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Superdeformation and clustering in 40Ca studied with antisymmetrized molecular dynamics
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Deformed states in 40Ca are investigated with a method of antisymmetrized molecular dynamics. Above the
spherical ground state, rotational bands arise from a normal deformation and a superdeformation as well as
an oblate deformation. The calculated energy spectra and E2 transition strengths in the superdeformed band
reasonably agree to the experimental data of the superdeformed band starting from the 0+

3 state at 5.213 MeV.
By the analysis of single-particle orbits, it is found that the superdeformed state has particle-hole nature of an
8p-8h configuration. One of new findings is parity asymmetric structure with 12C+28Si-like clustering in the
superdeformed band. We predict that 12C+28Si molecular bands may be built above the superdeformed band due
to the excitation of intercluster motion. They are considered to be higher nodal states of the superdeformed state.
We also suggest negative-parity bands caused by the parity asymmetric deformation.
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I. INTRODUCTION

In the spectra of 40Ca, the existence of low-lying deformed
states has long been known since 1960s [1]. The coexistence
of the spherical and various deformed states in the doubly
magic nuclei 40Ca has attracted great interest. In the positive
parity states below 7 MeV, besides the spherical ground state,
the existence of two deformed rotational bands built on the
0+

2 state at 3.35 MeV and the 0+
3 state at 5.21 MeV is

known experimentally. The structure of these bands has often
been discussed in relation to many-particle many-hole states
of nuclei in this mass region for a long time. Gerace and
Green [2,3] firstly suggested that the former band is dominantly
a 4p-4h state, while the latter band with a large deformation
is understood as an 8p-8h state.

The member states of the first Kπ = 0+ rotational band
built on the 0+

2 state are known to be strongly populated by α-
transfer reactions and to have the large α spectroscopic factors
[4–7]. The α + 36Ar cluster structure of this band has been
studied theoretically based on semimicroscopic cluster model
calculations [8–10].

The states in the second Kπ = 0+ band have been observed
in the experimental work searching for the 8p-8h states
with 32S(12C,α)40Ca reactions, which were performed by
Middleton et al. in 1972 [11]. Due to the strong population
in the multinucleon transfer data and the strong E2 transitions
[1], the 0+(5.21 MeV), 2+(5.63 MeV), and 4+ (6.54 MeV)
have been thought to belong to the superdeformed band
with a dominant 8p-8h configuration. Recently, by using the
GAMMASPHERE array detectors, the level structure of the
deformed bands in 40Ca has been explored and many excited
states up to very high spins have been discovered [12,13].
Consequently, the existence of the superdeformed band of
40Ca built on the 0+

3 (5.21 MeV) has been experimentally well
established.

In contrast to the experimental situation, a theoretical
interpretation of the superdeformed band is not well estab-
lished and is still complicated. With the symmetry restricted
Skyrme-Hartree-Fock (HF) calculations, Zheng et al. studied
the energy systematics of n-particle–n-hole (np-nh) states in

40Ca [14,15]. They suggested an 8p-8h deformed state as
a local minimum of the energy as a function of n. They
also predicted highly deformed 12p-12h states in a high
excitation energy region. However, the recent mean-field
calculations suggest that the 8p-8h configuration becomes
unstable, especially when the model space is extended. Based
on the three-dimensional (3d) HF calculations without any
assumption of the spatial symmetry, Inakura et al. [16] studied
the energy surface of 40Ca as the function of the quadrupole
deformation. They have shown that the local minimum of
the superdeformed 8p-8h configuration on the energy curve
becomes quite shallow or even disappears due to the γ and
octupole deformations depending on the effective interaction,
though the 12p-12h state and an oblate state remain to be
local minima in any of used effective interactions. They have
pointed out that the extreme softness of the superdeformed
8p-8h configuration against the octupole deformation (Y30

and Y31). The instability of the 8p-8h configuration and
the stability of the 12p-12h and oblate solutions in 40Ca
had been also reported by Leander and Larsson [17] based
on the macroscopic-microscopic model calculations. Further
calculations beyond mean-field theory were performed by
Bender et al. with GCM calculations in HF+BCS approach
[18]. In their results, the superdeformed band is not dominated
by a certain np-nh configuration but it contains various
configurations such as 4p-4h, 6p-6h, and 8p-8h states due
to the strong mixture between these configurations. Moreover,
shell model calculations were performed for description of
the superdeformed bands [19]. Although the level structure
and quadrupole moments of the superdeformed band are
described by the spherical shell model with the fixed 8p-8h

configurations, however, when the model space is extended
to include other particle-hole configurations, the quadrupole
moments are much underestimated due to the configuration
mixing.

These facts may imply that a stable solution for the
intrinsic state of the superdeformation is hardly obtained in
the modern calculations with mean-field approaches. It seems
to be somehow inconsistent with the experimental energy
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spectra of the superdeformation in which no large deviation
from the rigid rotor model is seen [12,13]. Therefore, it is
natural to expect that there might be some mechanism beyond
mean-field approaches to stabilize the superdeformation. The
cluster aspect is one of the essential features for nuclear
deformation even in sd-pf shell nuclei together with the
mean-field aspect. Indeed, it has been already shown that two
kinds of nature, i.e., cluster and mean-field, coexist in the
deformed states in sd-shell nuclei [20–22]. We expect that the
clustering can play an important role also in the formation
of the superdeformed state of 40Ca. In the case of 40Ca, we
consider that the softness against octupole deformations in the
superdeformed state suggested by Inakura et al. [16] can be
associated with asymmetric dicluster structure, though, to our
knowledge, there has been no studies to investigate its cluster
aspect.

We also note that some sd-shell nuclei have the remarkable
cluster aspect, molecular resonances, whose properties have
been investigated by cluster models. Recently, theoretical
efforts to link the molecular resonances with low-lying
deformed states with full microscopic calculations were made.
It is suggested that the molecular resonances and the low-lying
deformed states in sd-shell are regarded to be a series of
molecular bands. For example, in the 32S system, it has been
suggested that 16O-16O molecular resonances are built on the
superdeformed band of 32S [22] owing to the excitation of
the intercluster motion. Therefore, we consider that molecular
resonances can be good probes to understand the cluster
aspect of the low-lying deformed states. In the 40Ca system,
there are experimental implications of 28Si+12C molecular
resonances in the low-energy fusion cross section [23] and
also elastic scattering data [24], where distinct structures
have been found in the energy region Ec.m. = 20–30 MeV
above the 28Si+12C threshold. It is interesting to look into the
possible appearance of molecular resonances and its relation
to the superdeformation in 40Ca.

In this paper, we study deformed states in 40Ca with
antisymmetrized molecular dynamics (AMD). The method of
AMD has proved to be useful in the description of shape
coexistence as well as cluster structure in sd-shell nuclei
[20–22,25–29]. One of the advantages of this method is that
both the cluster aspect and mean-field aspect can be described
within the AMD framework. In order to study the coexistence
of deformations in 40Ca and to investigate the corresponding
rotational bands, we apply a constraint AMD method. Parity
projection, which is essentially important to describe the
parity asymmetric shape of nuclei, is performed before energy
variation, while total-angular-momentum projection is done
after the energy variation. We also perform superposition of the
wave functions with different configurations obtained by
the constraint AMD to obtain better wave functions and to
describe possible configuration mixing. Level scheme and
E2 transition strengths are calculated from these superposed
wave functions. In the present work, we adopt the effective
nuclear interaction which contains finite-range two-body and
three-body forces proposed in Ref. [30]. This interaction is
suitable for describing the nuclear structure properties such
as binding energies and radii over a wide mass number
region from 4He to 40Ca. Moreover, it is also useful to

describe the nucleus-nucleus potential. These features cannot
be described by zero-range forces such as the Skyrme forces,
and are superior points of the effective forces with finite-
range three-body terms. We believe that they are essential
in representing the cluster aspect and investigating properties
of many-particle-many-hole states with large deformations.

This paper is organized as follows. In Sec. II, the formu-
lation of AMD is briefly explained. In Sec. III, we show the
calculated results of the energies, quadrupole transitions, and
moments, and also the intrinsic structure. We give discussions
of molecular aspect and single-particle orbits in Sec. IV.
Finally, a summary is given in Sec. V.

II. FORMULATION

We here briefly explain the formulation of the present
calculations. For the details of the AMD formulation
for nuclear structure studies, the reader is referred to
Refs. [20,31,32].

A. Intrinsic wave function

We start from the intrinsic wave function for a A-nucleon
system which is expressed by a Slater determinant of single-
particle wave packets,

|�AMD〉 = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

ϕi(rj ) = φi(rj )χiηi, (2)

whereA is the antisymmetrizer, and ϕi is the ith single-particle
wave packet consisting of the spatial part φi , the spin part χi ,
and the isospin part ηi . The spatial part of the ith single-particle
wave packet is written by a Gaussian wave packet located
at Xi :

φi(rj ) = exp{−ν(rj − Xi)
2}, (3)

χi = (
1
2 + ξi

)
χ↑ + (

1
2 − ξi

)
χ↓, (4)

ηi = proton or neutron. (5)

Here, the center Xi of Gaussian is a complex number and
treated as a independent free parameter for each nucleon. The
width parameter ν takes a common value for all nucleons,
and is chosen to be an optimum value for each nucleus. The
orientation of the intrinsic spin is expressed by a variational
complex parameter ξi , and the isospin function is fixed to
be up (proton) or down (neutron). Thus, an AMD wave
function is specified by a set of variation parameters, Z ≡
{X1, X2, . . . , XA, ξ1, ξ2, . . . , ξA}, which are optimized by the
energy variation. As the variational wave function, we adopt
the parity projected AMD wave function,

|�±
AMD〉 = 1 ± Px

2
|�AMD〉. (6)

Thus the parity projection is performed before the variation.
This is essentially important to describe the parity asymmetric
intrinsic structure such as the asymmetric cluster structure as
discussed in Refs. [20,33].
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B. Hamiltonian and constraint

The Hamiltonian consists of the kinetic energy, nuclear,
and Coulomb forces. In the present work, we use the effective
nuclear force consisting of two-body and three-body forces.
Then the Hamiltonian is written as

Ĥ =
∑

i

t̂i +
∑
i<j

v̂
(2)
ij +

∑
i<j<k

v̂
(3)
ijk − T̂c.m., (7)

where t̂i is a kinetic operator, v̂(2) and v̂(3) are two-body and
three-body forces, respectively. T̂c.m. is the kinetic term for the
center-of-mass motion. In the AMD wave function, the energy
of center-of-mass motion is subtracted exactly.

We apply a constraint AMD method, where we find the
minimum energy solution in the AMD model space under
certain constraints. Since the particle-hole structure of the low-
lying state is one of the main interests in the present work, we
adopt the constraint of a total number of harmonic oscillator
(H.O.) quanta

N̂os ≡
∑

i

[
p2

i

4h̄2ν
+ νr2

i − 3

2

]
, (8)

where the width parameter ν is taken to be the same value
as that of the single-particle wave packets in Eq. (3). This
is the principal quantum number of the spherical harmonic
oscillator with the oscillation number ω = 2h̄ν/m (m is the
nucleon mass). In order to obtain the minimum energy state
with the constraint 〈N̂os〉 = Nos, where Nos is a given number,
we perform energy variation for the expectation value E of the
Hamiltonian

E ≡ 〈�±
AMD|Ĥ |�±

AMD〉
〈�±

AMD|�±
AMD〉 , (9)

with respect to the variational parameters Z by the method of
frictional cooling [20] under the constraint. We note the AMD
wave function obtained with the energy variation for positive
or negative parity state under the constraint 〈N̂os〉 = Nos as
�AMD(N+

os) or �AMD(N−
os), respectively.

C. Superposition

In the obtained wave function �AMD(N (±)
os ), there exist

local minimum solutions in the energy curve as a func-
tion of Nos. As shown later, those are usually the local
minima also with respect to the deformation parameter β

and considered to be approximate intrinsic wave functions
for the corresponding deformed bands. In the calculation of
level scheme and physical observables, we choose several
intrinsic wave functions �AMD(k) and superpose the spin-
parity projected wave functions, P J

MK�±
AMD(k), in order to

satisfy the orthogonality among the calculated states and to
obtain better wave functions. Here, k indicates N (±)

os and
stands for the label for the obtained intrinsic wave function
[�AMD(k = N (±)

os )]. The wave function of the nth J± state is
written as


J±
n =

∑
k,K

c
J±

n

K (k)P J
MK�±

AMD(k), (10)

where coefficients c
J±

n

K are determined by diagonalizing the
Hamiltonian and norm matrices:〈

P J
MK ′�

±
AMD(k′)

∣∣Ĥ ∣∣P J
MK ′′�

±
AMD(k′′)

〉
(11)

and 〈
P J

MK ′�
±
AMD(k′)

∣∣P J
MK ′′�

±
AMD(k′′)

〉
. (12)

Physical quantity for an operator Ô for the state is calculated
as

〈Ô〉 = 〈

J±

n

∣∣Ô∣∣
J±
n

〉
. (13)

If we use an enough number of base wave functions, this
procedure of the superposition is equivalent to the generator
coordinate method with respect to the generator coordinate
Nos. However, the number of the basis in the superposition is 10
at most because of huge computational time in the numerical
calculations of the total angular momentum projection in the
present work. It means that

∑
k stands for the summation

of discrete basis, and hence, the present calculations do not
correspond to the complete GCM calculations.

III. RESULTS

A. Effective nuclear force

We use an effective nuclear force which consists of central
force, spin-orbit, and Coulomb forces. As the central force,
we use the F3B force [30], which contains a finite-range three-
body term. The parameter set (2) of the F3B force is adopted.
As for the spin-orbit force, we use the same interaction as that
adopted in Ref. [30], the two-range Gaussian spin-orbit term
in G3RS force [34]. In the present calculations, the strength
parameter of the spin-orbit force is chosen to be (i) uls ≡ u1 =
−u2 = 2500 MeV or (ii) uls = 1800 MeV. The Coulomb
force is approximated by the sum of seven Gaussians.

In Fig. 1, we show the binding energies of Z = N nuclei
from 4He to 40Ca obtained by using the present interaction
parameters. The calculations are the simple AMD calcula-
tions without constraints. The binding energies calculated by
variation after parity projection are shown in Fig. 1(a), and
the energies with total-angular-momentum projection after the
variation with parity projection are plotted in Fig. 1(b). We also
show the results of Ref. [30] for interaction (ii), where AMD
calculations with constraint and superposition were performed.
The energies for such deformed nuclei as 8Be, 12C, 20Ne, and
24Mg are gained by the total-angular-momentum projection.
As shown in Fig. 1(b), the binding energies of medium sd shell
nuclei are overestimated by interaction (i) due to the stronger
spin-orbit force than that of case (ii).

B. Shape coexistence

We apply the constraint AMD method to 40Ca. The width
parameter ν for the single-particle wave packets is chosen to
be ν = 0.14 fm−2 which optimizes the energy of the ground
state. We impose the constraint of the total number of harmonic
oscillator quanta as 〈N̂os〉 = Nos on the parity projected AMD
wave function, and obtain energy curves as a function of Nos.
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FIG. 1. The binding energies of Z = N nuclei from 4He to
40Ca obtained by the simple AMD calculations without constraints.
The binding energies calculated by variation after parity projection
but no total-angular momentum projection are shown in the upper
panel (a), and the energies obtained by total-angular-momentum
projection after the variation with parity projection are plotted in
the lower panel (b). Squares are the experimental binding energies.
Filled circles and crosses indicate the results by using interactions
(i) and (ii), respectively. The results for interaction (ii) in Ref. [30]
of AMD calculations with constraint and superposition are shown by
triangles with dotted line.

With a given constraint value Nos, we obtain a few states
with different shapes as local minima. A prolate shape and an
oblate shape are obtained by randomly choosing initial states
in the variational procedure. In order to find possible cluster
states, we also start the variation from initial states with various
dinuclear structure and decrease the Nos. Then we find that a
α + 36Ar-like clustering appears as a local minimum solution.

The energy curves as a function of the oscillator quanta
(Nos) are shown in Figs. 2 and 3. In principle, the minimum
value of Nos for the positive-parity state is 60, which is
given by the sd-shell-closed configuration, and it is 61 for
negative-parity states. The results shown in the figures are
calculated with the total-angular-momentum projected wave
functions P J

MK�±
AMD(N (±)

os ), where K = 0 is chosen to obtain
the lowest energy. The energies are also plotted as a function of
quadrupole deformation β2. Here the deformation parameter
β2 is defined by using the sharp edge liquid drop relation
between Q2 and β2 as follows:

β2 =
√

5

16π

4πQ2

3R2A
, (14)

Q2 = 2〈z2〉 − 〈x2〉 − 〈y2〉, (15)

where the expectation values are calculated for the intrinsic
states �±

AMD(N (±)
os ), and z is chosen to be an approximately

symmetric axis. Here we use the fixed radius parameter, R,

which is related to the nuclear mass A = 40 according to the
formula R = 1.2A1/3 fm.

We first mention the results of positive-parity states with
interaction (i) [Figs. 2(a) and (b)]. We find three states with
different shapes as the local minima on the energy surface.
The lowest state in the Jπ = 0+ curve is an almost spherical
state at Nos = 62. There are two local minimum solutions in
the energy curves, which almost degenerate to each other, at
7 ∼ 8 MeV higher energy than the lowest solution. One is
an oblate state at Nos ∼ 65 and the other is a large prolate
deformation at Nos ∼ 70 with β2 ∼ 0.52. As will be shown
later, the former contains a dominant 4p-4h configuration,
and the latter is dominated by a “8p-8h” configuration and
corresponds to the superdeformed state. The appearance of the
oblate state is consistent with the macroscopic-microscopic
calculation [17] and also the 3d-HF calculations [16]. On
the other hand, the calculated energy curve for the prolate
states differs from the macroscopic-microscopic calculation
by Leander and Larsson [17] where there is no local minimum
for the 8p-8h configuration but is a highly deformed 12p-12h

state. The α + 36Ar-like cluster state appears in Nos � 69
region, but it is much higher than the superdeformed state
in the case of interaction (i). With a smaller Nos value of the
constraint, the α-cluster is absorbed into the 36Ar core and
the α + 36Ar-like state changes into the normal prolate state
during the energy variation. In the 2+ states, the energy curve
for the prolate states is more gentle than the 0+ curve at the
small deformation region, 0 < β2 < 0.2.

Next we look into the results obtained with interaction
(ii) [Figs. 2(c) and (d)], which has the weaker spin-orbit
force than interaction (i). Although the oblate state and the
superdeformed state exist as local minima, the same as in
results (i), the excitation energies of these states are much
higher than those in the case of interaction (i). The excitation
energy of the superdeformed state is about 20 MeV, which
largely overestimates the experimental energy, 5.21 MeV, of
the bandhead of the superdeformed band. On the other hand,
the energy of α-cluster state does not change so much from
(i) to (ii) because the effect of the spin-orbit force is smaller
than other excited states. As a result, the α-cluster state almost
degenerates with the superdeformed state and does not vanish
even in the smaller Nos region (as Nos � 66) in results (ii)
than case (i). Comparing Figs. 2(c) and (d), we find that
the total number of H.O. quanta has a good correspondence
with the quadrupole deformation β2 in the Nos � 64 region
for the prolate deformation. On the other hand, in the small
Nos region, all the solutions for Nos � 63 have almost spherical
shapes with β2 ∼ 0. It means that different configurations with
the same β2 value are obtained as optimum solutions for the
given Nos.

We illustrate the density distribution of the intrinsic state
�AMD(N (±)

os ) in Figs. 4 and 5. A remarkable point is that parity
asymmetric structure appears in the prolate states. Especially,
one striking feature is the prominent cluster structure-like
12C+28Si in the large prolate deformation. Comparing the
results of (i) and (ii), we remark that the intrinsic structure
for a given Nos is almost the same as each other. It means that
the structure of coexisting shapes is not sensitive to the choice
of either interaction (i) or (ii) except for the α-cluster state.
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FIG. 2. The energy curves for the positive-parity states obtained by the constrained AMD calculations. The constraint of the total number
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states, P
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left panels [(a) and (b)] show the results with interaction (i), and the right panels [(c) and (d)] are for the results with interaction (ii).

In contrast, the excitation energies strongly depend on the
strength of the spin-orbit force as shown in the comparison
between the results with a stronger spin-orbit force (i) and
with a weaker one (ii). Particularly, the oblate state and the
superdeformed state appear at the low excitation energies in
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FIG. 3. The energy curves for the negative-parity states obtained
by the constrained AMD calculations. The constraint of the total
number of harmonic oscillator quanta, 〈N̂os〉 = Nos, is imposed on the
parity projected AMD wave function. The energies of the spin-parity
projected states, P

J=1,3
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AMD(N (−)
os ), are plotted as a function of Nos

in the upper panel (a) and as a function of the deformation β2 of
�−
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os ) in the lower panel (b). The results are obtained with

interaction (i).

the results with interaction (i), but they exist at much higher
excitation energies with interaction (ii). Considering the 4p-4h

configuration in the oblate shape and the 12C-28Si clustering
in the superdeformed state, it is easily understood that the
excitation energies of these states decrease with the stronger
spin-orbit force (i) than with the weaker one (ii). Although the
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FIG. 4. Density distributions of the intrinsic states, �AMD(N (±)
os )

for (a) the spherical state with N (±)
os = 62(+), and the prolate solutions

with N (±)
os = (b) 65(+), (d) 68(+), (e) 70(+), (f) 76(+), (g) 62(−),

(h) 65(−), (i) 68(−), and (c) the oblate solution with N (±)
os = 65(+),

which are obtained by using interaction (i). The intrinsic system is
projected onto the Y -Z plane, and the density is integrated along the
X axis, where X, Y , and z axes are chosen as 〈X2〉� 〈Y 2〉 � 〈Z2〉
and 〈XY 〉 = 〈YZ〉 = 〈ZX〉 = 0. The deformation parameters β2 are
written at the bottom of the figures. The size of the frame box is
10 fm×10 fm.
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N (±)
os = 65(+), and (e) the α-cluster state with N (±)

os = 68(+), which are
obtained by using interaction (ii). The intrinsic system is projected
onto the Y -Z plane, and the density is integrated along the X axis,
where X, Y , and z axes are chosen as 〈X2〉 � 〈Y 2〉� 〈Z2〉 and 〈XY 〉 =
〈YZ〉 = 〈ZX〉 = 0. The deformation parameters β2 are written at the
bottom of the figures. The size of the frame box is 10 fm×10 fm.

systematics of the binding energy in the sd-shell region seems
to be reproduced better by force (ii) than force (i), however,
the excitation energy of the superdeformed state is reasonably
reproduced with force (i) while they are largely overestimated
by force (ii). Force (i) also reproduces the excitation energy of
the lowest negative-parity state (Jπ = 3−) rather well than the
force(ii) as shown later. Therefore, we examine mainly results
(i), because our interest is in excited states of 40Ca, especially
in the properties of the superdeformed state. We should note
again that the structure of the superdeformed state is stable in
both cases (i) and (ii), and most of the intraband properties of
the superdeformed band do not so much depend on the choice
of interaction (i) or (ii) except for the relative energy to the
ground state and other rotational bands.

Now we turn to negative-parity states. In Fig. 3,
we show the energies of Jπ = 1−[P J=1

MK �−
AMD(N (−)

os )] and
3−[P J=3

MK �−
AMD(N (−)

os )], obtained with interaction (i), as func-
tions of (a) Nos and (b) β2. It is found that the constraint on
〈N̂os〉 acts as the constraint on deformation β2 in negative-
parity states as well as in the positive-parity ones. In the small
deformation region, the lowest state is the Jπ = 3− which
corresponds to a 1p-1h state. The difference between the
minimum energy of the 3− state and that of the 0+ state is
4.7 MeV, which corresponds well to the experimental ex-
citation energy 3.74 MeV of the lowest 3− state. Here we
comment that interaction (ii) gives a much larger energy
difference as 6.9 MeV than interaction (i) and fails to reproduce
the experimental excitation energy of the 3− state. As Nos

becomes large, the Jπ = 1− state becomes lower than the
Jπ = 3− state and a Kπ = 0− rotational band with a prolate
intrinsic state is built on this state. We illustrate the density
distributions of the intrinsic states for the negative parity states,
�AMD(N (−)

os ) in Fig. 4(g)–(i). For each Nos, it is found that
intrinsic structure of �AMD(N (−)

os ) for the negative-parity state
is quite similar to that of the prolate solution �AMD(N (+)

os ) for
the positive-parity state. In particular, the negative-parity state
with Nos � 68 has the parity-asymmetric shape because of the
clustering which is regarded as the 12C+28Si-like structure as

well as the case of positive parity state. As a result, the largely
deformed state forms the Kπ = 0− rotational band consisting
of Jπ = 1−, 3−, . . . due to the Y30 deformation, which may
have a link to the positive-parity bands as a parity doublet.

C. Energy levels

In the obtained wave function �AMD(N (±)
os ), there exist local

minimum solutions in the energy curve as a function of Nos.
They are also local minima with respect to the deformation β2

and considered to be approximate intrinsic wave functions
for the corresponding deformed bands. In order to satisfy
the orthogonality among the levels and to obtain better wave
functions, we calculate the level scheme by superposing the
spin-parity projected wave functions, P J

MK�±
AMD(k).

In the calculations with the case (i) interaction, we use
N (±)

os = 62(+), 65(+), 68(+), 70(+), 72(+), 76(+), 80(+), 86(+),
92(+) with prolate shapes and N (±)

os = 65(+)
ob with the oblate

shape as the basis for the positive-parity states. For the
negative-parity states, we adopt N (±)

os = 62(−), 63(−), 65(−),
66(−), 68(−), 69(−), 71(−), 65(+), 68(+), 65(+)

ob . The obtained
level scheme is shown in Fig. 6. By analyzing such properties
as the dominant components and E2 transition strengths of the
obtained levels, we classify the levels into groups, which are
labeled in Figs. 6(b) and (c).

In the positive-parity levels, we find Kπ = 0+ rotational
bands corresponding to the shape coexistence: (B) the oblate
band and (A3) the superdeformed band. The states in the
groups (A1) and (A2) are built from the mixing of the spherical
intrinsic state �AMD(Nos = 62(+)) and the normal prolate
state �AMD(Nos = 65(+)), while the side band [A2’(K = 2)]
of the normal deformation appears from the dominant
P J

M2�
+
AMD(Nos = 65(+)) component due to the triaxial nature

of the intrinsic state. In Fig. 7, we plot the calculated excitation
energies as a function of a spin J (J + 1). We also show the
experimental data of the bands labeled “band 2” and “band 1”
in Ref. [12], which are assigned to be the normal-deformed
band and the superdeformed band, respectively. Since band
(A2) contains the configuration mixing, the calculated level
structure is not consistent with the rigid rotor levels and does
not agree well with the experimental data of the normal-
deformed band (labeled “band 2” in Ref. [12]). Moreover,
it is higher than the superdeformed band in the present
results (i), however, we tentatively assign this band as the
normal-deformed band because of rather strong E2 transitions
in the (A2) band. On the other hand, the calculated energy
spectra of the superdeformed band behave as that of the rigid
rotor and agrees to the experimental data for “band 1,” though
the excitation energy of the band-head state is slightly higher
than the experimental data. The dominant components of the
superdeformed band in the low-spin levels is P J

M0�
+
AMD(Nos =

70(+)), which have a 12C+28Si-like clustering. Another in-
teresting character of the superdeformed band is its particle-
hole property. As discussed later in detail, P J

M0�
+
AMD(Nos =

70(+)) has about 90% overlap with the bandhead of the
superdeformed band, and its intrinsic state �AMD(Nos = 70(+))
is regarded as a “8p-8h” state. This particle-hole feature of the
superdeformed band is supported by the experimental fact that
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FIG. 6. Excitation energies of the levels up to J = 8 in 40Ca.
The experimental data of the levels observed in Ref. [12] are shown
in (a). (b) and (c) show the theoretical results for the positive-
parity and negative-parity states, respectively, calculated by the
superposition of the AMD wave functions. The interaction (i) is used.
The excitation energies of the higher spin (J > 8) states will be shown
in the next figures.

the 0+(5.21 MeV), 2+(5.63 MeV), and 4+(6.54 MeV) in the
superdeformed band are strongly populated in eight-nucleon-
transfer reactions, 32S(12C,α)40Ca [11]. However, it is not
consistent with the GCM calculations of Skyrme HF+BCS
[18], where the superdeformed band cannot be described
by a certain np-nh configuration but contains a mixture
of various configurations such as 4p-4h, 6p-6h, and 8p-8h

states. In order to check the stability of the superdeformed
band for the choice of the intrinsic wave functions to be
superposed, we use another set of the basis as {k} = {N (±)

os } =
{62(+), 64(+), 65(+), 66(+), 67(+), 68(+), 70(+), 72(+)} and find
that the level scheme and the E2 transition strengths in the
superdeformed band are stable against the choice of the basis,
and the properties of the states in bands (A1) and (A2)
are qualitatively unchanged. In the present calculations, the
number of the basis in the superposition is 10 at most and
is much smaller than the GCM calculations in Ref. [18]. It
should also be noted that we did not obtain the basis with
the quadrupole deformation 0 < β2 < 0.2 as shown in Fig. 2.
For the detailed investigation of the band mixing, it is
expected to be important to perform GCM calculations with
a large number of the basis concerning the two-dimensional
constraints on the Nos and β2. The present results of the weak
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FIG. 7. Excitation energies of the positive-parity states in 40Ca as
a function of a spin J (J + 1). Theoretical values shown in the lower
panel (b) are those obtained with the interaction (i). The energies
are calculated by the superposition of the AMD wave functions. The
upper panel (a) shows the experimental data for the normal-deformed
band and the superdeformed band, which are labeled “band 2” and
“band 1” in Ref. [12], respectively.

mixings between different np-nh configurations seem to be
consistent with the experimental facts, however, we comment
that the pairing correlations, which were taken into account
in Ref. [18], are ignored in the present calculations though
we think they are partially included through the spin-parity
projections and superposition of the basis. Since the pairing
correlations increase configuration mixings in general, it
would be valuable to estimate the pairing effects on the stability
of the superdeformed band.

In addition to the prolate bands, the oblate band appears
at almost the same excitation energy as that of the superde-
formed band. The moment of inertia is smaller than the
superdeformed band. The oblate deformation is predicted also
in the macroscopic-microscopic calculations [17] and in the
mean-field calculations [16,18]. However, since an oblate band
has not been experimentally assigned yet, the existence of an
oblate shape in 40Ca is an open problem. We also find highly
excited bands (A4) and (A5) which arise from the developed
12C+28Si clustering. The details of these bands are discussed
in the next section.

In the negative-parity states [Fig. 6(c)], the lowest 3−
and 5− states appear from almost the spherical states.
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The theoretical excitation energies are in good agreement
with the experimental data of the 3−

1 (3.74 MeV) and the
5−

1 (4.49 MeV). We find two Kπ = 0− rotational bands (C2)
and (C3) which arise from the parity-asymmetric shape in
the prolate states. Since the energies of the 3− and 5− states
in these (C2) and (C3) bands are raised by mixing with the
lowest 3− and 5− states, the level structure is somehow out
of that for the typical Kπ = 0− rotational band. The 1−

1 state
(
1−

n=1) in band (C2) is dominated by P J=1
M0 �−

AMD(Nos = 65(−))
with the overlap |〈
1−

n=1|P J=1
M0 �−

AMD(Nos = 65(−))〉|2 ∼ 90%,
while the 1−

2 state (�1−
n=2) in band (C3) has the dominant

P J=1
M0 �−

AMD(Nos = 69(−)) with 70% overlap. We should note
that the 1−

1 and 1−
2 states have large overlap with also the 1−

states projected from the intrinsic states for the positive-parity,
�AMD(Nos = 65(+)) and �AMD(Nos = 68(+)), respectively. It
is reasonable because �AMD(N (−)

os ) is almost the same state
as the �AMD(N (+)

os ) when the same constraint 〈N̂os〉 = Nos

is imposed. In order to find the possible parity doublet
of the superdeformed band, we pay special attention to
the �AMD(Nos = 68(+)) component in the largely deformed
negative parity band (C3) and in the superdeformed band (A3)
with positive parity. The overlap |〈�1−

n=2|P J=1
M0 �−

AMD(Nos =
68(+))〉|2 in the bandhead of the Kπ = 0− band (C3) is about
70%, while the bandhead 0+ of the superdeformed band (A3)
has 80% overlap with P J=0

M0 �+
AMD(Nos = 68(+)). Then it leads

to the interpretation that the largely deformed negative-parity
band (C3) and the positive-parity superdeformed band (A3)
are approximately the parity doublets Kπ = 0− and Kπ = 0+
arising from the intrinsic state �AMD(Nos = 68(+)), which has
the parity asymmetric shape with the Y30 deformation due to
the 12C+28Si-like clustering as shown in Fig. 4.

Next we discuss the energy levels calculated with interac-
tion (ii). We use N (±)

os = 62(+), 65(+), 68(+), 70(+), 72(+) with
prolate deformations, N (±)

os = 65(+)
ob with the oblate shape,

and N (±)
os = 66(+)

α , 68(+)
α , 70(+)

α with α-cluster-like structure as
the basis in superposing P J

MK�+
AMD(k). The calculated excita-

tion energies are shown in Fig. 8. The rotational bands of oblate
deformation, prolate one and superdeformation coexist as well
as in the results (i). The excitation energies of these bands with
interaction (ii) are much higher than those of the results (i), and
also are inconsistent with those of the experimentally known
low-lying states. For example, the oblate band (B) starts from
17 MeV excitation energy, while the bandhead energy of the
superdeformed band (A3) is 26 MeV. One of the characteristics
of the results (ii) is that a α-cluster-like band (D) appears at
the relatively lower energy than the superdeformed band.

It has been known that the low-spin states in the normal-
deformed band built on the 0+

2 (3.35 MeV) state are strongly
populated in α-transfer reactions, and they have relatively
larger α-spectroscopic factors than other low-lying states
[4–7]. Therefore, it is expected that the components of the
α-cluster state should be contained in the normal-deformed
band. However, in the present calculations we fail to describe
the α-cluster components in the low-lying states, and even in
the results (ii), the components of the α-cluster state do not mix
with the normal-deformed band (A2) except for the 2+ state.
It is because the energy difference between bands (A2) and
(D) are large in the present calculations. In order to solve this
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FIG. 8. Excitation energies of the positive-parity states in 40Ca
obtained with the interaction (ii). The energies are calculated by the
superposition of the AMD wave functions.

problem, it may be necessary to introduce a suitable nuclear
interaction and extended model wave functions.

D. E2 transitions and moments

We calculate the E2 transition strengths and the electric
quadrupole moments for the excited states. We also extract
quantities related to the intrinsic deformation from the physical
observables such as B(E2) and electric quadrupole moments.
By using the collective model approximation [35], we define
the intrinsic quadrupole moment and the deformation by the
E2 transitions as

Qt
0 =

√
16π

5e2

B(E2, Ji → Jf )

〈JiK20|Jf K〉2
, βt =

√
5

16π

4πQt
0

3R2Z
,

(16)

where 〈JiK20|Jf K〉 is a Clebsch-Gordan coefficient. t stands
for “transition.” We also extract the intrinsic quantities from
the observable electric quadrupole moments Q as follows:

Qs
0 = 1

e

(J + 1)(2J + 3)

3K2 − J (J + 1)
Q, βs =

√
5

16π

4πQs
0

3R2Z
. (17)

Here s stands for “spectroscopic.”
In Tables I, II, and III, we show the calculated B(E2) and Q

moments, and related quantities. The E2 transitions are small
among the states in the group (A1), which are dominated by
spherical states and not considered to be a rotational band of a
deformed state. On the other hand, the prolate band (A2) and
the oblate one (B) have moderate transition strengths, while
the E2 transitions are remarkably strong in the superdeformed
band (A3).

In the results with interaction (i), the deformation parameter
βt extracted from the B(E2) is consistent with βs evaluated
with the Q moment except for negative-parity bands and
high spin states in the prolate bands (A1), (A2), and (A3).
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TABLE I. Electric quadrupole moments Q (e fm2) and B(E2) (e2 fm4) for the positive-parity states calculated with the interaction (i). The
extracted intrinsic quadrupole moments (fm2) and deformation parameters are also listed. The definitions of Q

t,s
0 and βt,s are explained in the

text. The labels of the bands correspond to those in Fig. 6.

J π Band Q Qs
0 βs Final states Band B(E2) Qt

0 βt

Positive-parity bands

2+ (A1) −10 34 0.13 0+ (A2) 12 24 0.10
4+ (A1) −10 28 0.11 2+ (A1) 28 31 0.12
6+ (A1) −13 33 0.13 4+ (A1) 27 29 0.11
8+ (A1) −15 36 0.14 6+ (A1) 38 34 0.13

10+ (A1) −22 50 0.19 8+ (A1) 54 40 0.16
12+ (A1) −30 68 0.27 10+ (A1) 96 53 0.21

Prolate

2+ (A2) −17 61 0.24 0+ (A2) 64 57 0.22
4+ (A2) −24 65 0.26 2+ (A2) 116 64 0.25
6+ (A2) −29 72 0.28 4+ (A2) 128 64 0.25
8+ (A2) −43 102 0.40 6+ (A2) 200 78 0.31
8+ (A2) 6+ (A3) 161 70 0.27

10+ (A2) −50 116 0.45 8+ (A2) 370 105 0.41
12+ (A2) −56 126 0.49 10+ (A2) 433 112 0.44

Superdeformation

2+ (A3) −37 131 0.51 0+ (A3) 330 129 0.51
4+ (A3) −47 129 0.51 2+ (A3) 476 129 0.51
6+ (A3) −47 118 0.46 4+ (A3) 455 121 0.47
8+ (A3) −40 95 0.37 6+ (A3) 309 97 0.38

10+ (A3) −36 83 0.33 8+ (A3) 222 81 0.32
12+ (A3) −43 97 0.38 10+ (A3) 210 78 0.31

Oblate

2+ (B) 19 −67 −0.26 0+ (B) 91 −68 −0.26
4+ (B) 24 −66 −0.26 2+ (B) 128 −67 −0.26
6+ (B) 25 −63 −0.25 4+ (B) 139 −67 −0.26
8+ (B) 25 −60 −0.24 6+ (B) 143 −66 −0.26

10+ (B) 25 −57 −0.22 8+ (B) 144 −65 −0.26
12+ (B) 23 −52 −0.21 10+ (B) 144 −65 −0.25

K = 2 band

2+ (A2’;K=2) 13 47 0.18
3+ (A2’;K=2) 2+ (A2’;K=2) 95 52 0.20
4+ (A2’;K=2) −9 61 0.24 2+ (A2’;K=2) 38 57 0.22
5+ (A2’;K=2) −12 53 0.21 3+ (A2’;K=2) 25 36 0.14
6+ (A2’;K=2) −18 62 0.24 4+ (A2’;K=2) 83 60 0.23
7+ (A2’;K=2) −20 63 0.25 5+ (A2’;K=2) 58 47 0.18
8+ (A2’;K=2) −22 63 0.25 6+ (A2’;K=2) 104 61 0.24
9+ (A2’;K=2) −24 64 0.25 7+ (A2’;K=2) 113 62 0.24

10+ (A2’;K=2) −22 57 0.22 8+ (A2’;K=2) 96 56 0.22
11+ (A2’;K=2) −25 63 0.25 9+ (A2’;K=2) 114 60 0.24
12+ (A2’;K=2) −28 67 0.26 10+ (A2’;K=2) 99 55 0.22

In Fig. 9, we show the behavior of the transition deformation
βt with the increase of the total-angular momentum J. In the
oblate band (B), the intrinsic deformation β is almost constant
with the increase of J, because the oblate states do not mix
with the other shapes. On the other hand, βt in bands (A1),
(A2), and (A3) changes as J increases. The deformation of
the low-spin states in the superdeformed band is the largest

as βt ≈ 0.5. With the increase of J, βt of the superdeformed
band (A3) decreases, while that of the normal-deformed band
(A2) enlarges, and the βt -lines for these two bands cross
each other around J = 8. We remark that the state mixing
occurs in the region J � 6, and the components contained
in (A2) and (A3) change around J = 8. As a result, the
transition from the 8+(A2) to 6+(A3) is significantly strong
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TABLE II. Electric quadrupole moments Q (e fm2) and B(E2) (e2 fm4) for the negative-parity states calculated with the interaction (i). The
extracted intrinsic quadrupole moments (fm2) and deformation parameters are also listed. The definitions of Q

t,s
0 and βt,s are explained in the

text. The labels for the bands are the same as those in Fig. 6.

J π Band Q Qs
0 βs Final states Band B(E2) Qt

0 βt

Negative-parity bands

3− (C1) −9 27 0.11
5− (C1) −10 25 0.10 3− (C1) 25 29 0.11

Prolate
1− (C2) −12 59 0.23

3− (C2) −29 88 0.35 1− (C2) 89 59 0.23
3− (C2) 1− (C3) 133 72 0.28
5− (C2) −31 81 0.32 3− (C2) 209 83 0.33
7− (C2) −22 53 0.21 5− (C2) 76 49 0.19
7− (C2) 5− (C1) 26 28 0.11

Large prolate

1− (C3) −20 100 0.39
3− (C3) −28 85 0.34 1− (C3) 150 76 0.30
5− (C3) −34 88 0.35 3− (C3) 216 85 0.33
7− (C3) −40 98 0.38 5− (C3) 178 74 0.29
7− (C3) 5− (C2) 150 68 0.27

(see Table I). Therefore, another assignment may be possible as
8+(A2), 10+(A2), and 12+(A2) belong to the superdeformed
band. In fact, βt extracted from the B(E2; J → J − 2) among
the 0+(A3), 2+(A3), 4+(A3), 6+(A3), 8+(A2), 10+(A2), and
12+(A2) are so large as shown by filled triangles in
Fig. 9, that these states can be assigned to compose a rotational
band with the strong E2 transitions. In the experimental data
by Ideguchi et al. [12], they observed the deviation from the
constant moment of inertia in the superdeformed band and
also the interband γ transitions between normal deformation
and superdeformation. These facts may give an indication of
the possible band mixing or some structure change around
J ∼ 8 in the superdeformation. Further fine measurements of
E2 transition strengths will be helpful to see the details of the
band mixing and to establish the assignment for the high spin
states of the superdeformed band.
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FIG. 9. The deformation parameters βt extracted from the B(E2)
values for the intraband transitions. The labels of the bands correspond
to those in Fig. 6. The results are for the calculations with the
interaction (i).

In the results with the interaction (ii) (Table III), we also
find strong E2 transitions in the superdeformed band (A3).
The transitions of the prolate band (A2) are weaker in the
results (ii) than in the case (i). As mentioned earlier, the Kπ =
0+(D) and Kπ = 2+(D’) bands with the α-cluster structure
appear below the superdeformed band in the results (ii).
These bands have strong intraband E2 transitions, which give
the larger transition deformations βt ≈ 0.4 than the prolate
band (A2).

Let us make a comparison of intraband transitions between
the present results and the experimental data, and also compare
them with other theoretical calculations. The theoretical and
experimental values of Qt

0 for the normal-deformed band and
the superdeformed band are listed in Table IV. The present
results for the superdeformed band are in reasonable agreement
with the experimental data. They are also consistent with the
results by GCM+HFBCS calculations. In the shell model
calculations by Poves et al., large Qt

0 values were obtained
with the truncated calculations within 8p-8h configurations
by using effective charges qπ = 1.5 and qν = 0.5 for protons
and neutrons, however, the Qt

0 erode when other particle-hole
configurations are mixed in the calculations. The Qt

0 moments
of the band (A2) are Qt

0 = 57–112 fm2 and comparable to
the experimental values Qt

0 = 74 ± 14 fm2 for the normal
deformation (band 2) in Ref. [12], but are smaller than
the experimental data Qt

0 = 1.1 ± 0.1 × 102 and 1.3 ± 0.2 ×
102 fm2 in Ref. [36]. Our results are consistent with the
GCM+HFBCS calculations except for the 4+ state, which has
a small Qt

0 in the GCM+HFBCS result. As shown in Table III,
we obtain the α-cluster band (D) with strong E2 transitions in
case of the interaction (ii). The transition moment of the band
(D) is Qt

0 ≈ 100 fm2 and agrees well with the experimental
data in Ref. [36]. Therefore, there might be an alternative
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TABLE III. Electric quadrupole moments Q (e fm2) and B(E2) (e2 fm4) calculated with the interaction (ii). The extracted intrinsic
quadrupole moments (fm2) and deformation parameters are also listed. The definitions of Q

t,s
0 and βt,s are explained in the text. The labels for

the bands correspond to those in Fig. 8.

J π Band Q Qs
0 βs Final states Band B(E2) Qt

0 βt

2+ (A1) −8 29 0.11 0+ (A2) 27 37 0.14
4+ (A1) −2 7 0.03 2+ (A1) 9 18 0.07
6+ (A1) −7 18 0.07 4+ (A1) 2 8 0.03

Prolate
2+ (A2) −14 48 0.19 0+ (A2) 48 49 0.19
4+ (A2) −21 57 0.22 2+ (A2) 60 46 0.18
6+ (A2) −21 53 0.21 4+ (A2) 89 53 0.21
8+ (A2) −23 54 0.21 6+ (A2) 88 52 0.20

10+ (A2) −29 67 0.26 8+ (A2) 121 60 0.23
12+ (A2) −32 72 0.28 10+ (A2) 161 69 0.27

Superdeformation

2+ (A3) −40 138 0.54 0+ (A3) 382 139 0.54
4+ (A3) −49 135 0.53 2+ (A3) 524 136 0.53
6+ (A3) −52 129 0.51 4+ (A3) 528 130 0.51
8+ (A3) −49 116 0.45 6+ (A3) 476 120 0.47

10+ (A3) −49 113 0.44 8+ (A3) 363 104 0.41
12+ (A3) −54 120 0.47 10+ (A3) 383 106 0.41

Oblate

2+ (B) 20 −71 −0.28 0+ (B) 102 −72 −0.28
4+ (B) 25 −68 −0.27 2+ (B) 145 −71 −0.28
6+ (B) 26 −66 −0.26 4+ (B) 157 −71 −0.28
8+ (B) 26 −62 −0.24 6+ (B) 161 −70 −0.27

10+ (B) 23 −52 −0.21 8+ (B) 155 −68 −0.27

α-cluster

2+ (D) −29 101 0.40 0+ (D) 195 99 0.39
4+ (D) −34 92 0.36 2+ (D) 289 101 0.40
6+ (D) −41 103 0.41 4+ (D) 309 99 0.39
8+ (D) −27 63 0.25 6+ (D) 271 91 0.36

10+ (D) −26 61 0.24 8+ (D) 420 112 0.44
12+ (D) −28 64 0.25 10+ (D) 440 113 0.44

K = 2:α-cluster

2+ (D’;K=2) 31 110 0.43 0+ (D’;K=2)
3+ (D’;K=2) 2+ (D’;K=2) 390 105 0.41
4+ (D’;K=2) −20 139 0.55 2+ (D’;K=2) 129 104 0.41
5+ (D’;K=2) −24 106 0.41 3+ (D’;K=2) 216 107 0.42
6+ (D’;K=2) −30 104 0.41 4+ (D’;K=2) 202 93 0.37
7+ (D’;K=2) −33 101 0.40 5+ (D’;K=2) 237 95 0.37
8+ (D’;K=2) −50 143 0.56 6+ (D’;K=2) 152 73 0.29
9+ (D’;K=2) −35 94 0.37 7+ (D’;K=2) 267 95 0.37

10+ (D’;K=2) −59 152 0.59 8+ (D’;K=2) 250 90 0.35

assignment that band (D) corresponds to the normal-deformed
band built on the 0+

2 (3.35 MeV), though the excitation energy
of band (D) is much higher than the experimental data in the
present calculations.

The K = 2 band was experimentally established based
on the measurement of B(E2) [1,37]. The observed
intraband transitions are B(E2; 3+ → 2+) = 730 ± 300
(e2 fm4) and B(E2; 4+ → 2+) = 200 + 150 − 75 (e2 fm4)

[1]. The properties of this band were studied by Sakuda
and Ohkubo with α + 36Ar(2+)-cluster model [9,10], which
well repoduces these intraband transitions. In the present
calculations, we find the Kπ = 2+ band (A2’) with the prolate
deformation in the results (i), and the Kπ = 2+ band (D’) with
the α-cluster structure in the case of (ii). In the band (A2’),
the calculated E2 transition strengths are B(E2; 3+ → 2+ =
95 (e2 fm4) and B(E2; 4+ → 2+ = 38 (e2 fm4), which are
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TABLE IV. Intrinsic quadrupole moments (fm2) of the normal-deformed band and the superdeformed band extracted from B(E2) with the
definition in Eq. (16). The present AMD results for the normal-deformed band and the superdeformed band are those for the bands (A2) and
(A3) with interaction (i), respectively. The values in parenthesis are those for the assignment of the 8+, 10+, 12+ states in the band (A2) to
the superdeformed states. The shell model calculations by Poves et al. [19], and the GCM+HFBCS calculations by Bender et al. [18] are also
listed. The experimental data are those taken from B(E2) data in Ref. [36], and Qt

0 values determined by Doppler-shift analysis in Refs. [12]
and [13].

Ji AMD GCM+HFBCS Shell model Nucl. data [36] Ideguchi et al. [12] Chiara et al. [13]

ND (A2) band 2 band 2
2+ 57 75.2 1.1 ± 0.1 × 102 74 ± 14a

4+ 64 23.9 1.3 ± 0.2 × 102 74 ± 14a

6+ 64 77.4 74 ± 14a

8+ 78 74 ± 14a

10+ 105 74 ± 14a

12+ 112 74 ± 14a

SD (A3) (A2) 8p-8h band 1 band 1
2+ 129 133.9 172 180 + 39 −29a 130 ± 5a

4+ 129 97.6 170 1.4 ± 0.2 × 102 180 + 39 −29a 130 ± 5a

6+ 121 160.2 167 180 + 39 −29a 130 ± 5a

8+ 97(70) 157.9 162 180 + 39 −29a 130 ± 5a

10+ 81(105) 161.2 157 180 + 39 −29a 130 ± 5a

12+ 78(112) 160 180 + 39 −29a 130 ± 5a

aFor the values of Refs. [12] and [13], a single Qt
0 value is assumed for the entire transitions in each of the “band 2” or the “band 1.”

smaller than experimental B(E2) values. On the other hand,
the E2 transition strengths in band (D’) are large enough
as B(E2; 3+ → 2+) = 390 (e2 fm4) and B(E2; 4+ → 2+) =
129 (e2 fm4), which well correspond to the data within the
experimental error bars. It means that the deformation of the
K = 2 band can be described by the α-cluster band (D’), which
is obtained with interaction (ii).

Next we discuss the moments of the negative-parity states.
For the negative-parity states in the group (C1), the magnetic
dipole moments of the 3− and 5− states are µ(3−) = 1.66µN

and µ(5−) = 2.76µN , which agree well with the experimental
values for the lowest 3−

1 (3.74 MeV) and the lowest 5−
1

(4.49 MeV); µ(3−
1 ) = 1.65µN and µ(5−) = 2.6µN . In the

prolate bands (C2) and (C3), the E2 transitions are fragmented
among the bands because the 3− and 5− states of these bands
contain configuration mixing due to the existence of the lowest
3− and 5− states in group (C1) (see Table II). Then, we estimate
the intrinsic deformation by looking into βs extracted from the
Q moments instead of βt . According to the calculated βs of the
bandhead state (1−), the deformation of band (C3) is evaluated
as βs = 0.39. This is smaller than that of the superdeformed
band (A3), which we roughly assign to the parity doublet
of (C3).

IV. DISCUSSION

A. Molecular bands

The appearence of molecular resonances is one of the
important cluster aspects in sd-shell nuclei. In the large
prolate deformations of 40Ca, we find the trend of developed
12C+28Si clustering which leads to the superdeformed band
as mentioned in the previous section. Therefore, it is natural

to expect possible existence of 12C+28Si molecular bands and
their link with the superdeformed band in 40Ca.

It is known that molecular resonances appear in such
systems as 12C+12C, 12C+16O, or 16O+16O [38,39]. In the
microscopic calculations, there have been theoretical efforts
to connect the molecular resonances with the low-lying
deformed bands [22,40–42]. We should stress that the recent
AMD studies [22,42] are the first theoretical works which
can microscopically describe both the coexisting deformed
states in low-energy region and the molecular resonances in
the high-energy region without relying on assumptions of
constituent clusters. In Ref. [22], the relation between the
theoretically predicted superdeformed band in 32S and the
16O+16O molecular bands has been studied. It has been
suggested that the superdeformed band with a considerable
amount of the 16O+16O component is regarded as the lowest
nodal band in a series of 16O+16O molecular bands, while the
excited 16O+16O bands arise due to the intercluster excitation
and correspond to the observed molecular resonances.

In the present results of case (i), we find the excited
rotational bands (A4) and (A5) as shown in Fig. 7. The
former and the latter exist at about 15 MeV and 25 MeV
higher excitation energies than that of the superdeformed band,
respectively. These bands appear due to the superposition
of the large prolate deformations with the 12C+28Si cluster
structure. In Fig. 10, we show the overlap of the states (
J+

n )
in the prolate bands (A1), (A2), (A3), (A4), and (A5) with
a single AMD state: |〈
J+

n |P J
M0�

±
AMD(N (+)

os )〉|2. The low-
spin(J � 4) states in the superdeformed band is dominated by
P J

M0�
±
AMD(Nos = 70(+)) with about 90% overlap. We should

stress again that the 12C+28Si-like clustering actually appears
in the �AMD(Nos = 70(+)) (see Fig. 4). On the other hand, the
states in the excited band (A4) contain the AMD states with
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FIG. 10. The overlap between the calculated excited states

J+

n and the prolate AMD states P J
M0�

+
AMD(N (+)

os ). The values
|〈�J+

n |P J
M0�

+
AMD(N (+)

os )〉|2 for the states in the bands (A1), (A2), (A3),
(A4), or (A5) are shown by open circles, open triangles, open squares,
filled circles, or filled triangles, respectively.

larger Nos, and the components in the band (A5) shift toward
the further large Nos region. Since the dinuclear clustering
develops further and two clusters go away from each other with
the increase of Nos, these excited bands (A4) and (A5) should
be described by the excitation of intercluster motion. In fact,
we calculate the oscillator quanta of the subsystem consisting
of the nucleons within each cluster (12C or 28Si), and find that
each of the clusters is almost written by 0h̄ω configurations. In
other words, the increase of Nos corresponds to just enlarging
the intercluster distance, and hence, the rotational bands (A4)
and (A5) arise due to the excitation of relative motion between
12C and 28Si clusters. Moreover, it is suggested that the bands
(A4) and (A5) may have tails in the intercluster motion because
the components of these bands are spread into the broader Nos

ranges than that of the superdeformed band. These results
suggest an interpretation that the superdeformed band (A3)

and the higher bands (A4) and (A5) are regarded as a series
of 12C+28Si molecular bands. Namely, the bands (A4) and
(A5) appear as the higher nodal states built above the the
superdeformed band. These results have a good analogy to the
feature of the superdeformed band and the 16O+16O bands in
32S discussed in Ref. [22].

In the experimental side, the 12C+28Si resonances have
been observed in the elastic scattering data in the backward-
angle region [24,38]. The resonances at the energy Ec.m. =
26.0 and 30.2 MeV, which correspond to the excited states
of 40Ca at E = 39 and 44 MeV, are assigned to be J =
18 states from the angular distributions. There are other
experimental implications of 12C+28Si molecular states in the
low-energy fusion cross section [23], where distinct structures
have been found in the energy region Ec.m. = 20–30 MeV
above the 12C+28Si threshold. These are the candidates of
the molecular resonances which might correspond to the
12C+28Si molecular bands (A4) and (A5) obtained in the
present results. In order to make further investigations of
the molecular bands and give more quantitative discussions,
it should be important to superpose a large number of the
AMD states. It also may be effective to take into account the
excitation inside the clusters as coupled channel calculations
for the description of the detailed band structure.

B. Single-particle orbits

In an AMD wave function, the single-particle wave packets,
ϕi , in Eq. (3) are not orthogonal to each other. In order to study
the mean-field character, it is useful to transform them to the
HF-like single-particle orbits {ϕHF

a }, which are orthonormal to
each other and form the total wave function equivalent to the
original AMD wave function. We extracted the single-particle
orbits {ϕHF

a } from �AMD(N (±)
os ), as explained in Refs. [32,43],

and analyze them.
As mentioned before, the low-spin states of the superde-

formed band is dominated by the AMD state, P J
M0�

+
AMD(Nos =

70(+)). We find that the intrinsic state, �AMD(Nos = 70(+)),
contains eight fp-like single-particle levels, which are the
highest four levels among proton orbits and the highest
four levels among the neutron orbits. Each of these levels
has dominant parity-odd component as the ratio P (−) ∼
95%. The density distributions of these levels are shown in
Figs. 11(a) and (b). Hereafter, we use the label a(=1, . . . , 20)
of {ϕHF

a } for the ath highest single-particle levels in the proton
orbits. It is found that the properties of the eight valence levels
in �AMD(Nos = 70(+)) are associated with the longitudinal fp
orbits which have Y3,±1 and Y3,0 angular dependent terms.
Therefore, we regard the superdeformed state as a “8p-8h”
state, though it is not equivalent to pure particle-hole states
in the mean-field picture. The origin of the parity asymmetric
shape with 12C+28Si cluster in �AMD(Nos = 70(+)) will be
discussed later.

The prolate band (A2) contains the significant compo-
nent of the AMD state projected from the intrinsic state,
�AMD(Nos = 65(+)). The valence orbits in this state are the
eight levels which contain 50% parity-odd components and
50% parity-even ones as shown in Figs. 11(d) and (e). It means
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FIG. 11. (Color online) Density distributions of the HF-like single-particle orbits ϕHF
a for protons in �AMD(N (±)

os ). The results are for the
calculations with interaction (i) except for panel (f). The first (ϕHF

a=1) and the third (ϕHF
a=3) highest proton orbits in the the dominant component

[�AMD(N (±)
os = 70(+)] of the superdeformation are shown in (a) and (b), respectively. (c) The highest orbit, ϕHF

a=1, in the oblate solution with
N (±)

os = 65(+). (d) The first (ϕHF
a=1) and (e) the third (ϕHF

a=3) orbits in the prolate solutions with N (±)
os = 65(+). (f) The highest (ϕHF

a=1) orbit in the
α-cluster state with N (±)

os = 68(+) obtained in the results with interaction (ii). In the left side, the intrinsic state is projected onto the Y -Z plane,
and the density is integrated along the X axis, where X, Y , and Z axes are chosen as 〈X2〉� 〈Y 2〉 � 〈Z2〉 and 〈XY 〉 = 〈YZ〉 = 〈ZX〉 = 0. The
right figures are for the surface cut of the density. The percentage P (−) of the negative-parity component in each single-particle orbit is also
listed. The box size is 10 fm.

that the parity projected state �+
AMD(Nos = 65(+)) can be

approximately described by the mixing of 2p-2h, 4p-4h, and
6p-6h configurations. We comment that �AMD(Nos = 65(+))
is not a local minimum in the energy curve as a function of
Nos nor β.

The oblate solution �AMD(Nos = 65(+)
ob ) does not mix with

the prolate states, and independently forms the oblate band
(B). This state can be convincingly described by a 4p-4h

state because four valence nucleons occupy almost parity-
odd orbits with angular parts related to Y3,±3. The property
of a valence single-particle level of the four is shown in
Fig. 11(c). The particle-hole nature is found also in the
α-cluster states �AMD(Nos = 66(+)

α ) and �AMD(Nos = 68(+)
α )

obtained by the interaction (ii). Namely, these states have a
4p-4h feature as four valence neutrons occupy fp-like orbits
with 75% negative-parity component in the �AMD(Nos =
68(+)

α ) as seen in Fig. 11(f).
Thus, the single-particle levels in the intrinsic states dis-

close the many-particle many-hole characters in 40Ca. On the
other hand, the cluster aspect has been found in prolate states
which have parity-asymmetric shapes. It raises a question of
how the cluster aspect links with the mean-field aspect. Here
we examine the cluster aspect while paying attention to parity
asymmetry of the single-particle orbits. In Fig. 12, we show
the ratio of negative-parity component of the single-particle
proton orbits in the prolate states �AMD(N (+)

os ). The behavior
of the neutron orbits is almost the same as that of the proton
orbits. At almost the spherical Nos = 62 region, 12 protons
(ϕHF

a=1−12) occupy almost parity-even orbits and six protons
(ϕHF

a=13−18) are in almost parity-odd orbits, which indicates the

approximately sd-shell closed configuration of this state. With
the increase of Nos, the parity-odd components in the highest
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FIG. 13. Density distributions summed up (a) for the protons in
the higher single-particle levels (ϕHF

a=1−10) and (b) for the protons
in the lower single-particle levels (ϕHF

a=11−20) in the intrinsic state
of the superdeformation: �AMD(Nos = 70(+)). The total density is
also shown in (c). The densities in (a) and (b) are normalized by a
factor 4.

four levels (ϕHF
a=1−4) increase and these four levels become

almost pure parity-odd orbits at Nos = 70. It means that four
protons in the sd-shell are excited into the fp-shell. In the state
�AMD(N (+)

os = 70(+)), each of the higher ten levels ϕHF
a=1−10

has approximately good parity. Instead, the parity symmetry
breaking in single-particle orbits is rather remarkable in the
11th and 12th levels (ϕHF

a=11,12) which are originally the lowest
sd-orbits as shown in Fig. 12(b). In order to see the effect of
the single-particle features on the collective shape of the total
system �AMD(N (+)

os = 70(+)), we show the density distribution
summed up for the protons in the lower levels (ϕHF

a=11−20)
and that for the protons in the higher levels (ϕHF

a=1−10) in
Fig. 13. The most striking thing is that ten protons in the
lower levels form a parity asymmetric shape, which reminds
us of the α+16O clustering in 20Ne system. These results imply
that the parity asymmetry in this state dominantly originates
not in the valence nucleons near the Fermi surface but in the
α-cluster-like correlation in the core part. It is inconsistent
with an mean-field picture that nucleons at the surface may
contribute such an exotic shape as the octupole deformation.
Here we remind the reader that this state �AMD(N (+)

os = 70(+))
is the dominant component of the superdeformation and has

the 12C+28Si-cluster structure [Fig. 13(c)]. The 12C+28Si
clustering is also seen in the aspect of molecular resonances.
This seems to be inconsistent with possible 32S+2α clustering,
which may be naively expected from the 8p-8h nature of
the superdeformed state. By the analysis of single-particle
orbits, we can interpret the appearance of the 12C cluster as
follows. The origin of the 12C cluster in the superdeformation
is understood by the correlation within 12 nucleons; four
sd-shell nucleons with the α correlation, and the eight valence
nucleons in the fp-like orbits. It leads to a new picture of the
coexisting cluster and mean-field aspect. Namely, the deeply
bound nucleons compose the parity-asymmetric core 20Ne
with the α-cluster correlation, while the single-particle levels
at the energy surface have particle-hole nature. In the further
large Nos region, the particle-hole nature disappears because
of the spatial development of 12C+28Si clustering.

V. SUMMARY

We studied deformed states in 40Ca with antisymmetrized
molecular dynamics (AMD) by using effective nuclear inter-
actions which contain finite-range two-body and three-body
forces. In the framework of a constraint AMD method,
we performed parity projection before energy variation, and
total-angular-momentum projection after the energy variation.
The obtained AMD wave functions are superposed to get better
wave functions.

By analyzing the calculated results of the intrinsic states,
level scheme, and E2 transition strengths, it was found that
the rotational bands with various deformations appear in 40Ca
as well as the spherical ground state. Namely, above the
spherical ground state, the rotational bands arise from the
normal-deformed state and the superdeformed state as well
as the oblate state. In the results with a weaker spin-orbit
force, we also obtained the α-cluster-like bands. The present
results of the superdeformed band reasonably reproduce the
properties of the experimental superdeformed band built on
the 0+

3 (5.21 MeV). On the other hand, we could not obtain
a satisfactory description of the experimental deformed band
built on the 0+

2 (3.35 MeV). Possible assignment of this band is
to the theoretical normal-deformed band, the α-cluster band,
or admixture of them.

In the analysis of single-particle orbits, we found the
particle-hole nature of the superdeformed state, the oblate
state, and the α-cluster state, which are dominated by
the 8p-8h, 4p-4h, and 4p-4h configurations, respectively. On
the other hand, the normal deformation in the present results
contains mixing of 2p-2h, 4p-4h, and 6p-6h configurations.

One of new findings in the present study is that the
superdeformed state has a parity asymmetric shape with the
12C+28Si-like cluster structure. From the point of view of
a single-particle picture, we discussed the relation between
the cluster aspect and the many-particle many-hole aspect. We
found that the origin of the 12C clustering in the superdeformed
state is understood by the correlation of 12 nucleons; four
sd-shell nucleons with the α-cluster correlation, and the eight
valence nucleons in the fp-like orbits. It reveals the coexistence
of cluster and mean-field aspects in the superdeformed state.
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Namely, the α-cluster correlation in deeply bound nucleons
composing the core 20Ne plays an important role in the parity
asymmetric shape, while the particle-hole nature arises in the
single-particle levels at the energy surface. The present result
of the dominant 8p-8h feature in the superdeformation seems
to be consistent with the strong population of the members
in the superdeformed band observed in eight-nucleon-transfer
reactions; 32S(12C,α)40Ca [11]. However, it is inconsistent with
the GCM+HFBCS calculations [18], where neither the 4p-4h

nor the 8p-8h HF solutions can be assigned to the bandheads of
the normal-deformed band or superdeformed band. One of the
advantages of the present framework is the parity projection
before energy variation, which is considered to be important
in the parity-asymmetric deformation. We think that one of
the key properties which stabilize the “8p-8h” character in the
superdeformed band is the 12C+28Si clustering which causes a
parity asymmetric shape. Compared with the GCM+HFBCS
calculations [18], the higher correlations are ignored in the
present calculations. For example, the number of the bases in
the superposition is ten at most, which is much smaller than the
case of the GCM+HFBCS calculations [18]. Moreover, since
we adopt the constraint on the total number of HO quanta in
the energy variation, some bases are missed in terms of GCM
with respect to the generator coordinate β2, which are often
used in the GCM+HF calculations. The pairing correlations
are also ignored. It is a remaining problem to check how the
properties of the superdeformation are affected by introducing
these effects.

Above the superdeformed band, we found possible higher
rotational bands based on 12C+28Si-clustering in the large
prolate deformations. It is predicted that 12C+28Si molecular
bands may be built due to the excitation of the intercluster
motion. The present results suggest that the superdeformed

band and these higher molecular bands are regarded as a series
of 12C+28Si molecular bands. This means that the 12C+28Si
cluster aspect is rather prominent in the superdeformed state
than the 32S+2α aspect, although the latter may be naively
expected from the 8p-8h feature of this state. We also suggest
the negative-parity bands caused by the parity asymmetric
deformation.

In the present work, we use the stronger spin-orbit force
than the nuclear interaction adopted in Ref. [30] to quantita-
tively reproduce the excitation energies of the superdeformed
band and negative parity states. With the original weak spin-
orbit force, the excitation energies of all the excited states in
40Ca are overestimated. We would like to stress again that the
intraband properties such as energy spectra, E2 transitions,
and intrinsic structure of the superdeformed band are not
sensitive to the choice of either interaction. In order to solve the
remaining problems, it may be necessary to introduce a suitable
nuclear interaction and extended model wave functions.
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