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Inversion of parity splitting in alternating parity bands at high angular momenta
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The angular-momentum dependence of parity splitting in ground-state alternating parity bands and especially
the sign inversion of parity splitting are considered. It is shown that the complicated odd-even staggering
structure of the alternating parity bands can be interpreted as the result of two simultaneously manifesting effects:
(1) penetration of the barrier separating two minima with the opposite signs of the reflection asymmetric
deformation and (2) alignment of the angular momentum of the intrinsic excitations.
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I. INTRODUCTION

The presence of strong octupole correlations in nuclei is
reflected in a significant lowering of the excitation energies
of the negative-parity states. This phenomenon was observed
in different nuclei [1,2]. In these nuclei low-lying states with
positive and negative parities form alternating parity bands
with Iπ = 0+, 1−, 2+, 3−, . . . , with the negative-parity states
shifted up in energy with respect to the positive-parity states.
The experimental data show that this shift depends on angular
momentum and decreases with increasing angular momentum.
The decrease of the parity splitting was interpreted as due to
a decrease of the penetration probability through the barrier
separating two physically equivalent minima in the nuclear
collective potential energy that had different signs of the
reflection asymmetric deformation, which can be the octupole
[3] or mass-asymmetry [4,5] degree of freedom. Since the
moment of inertia of a nucleus depends on the reflection
asymmetric deformation and is larger at the minimum than
at the top of the barrier, the height of the barrier relative to
the minimum increases with angular momentum I, and the
barrier-penetration probability decreases. This explains the
decrease of parity splitting with I at relatively low values of I.

The picture described above is expressed by the following
formula for the excitation energies E(I ) of the states belonging
to the ground-state alternating parity band:

E(I ) = Eaverage(I ) − 1
2 (−1)I�E(I ). (1)

In Eq. (1) Eaverage(I ) is a smooth function of I describing
the angular-momentum dependence of the excitation energies
averaged over parity. The quantity �E(I ) is the value of the
parity splitting, which is positive at low I.

However, in light Ra and Th isotopes it was observed that
the parity splitting �E(I ), after decreasing to zero, inverts
its sign and increases again in absolute value, i.e., in some
angular-momentum interval at higher I, negative parity states
are shifted down with respect to the positive-parity states in
contrast to the situation at low I. Moreover, in the light Ra
isotopes, parity splitting �E(I ) changes sign for the second
time. However, the size of this inverted parity splitting is 5–10
times smaller than at low I. In Ref. [6] it was indicated that the
Coriolis interaction can be the reason for the sign inversion

of parity splitting. The role of rotational motion in the sign
inversion of the parity splitting at high I has been investigated
in Ref. [7], in which it was shown that the band-crossing
phenomenon can play an important role. In Ref. [8] it was
shown that the effect of the quadrupole-octupole correlations
can be important for the description of parity splitting at high I.

It is the aim of this work to formulate a unified model based
on a Hamiltonian that explains both observed parity-splitting
effects: parity splitting at low I and an inversion of the sign of
the parity splitting at high I.

II. PARITY SPLITTING AT LOW ANGULAR MOMENTA

We start with the standard Hamiltonian,

Ĥ = Ĥp + Ĥrot + Ĥc + Ĥoct, (2)

containing the term Ĥp that describes the intrinsic motion of
particles or quasiparticles in a mean field and their coupling to
collective octupole motion, the rotational-energy term Ĥrot,

Ĥrot = h̄2

2�I (I + 1), (3)

and the Coriolis interaction Ĥc,

Ĥc = − h̄2

2� (ĵ+Î− + ĵ−Î+), (4)

where ĵ± are rising and lowering components of the intrinsic
angular momentum and Î∓ are rising and lowering components
of the total angular-momentum operator expressed through the
Cartesian projections of the angular-momentum operators on
the body-fixed axis:

ĵ± = ĵ1 ± ıĵ2, Î± = Î1 ± ıÎ2. (5)

In this section we consider the octupole deformation only,
keeping in mind, however, that the other odd-multipolarity
degrees of freedom can be important also.

To treat a parity splitting at low I, the Hamiltonian Ĥ

contains the term Ĥoct describing an octupole motion of a
nuclear shape. We assume that Ĥoct conserves axial symmetry.
The octupole part of the total Hamiltonian Ĥoct can be written
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as a sum of the kinetic and potential energies of the octupole
motion:

Ĥoct = − h̄2

2B

d2

dβ2
30

+ U (β30), (6)

where U (β30) is an even function of β30 with two symmetri-
cally located minima at β30 = ±βmin. The inertia coefficient B
and potential U are assumed not to depend on I. Below we treat
simultaneously Ĥrot and Ĥoct since the moment of inertia �
depends on β30. For simplicity we neglect a noncommutativity
of Ĥoct with Ĥp and Ĥc. This is of course an approximation
since the particles are coupled to the octupole motion, and,
in the general case, the Coriolis interaction can disturb the
octupole part of the total wave function. However, the first
effect produces an anharmonicity in the collective octupole
motion that is included, in principle, in the potential U (β30),
and the last effect becomes more important at high I when the
octupole deformation is already stabilized.

The total wave vector |�total〉 that depends on all degrees of
freedom of the Hamiltonian can be presented as [9]

|�total〉 = 1√
2

[1 + (−1)I P̂ π̂ ]φ(β30)|�〉, (7)

where P̂ is the parity operator acting on only the octupole part
of the wave function, π̂ is the parity operator of particles, the
total parity p of the states under consideration is (−1)I , and
|�〉 describes the rotational motion and the intrinsic particle
motion.

It was shown in Ref. [10] that a good approximation for
φ(β30) is a Gaussian function,

φ(β30) =
(

πh̄

Bω

)−1/4

exp

[
−Bω

2h̄
(β30 − βmin)2

]
, (8)

where the parameter ω characterizes the width of the maximum
at β30 = βmin. The second term in the wave vector of Eq. (7),
which is multiplied by the space reflection operators and by
the phase factor (−1)I , appears because of the existence of the
second minimum in the potential located at β30 = −βmin . A
tunneling through the barrier separating the minima produces
the parity splitting �E(I ) in the total excitation energy E(I )
that shifts the energy of the state, described by the wave
function that is symmetric or antisymmetric with respect to
reflection β30 → −β30. It is known [11] that this splitting is
determined by the behavior of the wave function of Eq. (8) at
the top of the barrier at β30 = 0:

�E(I ) � h̄2

B
φ(β30 = 0)φ′(β30 = 0). (9)

Substituting Eq. (8) into relation, (9) we obtain

�E(I ) = h̄ω

√
Bωβ2

min

πh̄
exp

(
−Bωβ2

min

h̄

)
. (10)

In Ref. [3] it was shown that �E(I ) can be presented as

�E(I ) = �E(0) exp

[
−I (I + 1)

a

]
. (11)

This phenomenological result is well reproduced in the cluster-
model calculations for many actinides and rare earth-nuclei

TABLE I. Angular-momentum dependence of the parameter h̄ω

characterizing the collective wave function φ(β30) [see Eq. (8)] and of
the ratio φ(β30 = 0)/φ(β30 = βmin) of the magnitude of the collective
wave function at the barrier to its magnitude at the minimum of the
potential. The experimental data on the parity splitting in 220Ra that
are used in the calculations of h̄ω are taken from Ref. [12].

I h̄ω φ(β30 = 0)φ(β30 = βmin)

2 1.807 0.30
3 2.291 0.22
4 2.737 0.16
5 3.181 0.12
6 3.689 0.09
7 4.309 0.06
8 5.277 0.03

[4,5]. Comparing Eqs. (10) and (11), we obtain the angular-
momentum dependence of ω, which is illustrated in Table I by
the results we obtained by using the experimental data [12] for
220Ra. In addition, the ratio of the magnitude of the collective
wave function taken at the barrier and at the minimum of the
potential φ(β30 = 0)/φ(β30 = βmin) is presented for different I.
We have used B = 163h̄2 MeV−1, which corresponds to the
value of the inertia parameter used in the cluster-model
calculations of the parity splitting in Ref. [5].

III. PARITY SPLITTING AT HIGH ANGULAR MOMENTA

Consider now a situation in which the angular momentum
I is large enough to stabilize an octupole deformation. It
happens because of the dependence of the moment of inertia
� on β30. Stabilization of the octupole deformation means that
we can neglect the barrier penetration and an oscillation of
β30 around the minimum. Therefore, at these values of I, the
parity splitting described by expression (11) disappears. We
can neglect the effect of Ĥoct on Ĥp and Ĥc and put β30 = βmin

in Ĥp.
Consider the rest part of the total Hamiltonian, namely

ĥ ≡ (Ĥp + Ĥc). Let us diagonalize ĥ by some unitary transfor-
mation up to terms containing rising and lowering components
of the total angular-momentum operator I± in a degree not
higher than some fixed value. This task can be solved by the
transformation [13,14]

ĥ′ ≡ exp(T̂ )ĥ exp(−T̂ ), (12)

where the anti-hermitian operator T̂ is given by an expansion
T̂ = ∑

n T̂n with

T̂1 = (ε̂+I− − ε̂−I+) + (û(11)
+ {I3, I−}+ − û

(11)
− {I3, I+}+),

T̂2 = (û(20)
+ I 2

− − û
(20)
− I 2

+) + (û(30)
+ I 3

− − û
(30)
− I 3

+),

T̂3 = (û(21)
+ {I3, I

2
−}+ − û

(21)
− {I3, I

2
+}+)

+ (
û

(12)
+

{
I 2

3 , I−
}

+ − û
(12)
−

{
I 2

3 , I+
}

+
)
. (13)

The index n corresponds to the degree of the operators
Ii in T̂n. The curly brackets {A,B}+ in Eq. (13) denote
the anticommutator. In Eq. (13) the expansion operators ε±
and u

(ij )
± are functions of the intrinsic degrees of freedom.
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They are fixed by the condition that they diagonalize ĥ′ up to
terms containing components of the total angular-momentum
operator in degrees not higher than some fixed value. Thus we
obtain

ĥ′ ≡ exp(T̂ )ĥ exp(−T̂ ) = exp(T̂ )(Ĥp + Ĥc) exp(−T̂ )

= Ĥp + [T̂1, Ĥ p] + Ĥc + [T̂2, Ĥp] + [T̂1, Ĥc]

+ 1
2 [T̂1, [T̂1, Ĥp]] + [T̂3, Ĥp] + [T̂2, Ĥc]

+ 1
2 [T̂2, [T̂1, Ĥp]] + 1

2 [T̂1, [T̂2, Ĥp]]

+ 1
2 [T̂1, [T̂1, Ĥc]] + 1

6 [T̂1, [T̂1, [T̂1, Ĥp]]] + · · · . (14)

Since the Coriolis term Ĥc is nondiagonal with respect to the
third projection K of 	I , it is convenient to determine T̂1 by the
relation

[T̂1, Ĥp] = −Ĥc, (15)

from which it follows that T̂1 is also nondiagonal in K. The
operator T̂2 is determined as

[T̂2, Ĥp] = − 1
2 ([T̂1, Ĥc])nondiag.part. (16)

For the operator T̂3 we set

[T̂3, Ĥp] = − (
1
2 [T̂2, Ĥc] − 1

4 [T̂1, ([T̂1, Ĥc])nondiag.part]

+ 1
3 [T̂1, [T̂1, Ĥc]]

)
nondiag.part

. (17)

Finally, ĥ′ can be written as

ĥ′ ≡ exp(T̂ )ĥ exp(−T̂ ) = Ĥp + t̂1I3 + t̂2
(
I 2 − I 2

3

)
+ t̂ ′2I

2
z + t̂3I

3
3 + t̂ ′3I3

(
I 2 − I 2

3

) + · · · . (18)

In Eq. (18) t̂i and t̂ ′i are intrinsic operators whose matrix
elements are expressed in terms of the matrix elements of
the intrinsic angular-momentum operators j± and the matrix
elements of Hp. For instance,

t̂1 = − h̄2

4� ({ε̂+, ĵ−}+ + {ε̂−, ĵ+}+)
(19)

t̂2 = − h̄2

4� ([ε̂+, ĵ−] + [ε̂−, ĵ+]),

where ε̂± are determined by the equation

[Ĥp, ε̂±] = ± h̄2

2� ĵ±. (20)

Assume, for simplicity, that there is only one intrinsic state
for every value of K. Then the operators t̂i and t̂ ′i will have
only diagonal matrix elements because they do not change K,
as it is seen, for instance, from Eqs. (19) and (20). Therefore,
for the Hamiltonian ĥ′, K will be a good quantum number.
The eigenvector |� ′〉 of the Hamiltonian ĥ′ is connected to the
eigenvector |�〉 of ĥ by the relation

|�〉 = exp(−T̂ )|� ′〉. (21)

As a consequence of factorization (7), the eigenvalue EI

of H is the sum of the eigenvalue of (Ĥoct + Ĥrot) denoted by
εI and the eigenvalue of ĥ′. The expression for 〈K|ĥ′|K〉 can
be obtained from Eq. (18) by substitution of their eigenvalues

instead of operators. Up to the terms of the second order in
h̄2/�, this can be done with Eqs. (19) and (20) and is given by

〈K|ĥ′|K〉 ≈ EK + 1

4

(
h̄2

�
)2

×
{

[I (I + 1) − K2 + K]
〈K|j+|K − 1〉2

EK − EK−1

− [I (I + 1) − K2 − K]
〈K + 1|j+|K〉2

EK+1 − EK

}
,

(22)

where

EK = 〈K|Ĥp|K〉. (23)

It is seen that expression (22) is even with respect to the
reflection K → −K since EK is an even function of K. The
lowest eigenvalue of the system is determined by the value
|K| = Kmin that minimizes 〈K|ĥ′|K〉. In principle, the values
of |K| corresponding to the lowest energy sequence changes
with angular momentum I. This is easily seen if one considers
|K| a continuous variable [7]. In general 〈K|ĥ′|K〉 has more
than one minimum, in K. The deepest minimum corresponds to
the yrast level sequence, while the higher minima correspond
to excited bands. For a given “continuous” minimum, the
discrete quantum number K is determined as the closest integer
number. At low I the ground-state band has the component with
K = 0 as the main one. The minimum of the energy at K = 0
when I is low is due to the energy of the two-quasiparticle
states that should be excited to a increase K from zero to
a finite value. The shift of the position of the minima from
K = 0 to nonzero value of K is due to the Coriolis interaction,
which becomes more important with increasing I.

The matrix element 〈K|ĥ′|K〉 determines, together with the
rotational and octupole terms, the energy of the nuclear state. In
the general case its dependence on K is quite complicated and
cannot be treated analytically. For this reason, to understand
the problem qualitatively, let us come back to the part of the
total Hamiltonian denoted by ĥ.

The nonzero matrix elements of ĥ have the following
expressions:

〈IK ′|ĥ|IK ′〉 = E(K ′),
(24)

〈IK ′|ĥ|IK ′±1〉 = − h̄2

2�
√

(I±K ′ + 1)(I∓K ′)〈K ′|j∓|K ′±1〉,

where we use the quantum number K ′ to characterize the basis
with the aim of distinguishing it from the quantum number K
discussed above as the characteristic of the eigenstate of ĥ′.

To get a qualitative understanding of the problem let us
consider the case of I � K ′ for which the results can be
obtained analytically. If I � K ′, nondiagonal matrix elements
increase proportionally to I. In this limit we can neglect the
diagonal matrix elements because they are independent of I and
use the following approximate expression for the nondiagonal
matrix elements:

〈IK ′|ĥ|IK ′ ± 1〉 = −h̄2I

2� 〈K ′|j∓|K ′ ± 1〉. (25)
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If we take into account in the expansion of Eqs. (24) the
correction of the order of K ′2/I 2, we obtain the following
result:

〈IK ′|ĥ|IK ′ ± 1〉 = −h̄2I

2� 〈IK ′|
(

1 + 1

8I 2

)
ĵ∓

+ 1

4I 2

{
ĵ 2
z , ĵ∓

}
+|IK ′ ± 1〉. (26)

In fact, by the approximation used to derive Eqs. (25) we fix
axis 1 as the axis along which the total angular momentum
is directed. This can be seen easily if we use the boson
representation of the operators I± and I3.

The Holstein-Primakoff boson representation of the opera-
tors I± and I3 looks like

Î− = b+√
2I − b+b, Î+ = √

2I − b+bb, Î3 = b+b − I,

(27)

where [b, b+] = 1. It is seen from the representation for I3 that
the assumption |K ′|  I means that the number of bosons is
approximately equal to I and the matrix elements of the boson
operators b and b+ are large. In this case it is convenient to do
the following unitary transformation of the boson operators:

b+ =
√

I + c+, b =
√

I + c, (28)

where [c, c+] = 1. The new boson operators c and c+ describe
small fluctuations around

√
I , and we can do an expansion in

powers of c and c+. Conserving boson operators up to the first
degree only, we obtain

I− ≈ I + 1
2

√
I (c+ − c),

I+ ≈ I − 1
2

√
I (c+ − c), (29)

Iz ≈
√

I (c+ + c),

or

I1 ≈ I, I2 ≈ ı√
2

(c+ − c). (30)

It is seen from approximations (29) and (30) that the matrix
elements of I2 and Iz are small and the total angular momentum
is directed along axis 1.

As follows from Eq. (25), in the limit I � K ′ the matrix
elements of the Hamiltonian ĥ coincide with the matrix
elements of the following operator:

−h̄2I

2� (ĵ+ + ĵ−) ≡ −h̄2I

� ĵ1. (31)

Since the total angular momentum 	I is directed along axis 1 we
can write in Eq. (31), instead of I ĵ1, the scalar product Î · ĵ . It
demonstrates that our Hamiltonian is time-reversal invariant.
The corresponding Hamiltonian matrix is diagonalized by the
following unitary transformation exp(ı π

2 ĵ2), which plays the
role of the operator exp(T̂ ) from Eq. (12). The transformed
Coriolis part of the Hamiltonian takes the form

exp

(
ı
π

2
ĵ2

) (
−h̄2I

� ĵ1

)
exp

(
− ı

π

2
ĵ2

)
= −h̄2I

� ĵ3, (32)

and the eigenvalue of (ĥ + Ĥrot) is equal to

h̄2

2�(β30)
I (I + 1) − h̄2

�(β30)
IK + h̄2

2�(β30)
K2

� h̄2

2�(β30)
(I − K)2, (33)

where K is the projection of the intrinsic momentum on the
direction of the total momentum. The term quadratic in K on
the left-hand side of Eq. (33) appears because of the presence
of the centrifugal term in Ĥp. In fact, we obtain an alignment
[15–18] of the angular momentum of the intrinsic excitation
along the axis perpendicular to the symmetry axis, i.e., along
the axis of the collective rotation. As is seen from Eq. (33),
the height of the barrier separating the two octupole minima
decreases with the appearance of the nonzero K for larger
values of I. If K is large enough, the wave function φ(β30)
will take again a nonzero value at β30 = 0, recreating nonzero
parity splitting.

Thus, because of the alignment of the particle momentum,
the value of the collective rotational momentum needed to
obtain the same total angular momentum I is decreased by
the value of K. If the aligned single-particle configuration has
even parity, then the parity splitting �E(I ) does not change the
sign; however, the interval of the values of I for which �E(I ) is
not equal to zero becomes larger. If the aligned single-particle
configuration has odd parity, then the collective wave function
φ(β30) in Eq. (7) should be odd for even I and even for odd
I with respect to the transformation β30 → −β30 in order to
get a state with the total parity equal to (−1)I . As a result
the negative-parity states will be shifted down by the parity
splitting in contrast to the situation at low I.

The assumption that I � K ′ was necessary only to obtain
the results analytically. The key point is the alignment of the
intrinsic excitation. This can happens for a less-rigid relation
between I and K ′ than that used to derive Eq. (25).

Two effects, however, can decrease the magnitude of the
parity splitting in this region of values of I. First, the aligned
configuration has components with different intrinsic parities
because of presence of mirror asymmetric deformation, and
|〈π̂〉| < 1, where 〈π̂〉 is the average parity. This effect
decreases the parity splitting since we obtain the in-band
splitting by multiplying the parity splitting of the states based
on the quasiparticle vacuum by the factor 〈π̂〉 [9,19,20]. Thus,

�E(I ) = �E(0) exp

[
−I (I + 1)

a

]
〈π̂〉I . (34)

Second, it is possible that for these values of I the collective
rotational momentum is nevertheless larger than zero, in spite
of the alignment of the intrinsic momentum. Therefore the
height of the barrier separating the two minima will be larger
than near the ground state and the value of the parity splitting
after sign inversion will be smaller than that at I = 0, in
qualitative agreement with the experimental data. This can
explain the inversion of the sign of the parity splitting that has
been observed in light Ra and Th isotopes [1].

The alignment of the intrinsic octupole boson angular
momentum has been already considered in Refs. [21,22]. In
Refs. [23,24] it was suggested that with the increase of the
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FIG. 1. The parity splitting �E(I, K) as a function of I calcu-
lated with the expression �E(I,K) = �E(0) exp[− (I−K)2

a
], with

�E(0) = 1 MeV, a = 20, and K = 0 for I < 8, K = 1 for I =
8, K = 3 for I = 9, and K =5 for I � 10.

rotation the octupole vibrational angular momentum tends to
align, giving rise to distortions in the spectra of the alternating
parity bands. Calculations of the alignment of the vibrational
and quasiparticle angular momenta within the framework of
the microscopic approach have been performed in Ref. [18]
and for the octupole vibrational momentum in Ref. [25],
however, for nuclei in which parity splitting inversion was not
observed. To analyze the possibility of the intrinsic angular-
momentum alignment a dependence of the moments of inertia
on the rotational frequency was considered in Ref. [26]. For
220Ra and 222Th, in which the parity-splitting inversion has
been observed, it was found that the dynamical moment of
inertia shows a smooth upbending that can be interpreted as
a reflection of the band crossing. For 222Th an alignment of
the angular-momentum of the intrinsic excitations has been
calculated in Ref. [27].

For an illustration of the effect considered above, let us ap-
ply formula (11) to the description of the angular-momentum
dependence of the parity splitting-replacing I (I + 1) with
(I − K)2 in Eq. (11) in agreement with approximation (33).
We put �E(0) = 1 MeV, a = 20, and, rather arbitrarily only
for the aim of illustration, we set K = 0 for I < 8,K = 1 for
I = 8,K = 3 for I = 9, and K = 5 for I � 10. The results
are shown in Fig. 1. It is seen that, in agreement with the
discussion above, parity splitting changes the sign at I = 8.
The absolute value of the inverted parity splitting at I = 10,
where the deviation from zero takes its maximum value, is
about four times smaller than the value at I = 0.

Consider also the quantity Stg(I ):

Stg(I ) = 1
16 [6�F (I ) − 4�F (I − 1) − 4�F (I + 1)

+ �F (I + 2) + �F (I − 2)], (35)

where

�F (I ) = E(I + 1) − E(I ) (36)

was introduced in Ref. [7] to characterize the beat patterns
of the staggering. The results of calculations of Stg(I) for the

FIG. 2. Odd-even staggering patterns as functions of I obtained
with expression (35) with the same parameters as in Fig. 1.

same choice of the parameters as in Fig. 1 are shown in Fig. 2.
It is seen that for I > 8 the oscilations in Stg(I) are shifted in
phase compared with the situation at low I: The maxima are
located at even I, whereas at low I they are located at odd I.

After the first inversion of the sign of the parity splitting that
is due to the alignment of the negative-parity single-particle
configuration, a subsequent alignment at even higher values of
I of a positive-parity particle excitation will invert the sign of
the parity splitting again.

To see a relative role of the 〈π̂〉 factor and of the alignment
of the angular momentum of the intrinsic excitations, we
performed calculations for 220Ra in which the observed effect
of the parity-splitting inversion is mostly pronounced. We
took β2 = 0.11, β3 = 0.09, and β4 = 0.08. The values of
β2 and β3 are close to those used in the literature. The
value of β4 is somewhat larger. However, the results of
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FIG. 3. Comparison of the experimental (curve with open tri-
angles) and calculated (curve with filled dots) values of the parity
splitting for 220Ra. The experimental data are taken from Ref. [12].
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FIG. 4. Odd-even staggering patterns as functions of I obtained
with the experimental data for 220Ra taken from [12] and with the
results of calculations of parity splitting shown in Fig. 3.

calculations are sensitive to this value. The ordering of the
spherical single-particle states and their relative separations
were taken in agreement with the single-particle scheme shown
in Ref. [28]. The pairing was taken into account in the BCS
approximation with �p = 0.722 MeV and �n = 0.565 MeV
[29]. Thus, the one-body Hamiltonian, including the deformed
single-particle field and Coriolis interaction and pairing in the
BCS approximation, has been diagonalized.

Calculations have shown that the projection of the intrinsic
angular momentum on the axis of the collective rotation
increases smoothly with I up to I = 10. At I = 10 the ground-
state band is crossed by the two-quasiparticle band with
negative 〈π̂〉. Above I = 10 the total angular momentum is
practically exhausted by the aligned intrinsic momentum. The
value of 〈π̂〉, which is negative for I � 10, has a minimum at
I = 12 and then increases again, smoothly approaching zero.
The two-quasiparticle state aligned at I = 10 is composed
of the neutron quasiparticles, in agreement with the results
of Ref. [26]. The results of these calculations of the parity
splitting are compared with the experimental data in Figs. 3
and 4. It is seen in Fig. 3 that the first inversion of the
sign of the parity splitting at I = 10 is reproduced by the
calculations. Unfortunately, our calculations do not describe
the second parity splitting inversion at I = 23. A calculation
with a decreasing pairing with I does not change the conclusion
qualitatively. In Fig. 4 it is demonstrated that the theoretical
energy levels accurately reproduce the experimental staggering
pattern in 220Ra up to spin I = 22.

The above consideration suggests that the complicated odd-
even staggering structure of alternating parity bands can be
interpreted as the result of two simultaneously manifesting
dynamical effects in the nucleus. The one is the penetration
of the barrier separating two minima of the potential energy

having different signs of the mirror asymmetric deformation,
which is described by Eq. (11), and the other is the high-order
effect in the angular momentum of the rotating system that
is a reason for an alignment of the angular momentum of
the intrinsic excitation given by approximation Eq. (33). In the
low angular-momentum region of the spectrum, the staggering
effect is only because of the penetration of barrier, while in the
higher-spin region the beat staggering structure of the band is
determined additionally by higher orders of the Coriolis effect.
An effect of the mixing of the intrinsic states having different
parities because of the mirror asymmetric deformation is very
important.

IV. SUMMARY

In conclusion, we have suggested an explanation of the sign
inversion of parity splitting in the ground state, alternating
parity bands at high values of the angular momentum. At low
I the parity splitting shifts the positive-parity states down.
This is due to a penetration of the barrier that separates
two physically equivalent, symmetrically located minima in
the nuclear collective potential, depending on a reflection
asymmetric deformation. With an increase in I, the height
of the barrier increases also and the barrier-penetration
probability decreases. Thus the parity splitting is going to
zero. However, at sufficiently high values of I, the Coriolis
interaction becomes important, producing an alignment in
the angular-momentum of the intrinsic excitation along the
axis of the collective rotation. Because of this alignment the
same value of the total angular momentum can be obtained
with a smaller value of the collective rotational momentum.
A decrease of the collective rotational momentum leads to a
decrease in the barrier height. Then the barrier-penetration
probability increases, thus recreating a parity, splitting. If
the aligned single-particle configuration has an even average
parity, then the parity splitting does not change the sign;
however, the interval of the values of I for which �E(I ) is
not equal to zero becomes larger. If the aligned single-particle
configuration has an odd average parity then for even I the
collective wave function φ(β30) in Eq. (7) should be odd with
respect to the transformation β30 → −β30 and vice versa in
order to get the total parity for the state equal to (−1)I . As a
result, the negative-parity states will be shifted down by the
parity splitting, in contrast to the situation at low I.
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Leander, P. Möller, and E. Ruchowska, Nucl. Phys. A429, 269
(1984).
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