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Ground state of heavy closed shell nuclei: An effective interaction
and local density approximation approach
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We study the ground-state properties of heavy closed-shell nuclei such as 48Ca,90 Zr,120 Sn, and 208Pb as well
as 4He, 16O, and 40Ca. Similar to our recent work, the local density approximation in the harmonic oscillator
basis and different channel-dependent effective two-body interactions that are generated through the lowest-order
constrained variational calculation for asymmetric nuclear matter with the Reid68Day, Reid68, and �-Reid68
potentials are used. Unlike nuclear matter, it is shown that Reid68 potential gives ground-state binding energies
closer to the experimental data with respect to the �-Reid68 potential and there is not much difference between
Reid68 and Reid68Day potentials, which have been define up to J = 5. The different channel-dependent effective
interactions (J > 2) and one- and two-body density distribution functions are discussed and they are compared
with the results of other approaches such as the Brueckner local density approximation, correlated basis function,
variational fermion hypernetted chain, variational cluster Monte Carlo, Brueckner-Hartree-Fock, fermionic
molecular dynamics, and coupled cluster. Finally it is concluded that the three-body force (isobar degrees
of freedom) is very important for light (heavy) nuclei because in the most of recent many-body calculations, it
is observed that the available two-body nuclear forces usually underbind light nuclei and overbind heavy nuclei
and nuclear matter.
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I. INTRODUCTION

Recently, in the spirit of local density G matrix, we gen-
erated the channel-dependent effective two-body interactions
from our lowest-order constrained variational (LOCV) nuclear
matter calculation at different densities. We then converted
this dependence to a local one by working in the harmonic
oscillator basis and the properties of light closed-shell nuclei
were calculated. The result was encouraging, with respect
to both the available experimental data and different model-
dependent theoretical predictions [1].

At present, several nucleon-nucleon potentials are available
and most of them reasonably fit the deuteron and N -N
scattering phase-shift data. But for many-body theorists during
the past five decades, handling such a complicated potential in
the finite nuclear systems have been always a difficult task. As
a result, usually different approximations and methods have
been adopted to overcome this difficulty [2].

The situation is promising for few-body nucleon systems,
i.e., A = 3–7. The Faddeev, Green function Monte Carlo,
and correlated hyperspherical harmonics expansion (CHHE)
[3] theories were developed and satisfactory results were
reproduced. Conversely, 7 � A � 16 light nuclei are described
by the variational or cluster Monte Carlo (VMC and CMC
respectively) technique by using the Jastrow variational wave
function [4]. The VMC or CMC formalism is very involved and
its accuracy is uncertain [1,4]. However, there is little hope for
these methods to be applicable to heavy nuclei such as 208Pb,
at the very least because of the enormous computation time.

There is no finite size problem for infinite nucleonic
matter, but one needs a reliable many-body technique and
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a true nucleon-nucleon potential to obtain reliable results.
It was reported in several of our works (using the LOCV
method) [5] that the many-body calculations on nuclear matter
with phenomenological potentials such as Reid68 [6] give
substantially too much binding and large saturation density.
Over the past three decades, the situation has been the same
for other techniques and potentials [7,8]. But the inclusion of
three-body force and � isobar degrees of freedom (�-Reid68)
[1,6] have improved the behavior of the Coester line to the
right direction [2].

Since then, a few number of sophisticated interactions such
as the UV14 [8], the AV14 [9] and the new Argonne AV18 [10] as
well as Reid93 [11] potentials have been generated and used.
These potentials fit the N -N scattering data very well [11]. But
they still overbind nuclear matter at large saturation densities.

A very good agreement has been found between the LOCV
technique [12,13] and the results of more sophisticated meth-
ods such as variational fermion hypernetted chain (FHNC)
calculations [12,13] at both zero and finite temperatures. But in
most of these works the many-body calculations with the new
potentials, such as the old Reid68 potential, overbind nuclear
matter with a larger density than that predicted empirically.

The LOCV method was also applied to finite nuclei [14]
for which there was some difficulty in defining the long-range
behavior of the correlation functions and the resulting binding
energy calculations for the light nuclei were not satisfactory
[1,14,15].

With respect to the above arguments in this article we
intend to extend our recent work [1] to heavier nuclei, such as
48Ca,90 Zr,120 Sn, and 208Pb, in the harmonic oscillator basis
by using the local density approximation and the channel-
dependent effective two-body interactions that are generated
through our LOCV asymmetric nuclear matter code with the
Reid68, �-Reid68, and Reid68Day [5,6] potentials. For the
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FIG. 1. The channel-dependent effective two-body interactions
(J > 2) with Reid68Day potential at nuclear matter saturation
density, ρ = 0.17 fm−3, versus r12 (fm) for uncoupled channels.

latter case, we also reexamine the properties of 4He, 16O,
and 40Ca [1]. Then we can compare present results with
those of Brueckner local density approximation (LDA) [16],
coupled cluster (CCM) [17], correlated basis function (CBF-
FHNC) [18–24], VMC or CMC [4], Brueckner-Hartree-Fock
(BHF) [25,26] and fermionic molecular dynamics (FMD)
[27] calculations that have been presented recently and most
of them need enormous computational time on super- or
main-frame computers. A comparison is also made with the
present available data [28].

We prefer to focus on Reid-type potentials that are state-
dependent and do not use the recent phenomenological poten-
tials such as AV18 [10], because in our previous calculations we
have found that these potentials do not predict the empirical
saturation properties of nuclear matter [13] correctly and they
are not much different from the old Reid68 potential. This point
has been also reported by other groups [12,18–27]. However,
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FIG. 2. As in the legend to Fig. 1 but for the coupled channels.

our recent works on nuclear matter [29] show that the new
Reid potential, Reid93 [11,30], overbinds nuclear matter at
much higher saturation densities than Reid68 and the results
are very similar to those of Reid68Day. However, the Reid68
and Reid93 potentials give the same saturation properties for
nuclear matter up to J = 2 channels [29]. But the present
available calculations on finite nuclei show that the nucleus
properties, unlike nuclear matter, are not very sensitive to
the choice of potentials [1,18–27] (especially for the light
nuclei). One reason could be the low density properties of
nuclei with respect to the nuclear matter, i.e., the long range
parts of different nucleon-nucleon potentials are roughly the
same and there are always a balance between the central and
tensor components of the N -N forces.

The article is as follows: Because for heavy nuclei we
have different numbers of protons (Z) and neutrons (N), a
short description of the lowest order constrained variational
method for asymmetric nuclear matter and the calculation of
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FIG. 3. The one-body density distributions for different heavy closed shell nuclei at their saturation energies with Reid68 potential. Full
(dotted) curves are the corresponding proton (neutron) density.

channel-dependent effective two-body interactions are given in
the appendix. Section II is devoted to the evaluation of matrix
elements and the binding energies of different closed-shell
nuclei by using the local density approximation. Finally, in
Sec. III we present the results and discussions.

II. THE BINDING ENERGY OF HEAVY CLOSED-SHELL
N �= Z NUCLEUS

Because the finite nuclei are localized, we no longer have
the translation invariance that characterized the asymmetric
nuclear matter calculations. Regarding our recent calculation
on light closed-shell nuclei, we simply assume that the single-
particle states, φi , may be approximated by the harmonic
oscillator wave functions, leaving the oscillator energy h̄ω as a
single variational parameter to fix the root-mean-square (rms)
radius of the specific nucleus. Here, we assume the following
configurations for different closed-shell nuclei:

4He: (0s)4

16O: (4He) + (0p)12

40Ca: (16O) + (0d)20(1s)4

48Ca: (40Ca) + (0f7/2)8
n

90Zr: (40Ca) + (0f )28(1p)12(0g9/2)10
n

120Sn: (40Ca) + (0f )28(1p)12(0g9/2)20

× (0g7/2)8
n(1d)10

n (2s)2
n

208Pb: (40Ca) + (0f )28(1p)12(0g)36(1d)20(2s)4

× (0h11/2)24(0h9/2)10
n (1f )14

n (2p)6
n(0i13/2)14

n . (1)

The origin of our coordinate is fixed at the center of mass of
the nucleus,

∑A
i=1 ri = 0. Then we should consider only the

intrinsic Hamiltonian,

H0 = H − P2

2M , (2)

where P = ∑
i pi and M = Am are the nucleus total momen-

tum and mass, respectively.
Now, in the harmonic oscillator basis we should calculate

the expectation value of H0,

EB.E.
Total = 〈H0〉 =

∑
i

〈i, h̄ω| p2

2m
|i, h̄ω〉

+ 1

2

∑
ij

〈ij, h̄ω|V(12)|ij, h̄ω〉a − T A
C.M., (3)

where T A
C.M. = 3

4h̄ω and |i, h̄ω〉 stands for |ni, li , si , τi, mτi
;

h̄ω〉, the harmonic oscillator wave functions, angular, spin,

064306-3



M. MODARRES AND N. RASEKHINEJAD PHYSICAL REVIEW C 72, 064306 (2005)

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

(r
1
)

(f
m

-3
)

r1 (fm) r1 (fm)

ρ
(r

1
)

(f
m

-3
)

ρ

48Ca
90

Zr

120
Sn

208
Pb

FIG. 4. The one-body density distributions (proton) for different heavy closed-shell nuclei at experimental rms charge radius. The dash
curves are the experimental charge distributions [28].

isospin, and isospin projection parts of single-particle states,
respectively. As pointed out before, h̄ω or γ = √

mω/h̄ is the
harmonic oscillator parameter and is fixed variationally. The
matrix element of one-body kinetic energy per nucleon (first
term) has the familiar form:

T1 = 1

2A

A∑
i=1

(
2ni + li + 3

2

)
h̄ω, (4)

whereas the second term can be written as the sum of two-body
kinetic and potential energies per nucleon (see the appendix
and Refs. [1,29]):

E2 = T2 + V2 = 1

2A

∑
ij

〈ij, h̄ω|V(12)|ij, h̄ω〉a

= 1

2A

∑
ij

〈ij, h̄ω|

− h̄2

2m

[
F (12),

[∇2
12, F (12)

]]|ij, h̄ω〉a

+ 1

2A

∑
ij

〈ij, h̄ω|F (12)V (12)F (12)

× |ij, h̄ω〉a. (5)

Then by using Eqs. (A5)–(A7) we can write our effective
two-body interactions as follows:

Vk,l
eff (r12, R12;R) =

∑
α

Vk,l
α

(√
2r, ρ

(
R√

2
;R

))
|α〉〈α| (6)

with

r = 1√
2

(r1 − r2) = 1√
2

r12, R = 1√
2

(r1 + r2) =
√

2R12.

(7)

Next for the two-body energy, we have assumed α =
lJST MT , [j ] = 2j + 1, and so on, and first and second curly
brackets are the 6-j and 9-j symbols, respectively, in

E2 = 1

2A

∑
1,2,k,i,α′

[j1][j2][j ][λ]2[S][J ]
∣∣〈mτ1mτ2

∣∣T ,MT

〉∣∣2

× (1 − (−1)l+S+T )

{
L l λ

S j J

}2



l1
1
2 j1

l2
1
2 j2

λ S j




2

×〈n1l1, n2l2, λ|nl,NL, λ〉2〈nlJST MT ,NL|
×Vk,i

α

(√
2r,ρ

(
R√

2
;R

))
{|α′〉〈α′|} | nlJST MT ,NL〉,

(8)
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TABLE I. The variational binding energies (mega-electron-volts) per nucleon of closed shell nuclei (4He,16 O, and 40Ca) by using the
channel dependent effective two-body interactions base on the asymmetric nuclear matter LOCV calculation with Reid68Day, Reid68, and
�-Reid68 interactions. See the text for explanation about different columns.

Nucleus Potential γ T T2 V2 BE Vc BEc rrms BEexp. r
exp.(ch)
rms

4He Reid68Day 0.69 10.97 8.78 −23.15 −3.40 0.20 −3.21 1.77 −7.08 1.63
Reid68 0.69 11.10 9.85 −25.34 −4.38 0.20 −4.19 1.77

�-Reid68 0.64 9.55 13.99 −25.87 −2.32 0.18 −2.14 1.91

16O Reid68Day 0.63 17.79 13.99 −37.21 −5.43 0.94 −4.49 2.38 −7.98 2.65
Reid68 0.61 16.64 14.07 −36.89 −6.18 0.90 −5.28 2.46

�-Reid68 0.57 14.52 20.07 −37.81 −3.21 0.83 −2.38 2.63

40Ca Reid68Day 0.59 21.48 18.17 −48.70 −9.05 2.08 −6.97 2.94 −8.55 3.39
Reid68 0.57 19.96 17.95 −47.11 −9.20 1.91 −7.30 3.04

�-Reid68 0.54 17.91 26.49 −49.85 −5.45 1.91 −3.69 3.21

where we consider the local density approximation [1,14–16]
and we replace

1
2 [ρ(|r1|;R1) + ρ(|r2|;R2)] (9)

with the following (note that the local density approximation
is especially valid when we have short range forces):

ρ

(∣∣∣∣ R√
2

∣∣∣∣;R
)

= ρ

( |r1 + r2|
2

;R
)

,R(|R|) = ρp(|R|)
ρn(|R|) . (10)

The 〈n1l1, n2l2, λ | nl,NL, λ〉 are the familiar Brody-
Moshinsky brackets [31]. The uncorrelated one-body density
is defined as following in terms of the harmonic oscillator wave
functions for each nucleus,

ρ(|rj|;Rj) = ρp(|rj|) + ρn(|rj|), Rj(|rj|) = ρp(|rj|)
ρn(|rj|) , (11)

where

ρp(|rj|) =
Z∑
i

|〈rj|i, h̄ω〉|2, ρn(|rj|) =
N∑
i

|〈rj|i, h̄ω〉|2.
(12)

We can also define the two-body correlated distribution
function [32] for the above nuclei as follows [1]:

ρ
p

2 (r1, r2;R) = ρ
p

2 (r12, R12;R(|R12|))

=
[

Z∑
i

|〈r1|i, h̄ω〉|2
Z∑
j

|〈r2|j, h̄ω〉|2

−
∣∣∣∣

Z∑
i

〈r1|i, h̄ω〉〈i, h̄ω, |r2〉
∣∣∣∣
2
]

×F2(| r12 |, ρ(|R12|;R(|R12|))) (13)

with correlated one-body density

ρ̄p(r1) = 1

Z − 1

∫
dr2ρ

p

2 (r1, r2;R) (14)

and correlated relative two-body density

ρ̄
p

2 (r12) = 1

Z

∫
dR12ρ

p

2 (r1, r2;R) (15)

distributions. Obviously we should have the normalization
integral,

1

Z(Z − 1)

∫
ρ

p

2 (r1, r2;R)dr1dr2 = 1. (16)

Note that the same equations, i.e., Eqs. (13)–(16), are valid for
the neutrons as well. Now, we can easily calculate the heavy
nucleus binding energy per nucleon as follows:

EB.E.
A = 1

A
EB.E.

Total = [T1 + T2 + V2 − TC.M.]. (17)

III. RESULTS AND DISCUSSION

The LOCV effective two-body interactions for the new
channels, 3 � J � 5, by using Reid68Day potential are given in
Figs. 1 (uncoupled) and 2 (coupled) [see Eqs. (A5) and (A6)]
at nuclear matter saturation density ρ = 0.17 fm−3. The J � 2
channels are not much different from the LOCV calculations
with Reid68 potential and they have been discussed in details
in Ref. [1]. The two-body kinetic parts of effective interactions
for the new channels are very small with respect to their
potential parts. Conversely, their interaction ranges are much
shorter than J � 2 channels and they are either attractive or
repulsive. As pointed out in Ref. [29] and as we show later, only
the J = 3 channels have noticeable repulsive contributions to
the binding energies. The repulsive and attractive behaviors of
effective interactions are mainly because the definition form of
the Reid68Day potential, because their two-body kinetic parts
are roughly zero.

Table I shows the variational binding energies of light
closed-shell nuclei, 4He, 16O, and 40Ca, with and without
Coulmb energies by using Reid68Day, Reid68, and �-Reid68
potentials. For each nucleus the oscillator parameter, the
one-body (T = T1 − TC.M.) and two-body kinetic energies,
the two-body potential energy, the calculated rms radius,
the experimental binding energy, and the rms charge radius
are also given for comparison. For the J > 5 we have used
the averaged effective interactions defined in Ref. [1]. The
result of our recent calculation with Reid68 and �-Reid68
potentials are also given in this table for comparison. There
are few differences between the results of calculations with the
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TABLE II. The same as Table I but for heavy closed-shell nuclei, i.e., 48Ca,90 Zr,120 Sn, and 208Pb.

Nucleus Potential γ T T2 V2 BE Vc BEc rn
rms rp

rms BEexp. r
exp.(ch)
rms

48Ca Reid68Day 0.60 24.14 19.39 −52.34 −8.81 1.77 −7.04 3.09 2.89 −8.67 3.53
Reid68 0.57 21.68 18.64 −49.30 −8.97 1.67 −7.30 3.25 3.04

�-Reid68 0.54 19.46 27.60 −52.09 −5.04 1.47 −3.57 3.43 3.21

90Zr Reid68Day 0.57 26.51 23.02 −61.75 −12.22 3.32 −8.90 3.55 3.40 −8.71 4.27
Reid68 0.53 22.88 20.84 −55.35 −11.64 3.06 −8.58 3.82 3.65

�-Reid68 0.51 21.18 32.05 −60.49 −7.25 2.73 −4.53 3.97 3.80

120Sn Reid68Day 0.56 28.09 24.73 −65.91 −13.09 3.67 −9.42 3.79 3.62 −8.50 4.65
Reid68 0.52 24.22 22.42 −59.07 −12.43 3.39 −9.04 4.08 3.89

�-Reid68 0.49 21.51 32.95 −62.18 −7.72 3.03 −4.69 4.32 4.13

208Pb Reid68Day 0.52 28.68 25.05 −68.33 −14.60 4.86 −9.74 4.51 4.21 −7.87 5.52
Reid68 0.49 25.95 24.10 −63.84 −13.78 4.57 −9.22 4.79 4.47

�-Reid68 0.46 22.87 35.30 −66.85 −8.68 4.10 −4.58 5.10 4.76

Reid68Day and Reid68 potentials. The Reid68Day potential
gives roughly 5% less (50% more, which is mainly because
of the two-body kinetic energy) binding than that of Reid68
(�-Reid68). We obtain a reasonable rms radius with respect to
the experimental data for the whole range of light closed-shell
nuclei. The binding energies are close to their corresponding
experimental values as the nuclear mass increases, especially
in case of the Reid68 potential. The one- and two-body kinetic
energies have roughly the same size and the two-body potential
energies are also approximately twice as large as each of them
(in addition to the �-Reid68 potential).

The variational binding energies of heavy closed-shell
nuclei, 48Ca,90 Zr,120Sn, and 208Pb, with the Reid68Day,
Reid68, and �-Reid68 potentials are given in Table II. We
obtain much better agreement between the calculated and
experimental binding energy and rms radius with respect to
that of light closed-shell nuclei, i.e., we overbind 120Sn and
208Pb and under bind light nuclei with the Reid68Day and
Reid68 potentials. In the latter case the three-body force should
be included to get a good agreement with the experimental
result. Other groups obtain the same result. We obtain a result
for medium nuclei, i.e., 40Ca,48Ca, and 90Zr, that is very
close to the experimental results. So we can conclude that for
medium-heavy nuclei the three-body force and isobar degrees
of freedom cancel each other.

Table III shows the channel breakdown of two-body kinetic,
potential, and Coulmb energies for 90Zr with Reid68 and
Reid68Day potentials. For J > 3 in Reid68 potential and
for J > 5 in Reid68Day potential we have used the averaged
effective two-body interactions discussed in Ref. [1]. Only
in case of Reid68Day the potential energy have reasonable
attractive contribution for 3 � J � 5. Which is mainly comes
from J = 3 channels as have been pointed out in Ref. [29] and
it is demonstrated in this table.

In Table IV we have compared our calculated binding
energy and rms radius for light and heavy closed-shell nuclei
with different approaches, namely local density approximation
(LDA) of Negele [16], coupled cluster (CCM-FBHF3) of
Kümmel et al. [17], cluster or variational Monte Carlo
(CMC,VMC) of Pieper et al. [4], CBF-FHNC of Fabrocini
et al. [18,19] and Arias de Saavedra et al. [22,23] (with
both harmonic oscillator and Woods-Saxon basis), Brueckner-
Hartee-Fock (BHF) of Coraggio et al. [25,26] with N3LO
and AV18 interactions and Fermionic molecular dynamics
(FMD) of Roth et al. [27]. The LDA and CCM calculation
are with Gammel-Thaler and Reid68 potential [6,16], whereas
the other methods have used UV14 or AV18 plus three-body
interaction (TBI). We have not included TBI in our calculation.
Its contribution is a binding of ∼1 MeV. So by comparison we
can conclude that we obtain a reasonable result, especially

TABLE III. The channel breakdown two-body kinetic, potential, and Coulmb energies for 90Zr
with Reid68Day and Reid68 potentials.

J Reid68Day Reid68

T2 V2 Vc T2 V2 Vc

0 7.7145 −25.9505 0.6932 6.9472 −23.8099 0.6426
1 15.1931 −19.6060 0.5341 13.6497 −20.0020 0.4942
2 0.1091 −13.4839 1.4073 0.1772 −10.5649 1.2994
3 0.0021 −2.3934 0.2062 0.0508 −0.6542 0.1889
4–9 0.0006 −0.3149 0.4825 0.0106 −0.3210 0.4379

0–9 23.02 −61.75 3.32 20.84 −55.35 3.06
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TABLE IV. The comparison of our calculated ground-state binding energies per nucleon (mega-electron-volts) and rms radius (fm) of
4He,16 O,40 Ca,48 Ca,90 Zr, and 208Pb nuclei for three N -N potentials, �-Reid68 (LOCV-�R68), Reid68Day (LOCV-R68D), and Reid68
(LOCV-R68) with different models and experimental data (Exp.).

Model 4He 16O 40Ca 48Ca 90Zr 208Pb

BE 〈r〉 BE 〈r〉 BE 〈r〉 BE 〈r〉 BE 〈r〉 BE 〈r〉
LDA [16] — — −6.75 2.71 −7.49 3.41 −7.48 3.45 −7.85 4.18 −7.53 5.37
FBHF3 [17] −5.75 1.63 −5.36 2.57 −5.64 3.17 — — — — — —
CMC [4] −7.6 — −7.7 — — — — — — — — —
FHNC [22] — — −9.26 — −10.62 — −9.66 — — — −9.62 —
FHNC [18] — — −5.15 2.32 −7.87 2.87 — — — — — —
FHNC [19] — — −5.11 2.93 −6.50 3.66 — — — — — —
FHNC-HO [23] — — −7.07 2.43 −9.00 3.08 −7.57 3.00 −10.07 3.57 −10.24 4.67
FHNC-WS [23] — — −6.29 2.69 −8.12 3.29 −6.79 3.35 −7.30 4.09 −8.03 5.52
BHF [25] — — −7.52 2.65 −9.19 3.44 — — — — — —
BHF [26] −6.85 1.69 −8.26 2.59 −9.53 3.22 — — — — — —
FMD [27] −6.99 1.51 −7.40 2.25 −8.19 2.89 −7.87 2.93 — — — —
LOCV-�R68 −2.14 1.91 −2.38 2.63 −3.69 3.21 −3.57 3.21 −4.53 3.80 −4.58 4.76
LOCV-R68D −3.21 1.77 −4.49 2.38 −6.97 2.94 −7.04 2.89 −8.90 3.40 −9.74 4.21
LOCV-R68 −4.19 1.77 −5.28 2.46 −7.30 3.04 −7.30 3.04 −8.58 3.65 −9.22 4.47
Exp. −7.08 1.63 −7.98 2.65 −8.55 3.39 −8.67 3.53 −8.71 4.27 −7.87 5.52

for A � 40 (medium and heavy nuclei) with respect to both
experimental data and others theoretical calculations. It is
worth saying that for each harmonic oscillator parameter
the calculation for 208Pb takes about 6 hr on a Pentium IV
2400-MHz personal computer. So, as we pointed out in
Ref. [1], this can be, for example, compared with the CMC
calculation for 16O, estimated to take at least 10 hr of computer
time (Cray-2 supercomputer).

By using Eqs. (13)–(16), in the Fig. 3, the one-body
densities for proton (neutron) are presented for the heavy
closed-shell nuclei, i.e., 48Ca,90 Zr,120Sn, and 208Pb by full
(dotted) curves. They have been calculated at their saturation
energies with Reid68 potential. At these points the rms radius
of neutron and proton are given in Table II for comparison.
Obviously, the neutron rms is much larger than that of proton
and the differences are increased as we go to heavier nuclei.
Figure 4 shows the one-body proton distributions of above
heavy closed-shell nuclei at their experimental rms charge
radius by using only pure harmonic oscillator wave functions.
The dash curves are the experimental charge distributions for
48Ca,90Zr, and 208Pb [28]. In general we get smaller charge
rms radius with respect to the experimental predictions. The
calculated proton distributions for 48Ca,90Zr, and 208Pb are in
good agreement with the data [28] beyond 3 fm. So, as usual,
we can not get results close to the experimental data even
by including short-range correlations. In Ref. [1] we showed
that the effect of correlation is small and decreases as the
nuclear mass is increased. We found that for heavy nuclei
this correlation is much smaller. The comparison of one-body
correlated proton distributions, by using the 3S1 correlation
function (that of Reid68) that has the largest correlation
range with respect to other channels (dotted curves), and that
of uncorrelated (full curves) ones and their differences for
heavy closed shell nuclei are plotted in Figs. 5(a) and (b),
respectively. It is seen that even with 3S1 correlation function,
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FIG. 5. The proton one-body density distributions without (with)
two-body correlation functions, full (dotted) curves. (b) The differ-
ence between the correlated and pure harmonic oscillator proton
one-body density distributions at our calculated saturation binding
energies.

the short-range correlations have very small effect at short dis-
tances and the effect becomes negligible as we go to the larger
distances and heavier nuclei (note that the electromagnetic
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FIG. 6. The relative two-body density distributions without (with)
two-body correlation functions, full (dotted) curves. The dash curve
is the one with 3S1 correlation function in all of the channels.

form factor of nucleons have not been folded in our calculated
one-body densities).

Finally in Fig. 6 the correlated relative two-body neutron
and proton distributions (dotted curves) are given for 90Zr
nucleus at the saturation energy by using Reid68 potential (the
rms radius for each distribution is given in Table II). The full
curves are the uncorrelated ones. The dash curve has been
calculated by using the 3S1 correlation function in all of the
channels. As we pointed out before, the 3S1 correlation function
has the longest range with respect to other channel correlation
functions. So, the correlation affects only the distances less
than 3 fm and the largest shift we can have with respect to the
uncorrelated situation is the dash curve. We can conclude that
to describe the short-range part of one-body distribution one
should consider other effects such as the inclusion of finite
size effect and quark degrees of freedom for the nucleon to
get a reasonable agreement with the experimental data. It is
worth to point out here that the normalization integral, Eq. (16),
is satisfied in our calculation roughly with values of 0.9992,
0.9958, 0.9910, and 0.9909 for 48Ca,90 Zr,120Sn, and 208Pb (at
their saturation energies) for Reid68 potential, respectively.
Which is less than 1%.

In conclusion, we have calculated the binding energy of
light, medium, and heavy closed-shell nuclei by considering
the local density approximation and the effective interaction
that is generated through the reliable method such as LOCV
formalism with Reid68, Reid68Day, and �-Reid68 potentials.
One can argue that we do not know how accurate the
above approximations are; we imposed the truncation on the
configuration space. However, it is encouraging that our results
are in agreement with those of other methods in which more
complicated formalism and computer simulations have been

used. Our binding energy results with Reid68 and Reid68Day
potentials become closer to those of the experimental data as
we go to the heavier closed-shell nuclei. As in our previous
work [1] we found that the saturation curves are sensitive to
the γ , the harmonic oscillator parameter. This indicates that we
should take wider range of harmonic oscillator wave functions
as our single-particle states [including all of principle quantum
numbers pairs (n1, n2)].

We can improve our result by taking into the account the
three-body forces and using the present asymmetric nuclear
matter code with the new charge-dependent potentials to
look into charge-symmetric breaking in nuclei or including
the averaged three-body cluster effective interaction into
present channel-dependent effective two-body interactions to
investigate the three-body correlations in nuclei.

Finally, as already pointed out, we make the general remark
that most of present available many-body calculations on light,
medium, and heavy nuclei and nuclear matter show that the
three-body forces (isobar degrees of freedom, i.e., the effect of
mean field on the intermediate states etc.) are much important
for light nuclei (heavy nuclei and nuclear matter), because
in these works the two-body force that has been fitted to
reproduce the phase-shift data will underbind light nuclei and
overbind heavy nuclei and nuclear matter.
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APPENDIX: THE LOCV FORMALISM AND ISOSPIN
DEPENDENCE OF EFFECTIVE INTERACTIONS

A general discussion about the LOCV formalism can found
in Sec. II of our recent works [1,29]. The main differences
for asymmetric nuclear matter calculation come from the
boundary conditions and the definition of effective interactions
which are as follows:

In general, the N -� correlation function f (4)
α is required

to heal to zero, whereas the rest of the channel correlation
functions f (1)

α , f (2)
α , and f (3)

α heal to the iso-spin dependence
modified Pauli function f

MT

P (r) (i = p, n),

f
MT

P (r) =
{

1 − 1

2

[
l
(
ki
F r

)]2
}− 1

2

n-n and p-p channels (MT = −1, 1)

= 1 n-p channels (MT = 0) (A1)

with

l(x) = 3

2x
J1(x), (A2)
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where JJ (x) are the familiar spherical Bessel functions, ki
F are

the Fermi momenta that are fixed by the asymmetric nuclear
matter density ρ(R), ki

F = (3π2ρi)
1
3 ; , ρ(R) = ρp + ρn and

R = ρp

ρn
. Then, here we can rewrite the two-body cluster term

as,

E2 = ENN
c + ENN

T + EN�
T , (A3)

where (c and T stand for the central and tensor parts,
respectively and α = LSJT MT )

E j
i = 2

π4ρ(R)

∑
α

|〈mτ1mτ2 |T ,MT 〉|2(2J + 1)

× 1

2
{1 − (−1)L+S+T }

∫ ∞

0
r2drV i,j

α [r, ρ(R)]a(1)2

α (r)

(A4)

and (i = c, T and j = NN,N�)

Vc,NN
α [r, ρ(R)] = h̄2

m

[
f (1)′2

α + m

h̄2 V c
α f (1)2

α

]
(A5)

VT ,NN
α [r, ρ(R)] =

{
h̄2

m

[
f (2)′2

α + m

h̄2

(
V c

α + 2V T
α − V LS

α

)

× f (2)2

α

]
a(2)2

α (r) + h̄2

m

[
f (3)′2

α + m

h̄2

× (
V c

α − 4V T
α − 2V LS

α

)
f (3)2

α

]
a(3)2

α (r)

+
[
r−2

(
f (2)2

α − f (3)2

α + m

h̄2 V LS
α f (2)

α

× f (3)
α

)]
b2

α

}
a(1)−2

α (r) (A6)

VT ,N�
α [r, ρ(R)] =

{
h̄2

2µ

[
f (1)′2

α + µ

µ�

(
f (4)′2

α + 6

r2
f (4)2

α

)]

+ (m� − m)c2f (1)′2

α + 2f (1)
α f (4)

α V T ,�
α + V c

α f (1)2

α

}
(A7)

a(1)2

α [r, ρ(R)] = I
MT

J [r, ρ(R)] (A8)

a(2)2

α [r, ρ(R)] = (2J + 1)−1{(J + 1)IMT

J−1[r, ρ(R)]

+ JI
MT

J+1[r, ρ(R)]
}

(A9)

a(3)2

α [r, ρ(R)] = (2J + 1)−1
{
JI

MT

J−1[r, ρ(R)]

+ (J + 1)IMT

J+1[r, ρ(R)
}

(A10)

b2
α[r, ρ(R)] = 2J (J + 1)(2J + 1)−1

{
I

MT

J−1[r, ρ(R)]

− I
MT

J+1[r, ρ(R)]
}

(A11)

I
MT

J [r, ρ(R)] =
∫

dqJ 2
J (rq)PMT

(q) (A12)

PMT
(q) = 2

3
π

[
ki
F

3 + k
j

F

3 − 3

2

(
ki
F

2 + k
j

F

2
)
q

− 3

15

(
ki
F

2 − k
j

F

2
)2

q−1 + q3

]
(A13)

for 1
2 |ki

F − k
j

F | < q < |ki
F + k

j

F | and

PMT
(q) = 4

3
π min

(
ki
F

3
, k

j

F

3)
(A14)

for q < 1
2 |ki

F − k
j

F | and

PMT
(q) = 0 (A15)

for q > 1
2 |ki

F + k
j

F |. The potential functions V c
α , V T

α , . . . and
so on are given in Refs. [5,13]. Here our channel-dependent
effective two-body interactions have different forms in terms
of isospin projection MT (= −1, 1, 0) i.e., n-n, p-p, and n-p
and the proton to neutron densities ratio R.

As usual, we impose the normalization condition [2]:

ρ

∫
[G(r) − 1]dr = −1, (A16)

where G(r) is the two-body radial distribution function. This
condition also plays the role of smallness parameter in the
cluster expansion [2]. The channel break down of the above
normalization constraint [13] has the following form:

1

π4ρ(R)

∑
α,k

(2J + 1)
1

2
[1 − (−1)(L+S+T )]|〈mτ1mτ2 |T ,MT 〉|2

∫ ∞

0
r2dr

[
f (k)2

α (r) − f MT

p

2
(r)

]
a(k)2

α (r) = −1. (A17)

By minimizing the two-body energy E2 subject to the above
constraint, we find the following sets of uncoupled,

g(1)′′
α − [

a(1)′′
α

/
a(1)

α + mh̄−2
(
V c

α + λ
)]

g(1)
α = 0 (A18)

and coupled,

g(2)′′
α − [

a(2)′′
α

/
a(2)

α + mh̄−2(V c
α + 2V T

α − V LS
α + λ

)
+ r−2b2

α

/
a(2)2

α

]
g(2)

α + (
r−2 − 1

2mh̄−2V LS
α

)
× b2

α

{
a(2)

α a(3)
α

}−1
g(3)

α = 0 (A19)

g(3)′′
α − [

a(3)′′
α

/
a(3)

α + mh̄−2(V c
α − 4V T

α − 2V LS
α + λ

)
+ r−2b2

α

/
a(3)2

α

]
g(3)

α + (
r−2 − 1

2mh̄−2V LS
α

)
× b2

α

{
a(2)

α a(3)
α

}−1
g(2)

α = 0 (A20)

Euler-Lagrange differential equations, where

g(k)
α = a(k)

α f (k)
α . (A21)

The E-L differential equations for N -� channels are given
in Ref. [1]. The Lagrange multiplier λ has been introduced
to satisfy the normalization condition. The constraint is
incorporated by solving the above E-L equations only out to
certain distances, until the logarithmic derivative of correlation
functions matches those of f MT

p (r) and then we set the
correlation functions equal to f MT

p (r). So there is no free
parameter in our LOCV formalism, i.e., the healing distances
are determined directly by the constraint and the initial
conditions.

064306-9



M. MODARRES AND N. RASEKHINEJAD PHYSICAL REVIEW C 72, 064306 (2005)

[1] M. Modarres and N. Rasekhinejad, Phys. Rev. C 72, 014301
(2005).

[2] B. D. Day, Rev. Mod. Phys. 50, 495 (1978); J. W. Clark, Prog.
Part. Nucl. Phys. 2, 89 (1979); V. R. Pandharipande and R. B.
Wiringa, Rev. Mod. Phys. 51, 821 (1979).

[3] C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys.
Rev. C 33, 1740 (1986); A. Stadler, W. Glöckle, and P. U. Sauer,
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[17] H. Kümmel, K. H. Lührmann, and J. G. Zabolitzky, Phys. Rep.

36, 1 (1978).
[18] A. Fabrocini, F. Arias de Saavedra, G. Có, and P. Folgarait, Phys.
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