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Unified model of nuclear mass and level density formulas
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Nuclear ground and excited state properties are described by using parameter systematics on mass and level
density formulas. The formulas are based on an analytical expression of the single-particle state density by
introducing the shell-pairing correlation in a new way. Main features are the shell, pairing, and deformation
effects on the droplet model near the ground state, which are washed out at higher excitation energies. The main
aim of the paper is to provide in the analytical framework the improved energy dependent shell, pairing, and
deformation corrections generalized to the collective enhancement factors, which offer a systematic prescription
over a great number of nuclear reactions. The new formulas are shown to be in close agreement with not only the
empirical nuclear mass data but also the measured slow neutron resonance spacings and experimental systematics
observed in the excitation energy dependent properties.
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I. INTRODUCTION

In recent years most statistical theory calculations of nu-
clear reactions have been carried out by using the semiempiri-
cal level density formula proposed by Gilbert and Cameron [1]
in 1965, which is based essentially on the Fermi-gas (FG)
model and seems to be enough to predict the level densities
at a narrow range of excitations. However, it has in fact been
well established [2] that the extrapolation of this formula to a
wide range of excitation energies is subject to large errors, and
that washing out shell effects should be considered. Among
semiempirical models which account for the energy dependent
shell correction of the nuclear level density, the model of
Kataria, Ramamurthy, and Kapoor (KRK) [3] is considered
the typical one. On the other hand, the energy dependent
pairing corrections with the shell-pairing correlation seems
to be only correctly considered by means of the microscopic
Fermi-gas model [4] or of the extended Thomas-Fermi plus
Strutinsky integral model [5], which based on the BCS theory
of superconductivity still has, however, an inaccuracy due to
the formalism in the superconducting phase [2,5].

The systematics of nuclear level density (LD) depends
strongly on the shell, pairing, and deformation effects. The
nuclear mass formula has been used to determine those
“empirical” correction energies at the ground state, which
are defined as corrections on the liquid-drop part in the
mass formula. The most often used correction energies are
those of Myers and Swiatecki (MS) [6], but discrepancies in
absolute values between the measured and predicted masses
may amount up to 2 MeV.

The main aim of the present work is to find a new set of
parameter systematics for both the mass and the LD formulas
on the basis of a new single-particle state density model. In this
model, an analytical expression similar to the previous KRK
model is adopted for the single-particle states, but the shell-
pairing correlation terms are introduced in a new way [7], so
this model is called the shell-pairing correlation (SPC) model.

We take the finite range droplet model (FRDM) [8], which
is a new version of the previous MS model, as a starting point
for the more detailed description of microscopic corrections,
the shell, pairing, and deformation effects, based on the single-
particle model.

In the next section, the formulas for energy- and spin-
dependent properties of nuclei are presented. In Secs. III,
IV, and V, the systematics of parameters for the ground state
(mass formula) and for the excited state (LD formula) are
obtained, and in Sec. VI the predictions of the current model
are compared with those of the FG and KRK models by means
of the empirical evaporation process data. The last section is
the concluding remarks.

II. NUCLEAR STATISTICAL PROPERTIES

In the framework of the nuclear statistical model [1],
thermodynamical properties are described by means of the
grand partition function �(λ, β),

�(λ, β) =
∫

g(ε) ln[1 + 2 exp β(λ − ε) + exp 2β(λ − ε)]dε

= 2
∫

g(ε) ln[1 + exp β(λ − ε)]dε. (1)

For a distribution function g(ε) of the equidistant single-
particle state, and the chemical potential λ assumed not to
deviate appreciably from the Fermi energy, the following
well-known relations for the entropy S and the excitation
energy E∗ are obtained:

S = 2a0t, U = a0t
2, a0 = π2

3
g0,

(2)
U = E∗ − Poe, Poe = n�0,

where a0 is the asymptotic level density parameter, t(=1/β)
the thermodynamic temperature, g0 the average density of
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single-particle states ( two-fold degenerate), U the effective
excitation energy is defined by using Poe, which is the odd-even
effect in the experimental pairing energy, n = 0, 1, 2 for odd-
odd, odd, and even-even nucleus, �0 the pairing energy gap
at the ground state. The relations (2) are called the Fermi-gas
(FG) model.

For more realistic analyses the distribution function g(ε) in
Eq. (1) is written in terms of the anisotropic harmonic oscillator
model for the single-particle state density, considering only
fundamental harmonics for the main shell with the subshell
associated with the pairing interaction [7]:

g(ε) =
∑
X

g0X

[
1 + 1

3
fX

∑
i

cos ωiX (ε − εX)

]

× [1 − cos ωPX
(ε − λX)],

ω1X = ω2X = ω⊥X ≈ ω

(
1 + 1

3
δX

)
, (3)

ω3X = ω||X ≈ ω

(
1 − 2

3
δX

)
,

δX quadrupole deformation parameter,

ωPX frequency related with the subshell spacing,

where the subscript x stands for the proton or neutron shell, fX

is the amplitude of the main shell, ω is the average harmonic
oscillator frequency related with the main shell spacing h̄ωsh,
ω = 2π/h̄ωsh, h̄ωsh = 41/A1/3, A is the mass number, εXis
the main shell position, λX is the Fermi level for the x shell.

When fX = 0 in Eq. (3), the so-called quasiparticle state
density under the pairing correlation is written for an even-
particle system

g(ε) = g0[1 − cos ωP (ε − λ)] (4)

which is a prescription of the current model for pairing
correlations.

A better understanding of the distribution function (4) can
be obtained if the statistical properties of the quasiparticle
system are expressed by using the traditional method of
statistical mechanics. The main quantities are the excitation
energy U = E∗ for an even-particle system, the entropy S,
and the moment of inertia �:

U (t) = a0t
2 − EP 0{h1(TP )h2(TP ) − 1},

S(t) = 2a0t − t−1EP 0h1(TP ){h2(TP ) − 1}, (5)

�(t) = �Rh3(TP ), TP = πωP t,

where the functions h1(TP ) and h2(TP ) are defined as

h1(T ) = T cosech(T ), h2(T ) = T coth(T )

h3(T ) = {1 − h1(T )}, h1(0) = 1,

h1(∞) = 0, h2(0) = 1, h1(∞)h2(∞) = 0,

(6)

the symbol ∞ represents the asymptotic limit of high temper-
atures. The pairing energy at the ground state EP 0 is defined
as

EP 0 =
∑
X

g0X

/
ω2

PX. (7)

If the empirical pairing energies are given, the frequency ωp

is determined by using Eq. (7).

The main features of the current prescription of Eq. (5) for
pairing correlations can be compared with those of the simple
version [5] of the BCS superconductivity theory, where for
the energy gap at the ground state �0 and for the temperature
dependence of the gap parameter �(t) the following simple
approximations are written as, for even nuclei,

2�0/tC = 3.50,

�(t) = �0

[
1 −

(
t

tc

)3.23
]1/2

(t � tC),

�(t) = 0.0 (t > tC), (8)

U = a0t
2 + 1

2
g0

(
�2

0 − �2
)
,

S = 2a0tF (�/t)ωF (�/t) ,

F (x) = 1

ln 2

[
ln(1 + e−x) + x

1 + ex

]
,

ωF (x) = 1 + 0.083x(1 − e−0.5x), (9)

�(t) = �Rsech2

(
�

2t

)
, �R = 0.015A5/3,

where tc is a critical temperature of the phase transition.
From Eqs. (5), (7), and (8), the following relations are

assumed for the present model:

EP 0 = g0/ω
2
P = 1

2g0�
2
0, ωP = 2/�0,

(10)
� = �0{h1(TP )h2(TP )}1/2.

Figures 1 and 2 show plots of quantities, �, Ep0, S, and U of
Eqs. (5) and (10) for the current SPC (shell-pairing correlation)

FIG. 1. (Color online) Plots of pairing correlations vs ther-
modynamic temperature for three different models of FG, BCS
and SPC, as a sample of even-even nuclei. Values of parameter,
�o = 11/A1/2, a0 = 0.137A, A= mass number, tc = 2�0/3.50, the
critical temperature of phase transition in BCS model.
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FIG. 2. (Color online) Plots of thermodynamic properties vs
temperature for three different models of FG, BCS, and SPC, as
a sample of paired even-even nuclei. (See also Fig. 1.)

model versus the thermodynamic temperature, compared with
those of the FG, Eq. (2), and of the superconductor (BCS)
model, Eq. (8). The following parameter systematics and its
values are taken from the FG model estimate [2,6] as

a0 = 0.137A, �0 = 11/A1/2. (11)

The lack of an existence of the finite critical temperature of
the phase transition in the current model is the prescription
corresponding to the finite number of paired particles in
the actual nucleus. Consequently, the discontinuous phase
transition, known to be nonphysical for finite systems, is
avoided by means of function (4).

In Eqs. (5) and (9) the moment of inertia � tends to
zero when the temperature vanishes. This approximation is
inadequate to describe effects associated with the correlation
between the pairing interaction and the rotational motion for
deformed nuclei, and the following relation is reduced [9]:

�⊥ = �R

(
1 + 1

3
δ

)
h⊥(δ,�),

h⊥(δ,�) =
{

1 − d

(
41A1/3δ

2�

)}
,

(12)

�3 = �R

(
1 − 2

3

)
h3(TP ),

d(x) = ln(x + √
1 + x2)

x
√

1 + x2
,

where �⊥is the perpendicular moment of inertia, �3 the parallel
moment of inertia is equal to that of Eq. (5).

By introducing the full scope of the single-particle state
density of Eq. (3), fX �= 0, the statistical properties similar to
Eq. (5) are written as

S = 2a0t + t−1
∑
X

[ES0Xh1(TSX){h2(TSX) − 1}

−EP 0Xh1(TPX) {h2(TPX) − 1}] ,

U = a0t
2 +

∑
X

[ES0X {h1(TSX)h2(TSX) − 1}

− EP 0X {h1(TPX)h2(TPX) − 1}] ,

ES0X ≡ 2g0X

1

3
fX

∑
i

ωXi
−2 cos 2πdi

(
χX − 1

2

)
,

(13)
EP 0X ≡ 2g0X

ω−2
PX {1 + FS(fX, χX, δX)}

= 1

2
gX�2

0X,

FS(fX, χX, δX) ≡ 1

3
fX

∑
i

cos 2πdi

(
χX − 1

2

)

∼= Es0x(ω2/2g),

TSX = πωt, TPX = πωPXt,

�3 = �R

∑
X

(
1 − 2

3
δX

)
h3(TPX, TSX),

(14)

�⊥ = �R

∑
X

(
1 + 1

3
δX

)
h⊥(δX,�X),

h3(TPX, TSX) = [1 − h1(TPX)

− FS(fX, χ
,
X, δX){h1(TSX) − h1(TPX)}],

d1 = d2 =
(

1 + 1

3
δX

)
, d3 =

(
1 − 2

3
δX

)
,

where χX is the occupied fraction of the main shell, and
ES0, EP 0 are the shell and pairing correction energies at the
ground state. The fraction Fs on the right-hand side of EP 0

describes the shell-pairing correlation effects.

III. SYSTEMATICS OF GROUND STATE PARAMETERS

In this section the ground state correction energies ES0

and EP 0 in Eq. (14) are combined with the microscopic
corrections, shell, pairing, and deformation terms of the
nuclear mass formula, for which we can use, as a starting
point, the macroscopic-microscopic approach of FRDM [8].
In the present model the nuclear mass (potential energy) can
be written as

M(Z,N, δ) = Mmac(Z,N, 0) + Ms+p(Z,N, δ), (15)

where the ground-state nuclear mass M(Z,N, δ) is calculated
as a function of proton number Z, neutron number N, and of
shape parameter δ, and is the sum of a spherical macroscopic
term Mmac and a deformed microscopic term Ms+p, repre-
senting the shell, pairing, and deformation corrections. As
the spherical macroscopic term Mmac(Z,N , 0), including the
Wigner term, we use those of FRDM, shown in Appendix A.
Then, the deformed microscopic term Es+p(Z,N, δ) can be
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obtained from the experimental mass excess Mexp,

Ss+p(Z,N, δ) = Mexp(Z,N) − Mmac(Z,N, 0)

= SZ + SN, (16)

where SZ and SNare the shell-group wise average (SGWA)
corrections which include the shell, pairing, and deformation
effects, and the basic assumption made in Eq. (16) is the
independence of corrections due to the proton from those
due to the neutron. The values of SZ and SNare obtained by
means of the iteration procedure, each of which consists of two
steps:

S
(i)
Z = S

(i−1)
Z − δSZ,

(17)
S

(i)
N = S

(i−1)
N − δSN,

δSZ =
∑
N

W (Z)
{
Emac(Z,N, 0) + S

(i−1)
Z + S

(i−1)
N

− Mexp
}/ ∑

N

W (Z),

δSN =
∑
Z

W (N )
{
Emac(Z,N, 0) + S

(i−1)
Z + S

(i−1)
N

− Mexp
}/ ∑

Z

W (N ),

σth =
[∑

X W(X){(Mth − Mexp)2 − σexp(X)2}∑
X W(X)

]1/2

,

(18)

W (X) = 1

σ 2
exp(X) + σ 2

th

,

where the theoretical error σth of Eq. (18) is defined as
a measure of overall quality representing a precision that
is constant in a certain range of computed masses Mth =
Emac + SZ + SN , e.g., for all experimental masses above
A = 16, and its values are easily obtained in a few iterations.
Each SGWA value of SZ and SN is obtained by averaging
its value within a Z- or N-shell interval. Initial values of S

(0)
Z

and S
(0)
N in Eq. (17) are estimated from the MS formula [6].

Final ones are obtained by requiring that the theoretical error
σth should be a minimum when summed over all available
experimental data. Through this work the experimental mass
data of Ref. [10] are used, and the classification of mass data
is shown in Table I. Also shown in Table I. (lower part) are
results of error analyses for five different fitting models, MS,
Möller et al., ARA, SGWA and new mass formula, which are
the polynomial fits to SZ and SN . In Fig. 3 the results of the
above averaging procedure for SZ and SN are shown are (a)
for the Z(I)-N(I) shell and (b) for the Z(I)-N(I+1) shell nuclei.
Figure 4 shows components of microscopic corrections, by
using the results shown in Fig. 3, for the new mass formula.
The deformation energies reduced in Fig. 3 are used to estimate
the values of deformation parameters δ shown in Fig. 5.

For obtaining new mass formula, polynomial fits to SZ and
SNare made the following way:

(a)

(b)

FIG. 3. (Color online) Microscopic corrections to FRDM based
on Ref. [10] mass data. Values of corrections are derived by using
the shellgroup wise average (SGWA) method, assuming the complete
independence in interactions between proton and neutron shells on
those corrections.

For even-particle nuclei:

S ′
X(χX) ≡ C2XχX

2 + C1XχX + C0X, (19)

[C2X,C1X,C0X]: shell-structure parameters,

S‘X = quadratic fits without the deformation defects,

{Fig. 4 Shell corrections Z(I )-N (I + 1) Shell}
SX = S ′

X, for spherical nuclei,

ED0X = S ′
X − SX: Deformation energy (20)

≡ D2XχX
2 + D1XχX + D0X, quadratic fits,

[D2X,D1X,D0X]: deformation-effect parameters

= 0, for spherical nuclei.

Values of deformation parameter δX:

ED0X = (2g0X)ω−2fXFd (χX, δX)

= 1.44A1/3fXFd (χX, δX),

Fd (χX, δX) ≡ 1

3
�i{di−2 cos 2π (χX − 1/2)di} (21)

− cos 2π (χX − 1/2)

d1 = d2 =
(

1 + 1

3
δX

)
, d3 =

(
1 − 2

3
δX

)
.

For odd-particle nuclei:
Pairing gaps (odd-even effects):

�0X = {(2/g0X
)EP 0X}1/2 = (2/ωPX)[1 + FS(fX, χX)]1/2,

≡ CPX{1 + CFXS ′
X(χX)}1/2

(22)
[CPX, CFX]: pairing-effect parameters

EP 0X = 1
2gX� 2

0X: pairing correlation energy.

The above mass formula parameters of shell structure, pairing,
and deformation effects at the ground state are listed in
Appendix B. The excitation energy dependences of those
effects are described by using the energy dependences of
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TABLE I. Microscopic corrections and fitting errors of mass formula.

Classification of measured mass excess (Ref. [10])

Shell N14 N20 N28 N50 N82 N126 N184 Total

Z14 46 34 8 88
Z20 8 35 35 7 85
Z28 7 54 53 114
Z50 6 192 267 2 467
Z82 179 418 9 606

Z126 62 232 294

Fitting error of nuclear mass formula [σth(MeV)]d

Shell No. of Nuclei MSa Möller et al.b Present model
Z N (1967) (1995) ARAc SGWA New formula

14 14 46 7.125 0.856 0.716 0.569 0.736
20 34 8.535 1.361 0.897 0.270 0.548

20 20 35 6.625 1.477 0.457 0.183 0.198
28 35 9.202 1.362 0.511 0.119 0.230

28 28 54 6.529 1.146 0.485 0.392 0.413
50 53 3.969 0.384 0.502 0.129 0.249

50 50 192 2.367 0.607 0.510 0.364 0.396
82 267 1.331 0.709 0.640 0.331 0.455

82 82 179 1.115 0.483 0.606 0.500 0.569
126 418 0.971 0.485 0.769 0.465 0.616

126 126 62 1.125 0.392 0.800 0.261 0.561
184 232 1.301 0.392 0.535 0.450 0.614

Total 1607 3.165 0.662 0.659 0.409 0.535

Root mean squares (MeV) 3.179 0.674 0.678 0.409 0.551

Z14 shell: Z = 8 ∼ 14, N20 shell: N = 15 ∼ 20. Total = 1654 Nuclei.
Ranges of deformed nuclei: (Z28-N50, Z50-N82, Z82-N126, Z126-N184).
aReference [6].
bReference [8].
cARA = all range average (A = 16 ∼ 263).
dσ 2

th = (1/
∑

wi)
∑

wi�(Mi
exp − Mi

th)2 − σ i
exp

2�, wi = 1/(σ i
exp

2 + σ 2
th)2

Mi
exp: measured mass, Mi

th: estimated mass, σ i
exp: measured error.

Eqs. (6) and (13):

ESX(χX) = S ′
X(χX)H12(TSX),

EDX = ED0XH12(TSX), (23)

EPX = EP 0XH12(TPX), H12(T ) ≡ h1(T )h2(T ),

and shown in Fig. 6 as a sample of 238U.

IV. NUCLEAR LEVEL DENSITIES

In the framework of the statistical model, the level density
(LD) around the effective excitation energy U and spin J is
written as [11–13]

ρ(U ) = exp(S)

2π
√

D
, D = 18

π4
a1/2U 5/2.

(24)

ρ(U, J ) = 2J + 1

2
√

2πσ 3
eff

exp

[
− (J + 1/2)2

2σ 2
eff

]
ρ(U )KvibKrot,

where the collective enhancement factors, vibrational Kvib [5],

and rotational Krot [13] are defined as

Kvib = exp(0.0555A2/3t4/3), Krot = �⊥t, (δX > 0)

= 1.0, (δX = 0)

σ 2
eff = �2/3

⊥ �1/3
3 t, (25)

where the entropy S and the excitation energy U are described
by Eq. (13),

S = 2a0t + t−1
∑
X

[ES0Xh1(TSX) {h2(TSX) − 1}

− EP 0Xh1(TPX) {h2(TPX) − 1}] ,

U = a0t
2 +

∑
X

[ES0X {h1(TSX)h2(TSX) − 1}

− EP 0X {h1(TPX)h2(TPX) − 1}] , (26)

U = E∗ −
∑
X

nX�X

ES0X ≡ 2g0X

1

3
fX

∑
i

ωXi
−2 cos 2πdi

(
χX − 1

2

)
,

EP 0X ≡ 2g0X
ω−2

PX {1 + FS(fX, χX)} = 1

2
g0X

�2
0X.
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FIG. 4. (Color online) Polynomial expressions
of correction energies, shell (—– proton, —– neu-
tron), pairing (× proton, + neutron), and deforma-
tion (� proton,  neutron) of new mass formula.
Symbols (� even-proton, © even-neutron) are the
SGWA values of microscopic correction energies for
FRDM model.

In Eq. (26), nX = 0, 1, for even-, odd-particle number,
respectively.

The enhancement factors of Eq. (25) are plotted versus the
excitation energy in Fig. 7, with the energy dependence of
moment of inertias in the upper part of the figure.
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FIG. 5. (Color online) Values of ground state deformation param-
eter (δ), which are calculated by using Eq. (21).

V. SYSTEMATICS OF EXCITED STATE PARAMETERS

Free parameters to be fixed for excited states are α and ω0

from Eqs. (2) and (3):

a0 = αA, ω = ω0A
1/3, A = mass number. (27)

where the values of α and ω0 are the mass independent
constants. A set of values (α,ω0) for the relatively narrow mass
range (A= 41 ∼ 67) was determined for each of the typical LD
formulas to fit s-wave neutron and proton average resonance
spacings [2]. In the present work the neutron resonance

U 238

C
or

re
ct

io
n 

FIG. 6. (Color online) Excitation energy dependence of the
microscopic corrections. [Eqs. (23)].
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FIG. 7. (Color online) Plots of the moments of inertia and
enhancement factors vs the excitation energy for 238U nucleus,
[Eqs. (25)]. �⊥ is the perpendicular moment of inertia, �3 the parallel
moment of inertia, �R the rigid-body moment of inertia.

spacings for the wide range (A = 24 ∼ 253) including deformed
nuclei in Ref. [14] are used.

For the s-wave neutron resonance spacings 〈D〉 obs we
obtain the following relations from Eqs. (24):

ρ(U, J ) ≡ ρ(U, J : a0),

ρ(U, J = 1/2 : a0) = 2/〈D〉 obs, target spin s = 0,

ρ(U, s+1/2 : a0) + ρ(U, s−1/2 : a0) = 2/〈D〉obs, s �= 0

(28)

which we used to extract values of the LD parameter a0.
Systematics of (α0, ω0) for three different models, FG, KRK,
and SPC, are shown in Fig. 8. The constants α0 and ω0 are
found by minimizing the quantity

χ2 =
∑

i

(a0i − α0Ai)
2, (29)

where the subscript i refers to the individual nuclei. The results
of the linear least-squares fits for three models are shown in
Table II. Those results give the slopes of curves of the neutron
evaporation spectra due to three different models, and are
used to verify its propriety by means of existing experimental
evaporation spectra. The lower value of χ2 means that its
model gives a better average value of neutron s-wave resonance
spacings than other models.

VI. COMPARISON OF PREDICTIONS BY
DIFFERENT MODELS WITH EXPERIMENTAL

EXCITATION PROPERTIES

Unlike the neutron resonance data, which are used for
obtaining empirical systematics of LD parameters, in this

FIG. 8. (Color online) Systematics of level density parameter α,
based on Ref. [14] resonance spacings data and on three different
level density models, FG, KRK, and SPC.

section the data obtained both at low and high excitation
energies E∗ are involved. We obtained level densities from
(a) counting low-lying bound levels at the energies [14],
(b) level spacing data from several reactions (γ, p), (p, γ ),
(p, p′),(p, α), (α, γ ), (α, n), (d, p), (3He, d) (3He, α) and
the Ericson fluctuation measurements [15], and also (c)
evaporation neutron spectra [16–20]:

(a): the cumulative levels N (E∗) and the observable LD
ρobs(E∗ ) can give a good fit to the experimental data,

N (E∗) = exp{(E∗ − UO)/T },
ρobs(E

∗) = (1/T ) exp{(E∗ − UO)/T },
(30)

T constant nuclear temperature,

U0 backshift energy.

TABLE II. Mass dependence of level density parameters (ω, α).
Systematics are based on (Ref. [14]) data for the s-wave neutron reso-
nances: ω = ω0A

1/3, aS = αSA, aD = αDA, χ 2 = ∑
i (ai − αAi)2.

The constants (ω0, α) are found by minimizing the quantity χ 2, where
the subscript (i) refers to the individual nuclei, mass number Ai .

LD Model ω0 = ω/A1/3 αS = aS/A αD = aD/A χ 2

FG — 0.128 ± 0.016 — 2809.6
KRK 0.181 0.139 ± 0.009 — 717.3
SPC 0.132 0.125 ± 0.012 0.088 ± 0.011 1011.3

064329-7



H. NAKAMURA AND T. FUKAHORI PHYSICAL REVIEW C 72, 064329 (2005)

FIG. 9. (Color online) Plots of LD vs the excitation energy of
the medium and heavy nuclei. Smooth curves are polynomial fittings
to those values of three different models, using the LD parameter
systematics in Table II.. Dobs corresponds to the average s-wave
neutron resonance width and ρobs is a fixed point for all polynomial
fitting curves.

(b): the observable LD ρobs(U ) is connected with the total
density ρ(U ) by

ρobs(U ) =
∑

J

ρ(U, J ) ≈ ρ(U )√
2πσ

. (31)

(c): the relative intensity distribution N(U) of evaporation
neutron spectra can be written as [16]

N (E) = const.Eσc(E)ρ(U )

= const.Eσc(E)U−2 exp{2
√

aU}, (32)

where E is the evaporated neutron energy, σc(E) the compound
formation cross section. The plots of the left-hand side of
Eq. (32) versus (E∗)1/2 or E∗ test the LD formula

log[N (E)U 2/Eσc(E)] =
√

aU + const.,

or (33)

= U/T + const.

the above is called the “slope technique” for testing the
linearity of the right-hand side of Eq. (33).

For the first two cases, (a), (b), the absolute values of
ρobs(U ) must be compared with predictions by each model
of the LD, on the other hand, for the last case (c) only
its slope is meaningful. Experimental LD data are classified
into three different groups based on its excitation properties:
Fig. 9 typical FG-gas type spectra of middle- and heavy-weight
nuclei, Fig. 10 constant-temperature type of the closed-shell

FIG. 10. (Color online) Plots of LD vs the excitation energy of
closed-shell nuclei. See caption of Fig. 9.

nuclei, Fig. 11 lower-slope (lower value of a) FG-gas type of
deformed nuclei.

For the comparison of energy dependent LD of the present
model (SPC) with those of FG and KRK models, a point on
all curves, which are polynomial fittings to values of three

FIG. 11. (Color online) Plots of LD vs the excitation energy of
deformed nuclei. See the caption of Fig. 9.
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different models, is fitted as follows:

log[const.ρobs(U )] = log {ρobs(U )} + const. (34)

on Figs. 9–11, where the LD parameters in Table II. are used
for those models, and the collective enhancement factors, Kvib

and Krot, are not applied to FG and KRK models. The above
normalization point for each nucleus is set for all polynomial
fitting curves of three different models. Only the slopes are
meaningful in the evaporation calculations, a point is selected,
at first, for a curve of the SPC model to properly fit the
experimental evaporation spectra, then, curves of other models
are drawn to fit this point in turn.

These results show that the present LD model (SPC) is
superior to other models.

VII. CONCLUSION

The semiempirical nuclear mass and LD formulas with
the new parameter systematics are presented for the statistical
theory analysis of a large number of nuclear reactions. The
results of this work can be summarized as follows:

(i) The advantage of the present LD formula compared with
the previous ones is its analytic form is consistent with all
corrections and thus there is no use for separate tables of
the shell, pairing, and deformation energies.

(ii) The present mass formula gives the improvements of
accuracy in the shell, pairing, and deformation corrections
compared with previous mass formulas, and the theoret-
ical error over existing experimental masses (A � 16) is
improved compared with those of Möller et al. [8] in
Table I..

(iii) The s-wave neutron resonance spacing data for the mass
range A = 24–253 including deformed nuclei were used to
obtain the simple linear relations between the asymptotic
level density parameter and the mass number, a0 = αA,
for the spherical and deformed nuclei separately.

(iv) The results of analyses with data from counting low-lying
bound levels and from using existing evaporation spectra
show that the preferable predictions of weaker energy
dependence by the present LD model compared with those
the previous models, FG, KRK are due to the energy
dependence of shell and pairing corrections, and also
to the collective enhancement factors, in particular, the
rotational ones for deformed nuclei.
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APPENDIX A: CONSTANTS OF THE FINITE
RANGE DROPLET MODEL (FRDM)

Fundamental constants:
MH = 7.289034 MeV hydrogen-atom mass excess
Mn = 8.071431 MeV neutron mass excess
e2 = 1.43997 MeV fm electronic charge squared

Constants that have been determined from considerations

other than nuclear masses:
ael = 1.433 × 10−5 MeV electronic-binding constant
K = 240 MeV nuclear compressibility constant
rp = 0.80 fm proton root-mean-square radius
r0 = 1.16 fm nuclear-radius constant

a = 0.68 fm range of Yukawa-plus-
exponential potential

aden = 0.70 fm range of Yukawa function used to
generate nuclear charge
distribution

Constant obtained from consideration of mass-like quanti-
ties∗:

W = 30 MeV, Wigner energy = W

[
|(N−Z)/A|

+
{

1/A, (Z = N = odd)
0, (otherwise)

}]

Constants to be determined in a least-squares minimization:

a1 = 16.247 MeV volume-energy constant

a2 = 22.92 MeV surface-energy constant

J = 32.73 MeV symmetry-energy constant

Q = 29.21 MeV effective surface-stiffness constant

ca = 0.436 MeV charge-asymmetry constant

C = 60 MeV preexponential compressibility-

term constant.

γ = 0.831 exponential compressibility-term

range constant

(∗) pairing energies are included in

the microscopic corrections.

APPENDIX B: POLYNOMIAL COEFFICIENTS FOR
MICROSCOPIC CORRECTION TERMS

Shell-model Corrections: S0(χ ) = C0 + C1χ + C2χ
2.

Shell Z-shell correction N-shell correction

Z N C0 C1 C2 C0 C1 C2

14 14 2.234 1.896 −2.107 −1.077 1.770 −2.249
20 0.225 6.837 −5.504 −1.435 1.100 −0.456

20 20 1.613 0.812 −0.539 −1.356 1.045 −0.683
28 1.398 1.851 −1.308 −0.923 2.156 −3.204

28 28 2.080 −0.721 −0.352 −0.435 −0.161 −0.888
50 0.707 0.560 −1.192 −0.752 4.495 −4.403

50 50 0.319 2.930 −3.884 −1.064 5.022 −4.959
82 0.010 2.517 −3.070 −0.999 7.417 −8.045

82 82 −0.673 5.947 −5.955 −1.023 6.738 −6.951
126 −1.795 6.929 −5.519 −0.040 3.558 −5.511

126 126 −1.134 9.777 −9.780 −1.171 7.609 −7.556
184 −0.992 8.370 −8.014 −0.893 −6.702 −6.703
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Deformation energy: ED0(χ ) = D0 + D1χ + D2χ
2.

Shell Z-shell correction N-shell correction

Z N D0 D1 D2 D0 D1 D2

50 82 −0.286 1.264 −1.080 −1.116 5.884 6.949
82 126 −1.308 6.041 −5.022 −0.798 5.422 6.088

126 184 −1.124 8.632 −6.996 −1.119 9.571 10.166

Pairing energy-gap: �0(χ ) = Cp{1 + CF S0(χ )}1/2.

Shell Z-shell paring N-shell pairing

Z N Cp CF Cp CF

14 14 0.619 0.250 0.982 0.250
20 0.775 0.000 0.617 0.000

20 20 0.429 0.025 0.541 0.000
28 0.556 0.000 0.517 0.250

28 28 0.349 0.250 0.511 0.250
50 0.394 0.245 0.353 0.000

50 50 0.312 0.250 0.379 0.000
82 0.328 0.250 0.268 0.115

82 82 0.245 0.000 0.253 0.250
126 0.194 0.020 0.153 0.250

126 126 0.150 0.000 0.170 0.250
184 0.000 0.000 0.105 0.000
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