formula is useful for accurate
estimation of the binding energies of unknown superheavy
nuclei. The binding energies, α-decay energies, and α-decay
half-lives of unknown superheavy nuclei are predicted. This
will be useful for future experiments of superheavy nuclei. We
have proposed the idea to determine the effective parameters
by fitting the data of heavy nuclei with Z � 90. This idea will be
useful for other models to predict the properties of superheavy
nuclei very reliably. This will improve the significant deviation
between the experimental data and the numerical results that
exists in current models. For the second version of the formula
the 181 nuclei with known binding energies are included in
fitting the parameters. The deviations of the 181 nuclei are
also small and the second version of the formula is satisfying
although the deviations are slightly larger than those of the
first version of the formula. Especially the results from both
versions of formulas are very close for superheavy region.
This shows that they can give stable and reliable results for
superheavy region and this is useful for future experiments of
superheavy nuclei.
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