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Analysis of the recently obtained experimental data for a lot of collective states of 160Dy is presented.
Classification of the low-lying states with positive parity 0+, 2+, 4+, 6+ is performed. The energies of rotational
high-spin states of the ground, S, γ and two negative-parity bands are described in the framework of the interacting
vector boson model. The energies of the bands are reproduced with high accuracy using only one set of model
parameters for all bands. A more detailed investigation of the results is performed by calculation and comparison
with experiment of the high-order odd-even staggering effects between states from different pairs of bands.
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I. INTRODUCTION

The even-even nucleus 160Dy has a very complicated
spectrum of excited states and by now it has been widely
investigated experimentally. During the past decades, a great
number of experiments have been performed using different
types of nuclear reactions, including Coulomb excitation
and β decay (160Tb → 160Dy, 160m,gHo → 160Dy, 160Er →
160m,gHo → 160Dy). The results of all the investigations
performed up to 1996 were analyzed in detail and presented
in Nuclear Data Sheets [1] and Table of Isotopes [2]. Nev-
ertheless, recently, using modern experimental techniques, a
new comprehensive study of the low-spin states in the β decay
160Er → 160m,gHo → 160Dy had been performed, measuring γ

rays, conversional electrons, and γ γ t coincidence spectra [3].
These investigations had supplemented the spectrum of the
excited states of 160Dy with more than 100 states and more
than 500 γ transitions. The agreement with the data obtained
from previous experiments with nuclear reactions and β decay
also was checked. At the same time a new experiment using
a 7Li ion beam on a 158Gd target has been done [4] to obtain
more high-spin states in the spectrum of 160Dy. For example,
the ground-state bands with Kπ = 0+ were identified up to
excitation energy of 7231 keV and Iπ = 28+, a γ band with
Kπ = 2+ was measured up to energy 6642 keV and Iπ = 25+,
an S band was measured up to 4875 keV with Iπ = 20+, and
two negative-parity bands with Kπ = 2− were measured up
to energy 6967 keV with Iπ = 26− and with Kπ = 1− up to
energy 4937 keV with Iπ = 19−. In these new experiments, 16
other, different in nature rotational bands were identified in the
160Dy nucleus. All this made the spectrum of this nucleus a very
good target for testing theoretical nuclear structure models.
An attempt to analyze it was recently made [5], by applying
the Bohr-Mottelson model [6], Q-phonon model [7], variable
moment of inertia model with dynamical asymmetry [8], and
the Bohr-Mottelson model with Coriolis interaction [9]. Also,
the positive-parity states were analyzed within the framework
of the algebraic IBM-1 [10]. Within those model approaches
a relatively good description for the energies and transition
probabilities of states with low values of their assigned spins
was obtained, but the disagreement with experiment increased

noticeably in the region of higher spin values. As a continuation
of our theoretical analysis of the very rich experimental data
on 160Dy, we apply in the present paper two of the recently
developed dynamical symmetries in the symplectic extension
of the interacting vector boson model (IVBM) [11,12]. Our
aim is twofold:

(i) to describe the energy distribution of the low-lying states
with Jπ = 0+, 2+, 4+, and 6+ most of which are band
heads and play a very important role in the development
of the collective bands on them, and

(ii) to extend the energy description to the higher spin states
in the collective bands and at the same time to check their
assignment to the respective collective bands.

The phenomenological IVBM [11] was proven appropriate
for a rather accurate description of the low-lying spectra of
even-even well-deformed nuclei. The most general spectrum-
generating algebra of the model is the algebra of the Sp(12, R)
group [12]. It has a rather rich subalgebraic structure. In the
rotational limit of the model the reduction of sp(12, R) to
the angular momentum algebra so(3) was carried out through
the compact u(6) subalgebra, which defines the number of
boson preserving version of the model. Another new reduction
of the dynamical sp(12, R) symmetry algebra to the direct
product sp(4, R) ⊗ so(3) isolates states with fixed angular
momentum L [13]. This permits an investigation of the
behavior of low-lying collective states with the same angular
momentum L with respect to the number of excitations N

building these states. These two new dynamical symmetries of
the symplectic IVBM,

sp(12, R) ⊃ sp(4, R) ⊗ so(3)
∪ ∪ ∩
u(6) ⊃ u(2) ⊗ su(3),

(1)

afford a natural way to change the number of “phonons,” and
relation (1) can be used to link different sets of states. This
is the main feature of the model and one that underpins its
application, which will be used here to interpret the new
experimental results in the 160Dy spectrum. In this paper
we take a more empirical approach in reaching our goals,
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FIG. 1. (Color online) Distribution of 0+ states energies by
number of monopole bosons in 160Dy and 158Gd.

introducing in this way more of the physical interpretation of
the experimental data. This approach is theoretically backed
up by the IVBM and the group-theoretical techniques is used
mainly to classify the observed collective states with respect
to the quantum numbers that label the representations of the
subgroups of the considered dynamical symmetries (1).

II. ENERGY DISTRIBUTION OF THE
EXCITED 0+ STATES

We start our investigations of the experimental spectrum
of 160Dy with the study of the low-lying 0+ states. This is
very important as all these states are band heads of collective
bands and to a great extent influence their development. First
we make a classification of the observed 0+ states within
the framework of the simplified pairing vibrational model
by making use of a phenomenological collective Hamiltonian
written in terms of the operators R+, R−, and R0:

H = αR+R− + βR0

(
R0 + �

2

)
, (2)

where α and β are model parameters. The monopole bosons
R+, R−, and R0 are constructed from pairs of fermion
creation and annihilation operators a

†
jm and ajm, where

(a†
jm)† = (−1)maj−m for particles placed on a single j-level
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FIG. 2. (Color online) Distribution of 2+, 4+, and 6+ states
energies by number of bosons within IVBM (k = N/4).

(where j = half integer) with projection m and � = (2j +
1/2):

R+ = 1

2

∑
m

(−1)j−mα
†
jmα

†
j−m,

R− = 1

2

∑
m

(−1)j−mαj−mαjm,

(3)

R0 = 1

4

∑
m

(α†
jmαjm − αj−mα

†
j−m),

[R0, R±] = ±R±, [R+, R−] = 2R0.

By applying the Holstein-Primakoff [14] transformation to the
operators R+, R−, and R0 they are expressed in terms of new
(ideal) boson creation and annihilation operators b†, b as

R− = (
√

2� − b†b)b, R+ = b†(
√

2� − b†b),
(4)

R0 = b+b − �.

These new operators b†, b commute as

[b, b†] = 1, [b, b] = [b†, b†] = 0. (5)
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FIG. 3. (Color online) Comparison of IVBM energies with
experiment for the ground and S bands in 160Dy.

The initial Hamiltonian (2) written in terms of the ideal
bosons b†, b has the form

H = Ab†b − Bb†bb†b, (6)

and the new constants of the one- and two-body interactions
are

A = α(2� + 1) − β�, B = α − β.

The boson state |n〉 is built by the scalar bosons in a standard
way as

|n〉 = 1√
n!

(b+)n |0〉 , (7)

with the vacuum state defined by b |0〉 = 0. Thus the energy
spectrum of the 0+ states produced by the Hamiltonian (6) is
a parabolic function of the number of ideal monopole bosons
n = b†b that build them:

En = An − Bn2. (8)

In Fig. 1 we show the energy distribution of available
experimental data for 0+ states in the spectrum of 160Dy with
respect to the number of ideal monopole bosons (5). In the
same figure as an additional example we present our results
for the description of 0+ excited states in the new experimental

0 4 8 12 16 20 24 28

1

2

3

4

5

6

7

8

9

n=0

n=5

experiment
calculations
calculations

E
n

er
g

y
[M

ev
]

L

160Dy

γ γ γ γ vibrational band Kππππ=2+

FIG. 4. (Color online) Comparison of IVBM energies with
experiment for γ band in 160Dy.

data for the 158Gd nucleus [15]. The parameters A and B of (8)
are evaluated by fitting the experimental energies of the
different 0+ states to the theoretical ones for all possible
permutations of the classification numbers n attributed to
each 0+ state. The distribution corresponding to the minimal
value of χ2 is presented in Fig. 1. The mean square energy
deviation � is 4.8 keV for 160Dy and 16.7 keV for 158Gd.
Hence with rather high accuracy the experimental energies for
low-lying 0+ collective states follow a parabolic distribution
as functions of the number of collective excitations that build
them. Now we can label each of the Kπ = 0+ states with an
additional characteristic n—the number of monopole bosons
determining their collective structure. An important point of
this investigation is that the ordering of the states with respect
to the number of phonons does not necessarily correspond to an
increase of their excitation energy. For example, in the 160Dy
spectrum the third and fourth excited Kπ = 0+ states have
more collective structure (lager n = 12, 13, respectively) than
the 0+ state with highest excitation energy with corresponding
n = 6. There are more demonstrative cases in the 158Gd
nucleus. A similar analysis can be performed for the other
low-lying excited states with angular momenta different
from zero. It shows that they can also be distributed on
parabolic functions Ek = Ak − Bk2 + C, with an additional
free parameter C. Hence the new classification parameter k can
also be considered as a measure of collectivity determining
each low-lying collective state.
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FIG. 5. (Color online) Comparison of IVBM energies with
experiment for the octupole Kπ = 1− band in 160Dy.

In Fig. 2 we show the distributions of the 2+, 4+, and
6+ excited states in 160Dy with respect to k. In all these
cases we obtain good descriptions of the energy distributions
of the respective states with mean square energy deviation
� = 9.5, 7.5, and 23.0 keV for the levels with Jπ = 2+, 4+,
and 6+, respectively. The results introduced here illustrate that
the theory reproduces reliably empirical observations of the
energy distribution of collective states. Such a demonstration
can be provided for any collective model that includes one- and
two-body interactions in the Hamiltonian. The same feature
that leads to this type of parametrization is provided by the
symplectic dynamical symmetry of the IVBM [13], which
allows for a change in the number of “phonons” that are
required to build the states with any value of the angular
momentum L = 0, 1, 2, 3, 4, . . . , but from the building blocks
of the model. In the reduction of sp(12, R) to the direct
product Sp(4, R) ⊗ SO(3), the so(3) angular momentum al-
gebra, through its complementary role, to sp(4, R), labels
states with a fixed angular momentum L [13]. The Sp(4, R)
basis is obtained via a reduction of its boson representations
into the irreducible ones of SU(2), which are labeled by
the quantum numbers T , T0 of the pseudospin and its third
projection. The first-order invariant of the U(2) ⊂ Sp(4, R) is
the total number of vector bosons N of the IVBM. Further one
exploits the relation (1) of this reduction to the reduction of
sp(12, R) to its maximal compact subgroup U(6) ⊃ U(2) ⊗
SU(3), which gives the rotational limit of the IVBM. In
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FIG. 6. (Color online) Comparison of IVBM energies with
experiment for the octupole Kπ = 2− band in 160Dy.

further considerations we have established a relation between
the IVBM quantum number N and the new positive-integer
classification parameter k as N = 4k [11]. This relates the
sp(12, R) phenomenological collective model to a simple
microscopic description of the collective states given in the
foregoing discussion. We use the former here, as our main
interest is in the influence of the 0+ band heads’ configurations
on the development of the collective bands.

III. THE IVBM

We start with a brief introduction of the rotational limit
of the model, where within the framework of the boson
representation of the sp(12, R) algebra all possible irreducible
representations [N ]6 of its maximal compact subgroup U(6)
are realized. Further, their reduction to the irreps (λ,µ)
of the group SU(3) are determined uniquely through all
possible sets of the eigenvalues of the Hermitian operators
N—the total number of bosons, T 2, and T0—characterizing
the “psuedospin,” introduced to distinguish the two types of
vector bosons, which are the building blocks of the algebraic
structure of the model. In the final reduction of the (λ,µ) labels
to the SO(3) representations,

sp(12, R) ⊃ u(6)

[N ]6
⊃ su(3)

(λ,µ)
⊗ SU(2)

T , T0
⊃ so(3)

L,
(9)
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FIG. 7. (Color online) Comparison of theoretical and experimen-
tal staggering functions �5E (L) for S and octupole Kπ = 2− bands
of 160Dy.

the physical angular momentum L and its projection M are
obtained. Hence the sp(12, R) plays the role of a group of
dynamical symmetry. The detail description of this algebraic
model may be found in [12]. Here we present only those
expressions necessary for our purposes for the energy spec-
trum, given by the eigenvalues of the first- and second-order
invariants of the subgroups of the chain,

E([N ]6, (λ,µ); L; T0)

= αN + α1N (N + 5) + β3L(L + 1)

+α3(λ2 + µ2 + λµ + 3λ + 3µ) + α1T
2

0 , (10)

and the decomposition rules for the states labels given by
the irreducible representations of the subgroups in the model
chain (9),

N − even → 0, 2, 4, 6, . . . (11)

T = N

2
,
N

2
− 1,

N

2
− 2, . . . , 0, or1, (12)

T0 = −T ,−T + 1, . . . , T . (13)
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FIG. 8. (Color online) Comparison of theoretical and experimen-
tal staggering functions �5E (L) for S and Kπ = 2+γ bands of 160Dy.

Because of the mutual complementarity of the su(3) and SU(2)
the (λ,µ) labels are related:

λ = 2T ,
(14)

µ = N

2
− T .

Finally, the angular momentum labels are given in a standard
way:

K = min(λ,µ), min(λ,µ) − 2, . . . , 0 or 1,

K = 0 → L = 0, 2, . . . , max(λ,µ),

K 	= 0 → L = max(λ,µ), max(λ,µ) − 1, . . . , 0 or 1.

The parity of the states is defined as π = (−1)T . The index
K appearing in this reduction is related to the projection of L
in the body-fixed frame and is used with the parity to label
the different bands in the energy spectra of the nuclei. Now
we have to obtain the correspondence between the observed
collective bands and the eigenstates of the Hamiltonian that
give the spectrum of the nucleus.

For this purpose we must choose the su(3) multiplets (λ,µ)
determining the energies of the bands under consideration.
Further imposing the connection N = 4L we have the corre-
sponding multiplets (λ,µ) and the expressions for energies of
some rotational bands as follows:
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(i) Kπ = 0+ ground-state band → (λ = 0, µ= 2L) and
T = 0:

Egr = 4αL + β3L(L + 1)

+ 4α1L(5 + 4L) + α3(6L + 4L2);

(ii) Kπ = 0+ S band → (λ = 4, µ = 2L − 2) and T = 2:

Es = cs + 4αL + β3L(L + 1)

+ 4α1L(5 + 4L) + α3(6L + 4L2);

(iii) Kπ = 1− band → (λ = 4L − 2, µ = 1) and T =
2L − 1:

E1− = c1− + 4αL + β3L(L + 1) + 4α1L(5 + 4L)

+α3[16L − 4 + (4L − 2)2]; (15)

(iv) Kπ = 2− band → (λ = 2, µ = 2L − 1) and T = 1:

E2− = c2− + 4αL + β3L(L + 1)

+ 4α1L(5 + 4L) + α3[16L − 4 + (4L − 2)2].

(v) Kπ = 2+ − γ -band → (λ = 4L − 4, µ = 2) and T =
2L − 2:

Eγ = cγ + 4αL + β3L(L + 1)

+ 4α1L(5 + 4L) + α3[20L − 10 + 16(L − 1)2].
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FIG. 10. (Color online) Comparison of theoretical and exper-
imental staggering functions �5E (L) for ground Kπ = 0+ and
Kπ = 2+γ bands of 160Dy.

Our previous calculations of rotational band energies with
different forms of nuclear density shapes [11] had shown that
the moment of inertia depends on the number of monopole
bosons n approximately as

I (n) ≈ I (0)(1 + xn), (16)

where x is connected with the diffuseness parameter s,
compressibility coefficient C0, one-phonon energy E0, and
nuclear half-radius R as

x =
E0R

2 [(−3 + 20π)R4 + 30(−1 + 4π)R2s2 + 45(−1 + 4 π)s4]

8C0π2(R6 + 13R4s2 + 45R2s4 + 45s6)
.

(17)

In our further calculations we suppose that the monopole
excitations mainly determine the value of the moment of inertia
and choose the parameter β3 to be

β3 = 1

2I (n)
= β0

1 + nx
. (18)

We apply this approximation in our calculations of the energies
of rotational bands determined here (15).

The comparison of our calculations with experiment is
shown in Figs. 3–6. It is important to point out that all these
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FIG. 11. (Color online) Comparison of the theoretical and exper-
imental staggering functions �5E (L) for ground Kπ = 0+ (in the
case of our states’ ordering and the ordering in [4]) and octupole
Kπ = 1− bands of 160Dy.

bands are calculated with the same set of parameters:

α = 0.00511953, α1 = 0.000045, α3 = −0.0001486,

(19)
x = 0.0605, β0 = 0.01117379.

The corresponding values of number of monopole bosons
n building the collective excited 0+ state are also presented in
these figures. The values of n entering (18) according to our
proposition mainly determine the moment of inertia of each
band. The agreement between calculated and experimental
energies is very good and the mean square energy deviation
� for all bands under consideration is less than 9 keV per
point. However, we consider the values cs, c1− , c2− , and cγ as
free model parameters, but there are reasons to suppose that
including the interactions among rotational bands will bring
about one common constant for all bands.

For correct placement of the states in the bands with
different parities and to check the parity splitting we have
calculated the fifth-order staggering functions

�5E(L) = 6[E(L) − E(L − 1)] − 4[E(L − 1) − E(L − 2)]

− 4[E(L + 1) − E(L)] + E(L + 2) − E(L + 1)

+E(L − 2) − E(L − 3) (20)

for experimental points and calculated data.
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FIG. 12. (Color online) Comparison of theoretical and experi-
mental staggering functions �5E (L) for ground Kπ = 0+ (in the
case of our ordering and the ordering in [4]) and octupole Kπ =
2− bands of 160Dy.

According to our calculations for the energies of the bands
(Figs. 3–6) we had calculated the staggering functions with
replaced states Iπ = 18+, 4.181 MeV; Iπ = 20+, 4.875 MeV
from the S band to the ground band (our ordering) whereas
the states Iπ = 18+, 3.67 MeV; Iπ = 20+, 4.279 MeV;
Iπ = 22+, 4.936 MeV; Iπ = 24+, 5.648 MeV; Iπ = 26+,
6.413 MeV; Iπ = 28+, 7.231 MeV from the ground-state to the
S band. This produces much better agreement with experiment
than the calculations with the previous ordering [4]. Hence
we have proposed that the sequence of states Iπ = 18+,
4.181 MeV; Iπ = 20+, 4.875 MeV belongs to the ground-state
band whereas the states Iπ = 18+, 3.67 MeV; Iπ = 20+,
4.279 MeV; Iπ = 22+, 4.936 MeV; Iπ = 24+, 5.648 MeV;
Iπ = 26+, 6.413 MeV; Iπ = 28+, 7.231 MeV must be related
to the S band; moreover, for simultaneous description of the
bands with previous ordering [4] the additional parameter
is required. The odd-even staggering functions (20) for S
(Kπ = 0+) and octupole (Kπ = 2−) bands, S (Kπ = 0+)
and γ (Kπ = 2+) bands, S (Kπ = 0+) and octupole (Kπ =
1−) bands, and ground (Kπ = 0+) and γ (Kπ = 2+) bands
calculated for experimental and theoretical data are presented
in Figs. 7–10, respectively. The agreement between theory and
experiment is rather good.

In Fig. 11 we show the comparison of the staggering
functions for the states of the octupole band (Kπ = 1−) with
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the ones of the ground-state band ordered in our way and the
previous (Kπ = 0+) band so far determined as a ground-state
band in [4]. In the case of [4] the agreement of the calculated
and the experimental data is sensitively worse. The same
situation one can find in Fig. 12, where the staggering functions
for the octupole (Kπ = 2−) and ground-state (Kπ = 0+)
bands are compared. To prove that this rearrangement of
some states between the S and ground-state bands is not a
sort of mere assertion we must analyze the behavior of the
B(E2) transitions in the region of the crossing between the
ground-state and S bands. Indeed, the transition probabilities
even in a simple rigid-rotor model depend on the intrinsic
quadrupole moment Q0, which in our consideration is a

function of the number of monopole bosons and increases
with increasing n [11]. It will be useful to make a more
detailed analysis of the B(E2) transitions, especially in the
region of large angular momentum, but unfortunately the
lack of experimental data for the lifetimes of the states and
transition intensities between them in this region precludes
such a possibility.
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