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Dipole resonances in light neutron-rich nuclei studied with time-dependent
calculations of antisymmetrized molecular dynamics
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To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of
antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In
10Be, 15B, and 16C, collective modes of the vibration between a core and valence neutrons cause soft resonances
at the excitation energy Ex = 10–15 MeV below the giant dipole resonance (GDR). In 16C, we found that a
remarkable peak at Ex = 14 MeV corresponds to the coherent motion of four valence neutrons against a 12C
core, whereas the GDR arises in the Ex > 20 MeV region because of vibration within the core. In 17B and 18C,
the dipole strengths in the low-energy region decline compared with those in 15B and 16C. We also discuss the
energy-weighted sum rule for the E1 transitions.

DOI: 10.1103/PhysRevC.72.064301 PACS number(s): 21.60.−n, 24.30.Cz, 21.10.Re

I. INTRODUCTION

In neutron-rich nuclei, there appear exotic phenomena that
are very different from those in stable nuclei because of the
excess neutrons. Some of these phenomena are concerned with
differences between proton and neutron densities. Neutron
halo and skin structures are typical examples. Other related
subjects are deformations of proton and neutron densities.
For example, the difference of the deformations between
proton and neutron densities were theoretically suggested in
Be, B, and C isotopes [1–3]. These phenomena imply that
the structure of nuclei far from the β-stability line often
contradicts the usual understanding for stable nuclei in which
the proton and neutron densities are consistent with each
other in a nucleus. They may also lead to exotic phenomena
in excitations and reactions. One of the current issues is
the dipole excitations in neutron-rich nuclei [4–21]. In a
system with different proton and neutron densities, because
the energy of isovector-dipole excitations may become low,
soft resonances below the giant dipole resonance (GDR) are
naturally expected. Their collectivity and the contributions of
the excess neutrons have attracted interest. In fact, the features
of dipole transitions in neutron-rich O isotopes have been
studied experimentally [20] and theoretically [11,13,16], and
the dipole strengths have been found to be different from those
in the stable nucleus, 16O, especially in the low-energy region
below the GDR. The dipole excitations have been studied also
in C isotopes by Suzuki et al. with shell-model calculations
[17]; they suggested that coherent neutron transitions may
enhance the strengths at excitation energy Ex = 10–15 MeV.

Our present interest is in the isovector-dipole excitations
in the light neutron-rich nuclei and in the effect of the
ground-state properties such as deformations. A method of
antisymmetrized molecular dynamics (AMD) [1] is one of
powerful approaches for nuclear structure study. The method
is superior, especially in the description of the cluster aspect,
which is important in light unstable nuclei as well as in light
stable nuclei [22]. In the systematic studies of Be, B, and C
isotopes with the AMD method, a variety of structures such as
neutron skins and deformations has been suggested in those

nuclei, and some phenomena have been discussed in relation
to the cluster aspect [1,22]. The experimental data for various
properties of the neutron-rich Be, B, and C isotopes are well
reproduced by the AMD calculations. We should stress that
the AMD calculations agree well with the experimental data
of quadrupole moments and E2 strengths in neutron-rich B and
C, which cannot be reproduced by the shell-model calculations
without using system-dependent effective charges. For the
study of dipole excitations in the AMD framework, we apply
a time-dependent method and calculate dipole strengths in
a similar way to the time-dependent Hartree-Fock (TDHF)
method. The point is that we are able to study dipole resonances
within the framework that can describe the cluster aspect.
One of the advantages of the time-dependent AMD is that
we can link the excitations with collective modes such as core
vibration, core-neutron motion, and intercluster motion which
should be important for our understanding of the role of excess
neutrons in dipole resonances in neutron-rich systems. Another
advantage is that the present AMD model is free from the spu-
rious center-of-mass motion in the calculations of the dipole
strengths.

The time-dependent method of AMD was proposed and
applied to heavy-ion reactions by Ono et al. in 1992 [23,24],
which is earlier than the application of the AMD to nuclear
structure studies. However, the time-dependent AMD calcu-
lations have not yet been performed for collective motion on
the static solution. In this paper, we formulate a method based
on the time-dependent AMD for the study of the E1 response
in analogy to the TDHF. To see its validity, we first apply
it to 12C and 18O and show a comparison of the results, the
experimental data, and other theoretical calculations. Then we
apply this method to Be, B, and C isotopes and discuss the
properties of dipole strengths in the neutron-rich nuclei. We
try to see how the dipole strength distribution is influenced
by structures such as the deformations, the neutron skin, and
existence of core and clusters.

This paper is organized as follows. In the next section,
we explain the formulation of the present method for the
E1 response, which is based on the time-dependent AMD.
Adopted effective nuclear forces are described in Sec. III.
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In Sec. IV, we show the results of 12C and 18O and
the comparison with experimental data and also the dipole
transitions in Be, B, and C isotopes. Discussions of the E1
excitations in neutron-rich Be, B, and C isotopes are given in
Sec. V. Finally, in Sec. VI we give a summary.

II. FORMULATION

We explain the formulation of the time-dependent version
of AMD for calculations of isovector-dipole excitations. By
simulating the time evolution of the collective motion on the
static solution with the time-dependent AMD, we can calculate
the response of a nucleus to external dipole fields and obtain
the dipole strengths in the similar way to TDHF approaches.

The time-dependent method in the AMD framework is
described in Refs. [23,24], in which the method was applied
to heavy-ion collisions. Concerning nuclear structure study by
AMD methods, Refs. [22,25] review the static version of AMD
and its extended versions.

A. Wave function

The wave function for an A-nucleon system (A is a mass
number) is given by a single Slater determinant of Gaussian
wave packets as

� = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

where the ith single-particle wave function is written as

ϕi = ϕZi
χiτi, (2)

ϕZi
(rj ) =

(
2ν

π

)3/4

exp

[
−ν

(
rj − Zi√

ν

)2
]

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

Here, the spatial part of the ith single-particle wave function
is given by a located Gaussian wave packet, whose center
is represented by the complex parameter Zi . The parameter ξi

indicates the intrinsic-spin orientation, and the isospin function
τi is up (proton) or down (neutron).

In this work, the orientation of the intrinsic spin is fixed
to be up or down as ξi = {1/2,−1/2} for simplicity. In this
AMD wave function, all the centers of Gaussian wave packets
for A nucleons are independent variational parameters, and
a set of parameters Z ≡ {Z1, Z2, · · · , ZA} specifies the total
wave function �(Z) of the state. This is the simplest version of
the AMD wave function, and parity and angular-momentum
projections are not performed in this work.

B. Equation of motion

In the time-dependent version of AMD, Z are considered to
be time-dependent parameters, as explained in [24]. The time
evolution of the system is determined by the time-dependent
variational principle,

δ

∫ t2

t1

dt
〈�(Z)|ih̄ d

dt
− H |�(Z)〉

〈�(Z)|�(Z)〉 = 0. (5)

This leads to the equations of motion with respect to Z,

ih̄
∑
j,τ

Ciσ,jτ Żjτ = ∂H
∂Z∗

iσ

and c.c., (6)

where σ, τ = x, y, z, and H is the expectation value of the
Hamiltonian H:

H(Z, Z∗) = 〈�(Z)|H |�(Z)〉
〈�(Z)|�(Z)〉 . (7)

Ciσ,jτ ≡ ∂2

∂Z∗
iσ ∂Zjτ

ln〈�(Z)|�(Z)〉 (8)

is a positive-definite Hermitian matrix. Equations (6)–(8)
are derived in general from the time-dependent variational
principle for a given wave function parametrized by complex
variational parameters. In the case of the AMD framework, the
time evolution of a system is described by the motion of the
centers of Gaussian wave packets.

Although a stochastic collision process has been introduced
in studies of heavy-ion collisions [24], we do not put it in the
present framework.

C. Response to dipole fields

To calculate the response to external fields, we first solve
the static problem to obtain the optimum solution �0 for the
ground state. We perform an energy variation of the AMD wave
function with respect to the variational parameter Z by using
the frictional cooling method (an imaginary-time method)
[22–24]. After the energy variation, we obtain the optimum
parameter set Z0, which gives the energy minimum state
�0 = �(Z0) in the AMD model space. Then we boost the �0

instantaneously at t = 0 by imposing an external perturbative
field, Vext(r, t) = εF (r)δ(t), where ε is an arbitrary small
number. This results in an initial state of the time-dependent
calculation:

�(t = 0+) = e−iεF �0 = e−iεF �(Z0). (9)

In the calculation of E1 resonances, the external field is chosen
to be the dipole field:

F (r) = M(E1, µ) =
A∑
i

erecriY1µ(r̂i), (10)

where erec is the E1 recoil charge, Ne/A for protons and
−Ze/A for neutrons. We write the initial state �(t = 0+) with
a single AMD wave function �[Z(t = 0+)] by simply trans-
forming the parameters Z0 = {Z0

1, Z0
2, · · · , Z0

A} as follows:

Zi(t = 0+) = Z0
i − εereceµ

2
√

ν
i, (11)

where eµ is the unit vector. Although an extra normalization
factor of the wave function arises from this transformation,
it has no effect on physical quantities because the AMD
framework is always based on the normalized wave functions.

By using the equation of motion [Eq. (6)], we can calculate
the time evolution of the system �(t) = �[Z(t)] from the
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initial state �(t = 0+) = �[Z(t = 0+)] following the time-
dependent AMD. The transition strength is obtained by a
Fourier transform of the expectation value of M(E1, µ): as
follows,

dB(ω; E1, µ)

dω
≡

∑
n

|〈n|M(E1, µ)|0〉|2δ(ω − ωn)

= − 1

πε
Im

∫ ∞

0
dt〈�(t)|

×M(E1, µ)|�(t)〉eiωt , (12)

where |0〉 is the ground state and |n〉 is the excited state with
the excitation energy h̄ωn. In a deformed nucleus, Eq. (12)
gives the E1 transition strengths in the intrinsic state because
the total angular-momentum projection is not performed.
Assuming the strong coupling scheme, we calculate the
B(E1) in the laboratory frame by summing the intrinsic E1
strengths:

dB(ω; E1)

dω
=

∑
K=0,±1

dB(ω; E1,K)

dω
. (13)

In the practical calculation, we impose the E1 field with respect
to each direction, x, y, and z, independently, and sum up the
strengths instead of the sum of K = 0,±1. Because the center-
of-mass motion is constant and can be exactly separated from
�(t), the present model is free from the spurious center-of-
mass motion in the calculations of the dipole strengths. In
the present framework, dB(ω; E1)/dω consists of discrete
peaks in principle, because the present AMD is a bound-state
approximation and continuum states are not taken into account.
We introduce a smoothing parameter �, add an imaginary part
i�/2 to the real excitation energy Ex as h̄ω = Ex + i�/2, and
calculate the B(E1) with Eq. (12) by performing the integral up
to finite time. This smoothing can be considered as simulating
the escape and the spreading widths of the resonances.

The photonuclear cross section σ (ω) is related to the
transition strength B(ω; E1) as

σ (ω) = 16π3

9h̄c
h̄ω

dB(ω; E1)

dω
. (14)

III. EFFECTIVE NUCLEAR INTERACTIONS

We use an effective nuclear interaction that consists of the
central force, the spin-orbit force, and the Coulomb force. In
the present work, we adopt the MV1 force [26] as the central
force. This force contains a zero-range three-body force in
addition to the finite-range two-body interaction:

V MV1 =
∑
i<j

V (2) +
∑

i<j<k

V (3), (15)

V (2) = (w + bPσ − hPτ − mPσPτ )

×
[
V1 exp

(
− r2

ij

a2
1

)
+ V2 exp

(
− r2

ij

a2
2

)]
, (16)

V (3) = t3δ(ri − rj )δ(rj − rk), (17)

where Pσ and Pτ denote the spin and the isospin exchange
operators, respectively. The two-body part contains Wigner
(w = 1 − m), Bartlett (b), Heisenberg (h), and Majorana (m)
terms. Concerning the spin-orbit force, the same range param-
eters as those of the G3RS force [27] are adopted. Coulomb
force is approximated by the sum of seven Gaussians.

In this work, we use the same interaction parameters as
those used in Ref. [1] except for 18O; namely, we use case 3 of
MV1 force and choose the Bartlett, Heisenberg, and Majorana
parameters as b = h = 0 and m = 0.576, respectively. The
strength of the spin-orbit force is chosen as uI = −uII ≡ uls =
900 MeV. For 18O, we cannot obtain a stable solution of the
AMD wave function without parity projection in the case of the
parameter m = 0.576 because of a problem of the numerical
calculation. It is because the Gaussian centers Zi gather to
the origin and the norm of the AMD wave function becomes
almost zero in the energy variation. To avoid this problem,
we use a slightly large Majorana parameter, m = 0.62 instead
of m = 0.576. We note that the properties of the ground state
are not qualitatively unchanged in the parameter range m =
0.576–0.63 in most nuclei [22].

IV. RESULTS

We apply the present method of AMD to dipole excitations
in 8,10,14Be, 11,15,17B, 12,16,18,20C, and 18O. In the present AMD
method without parity and spin projections, we cannot obtain
static solutions for the N = 8 isotones by the cooling method
because of the divergence of the inverse norm of the wave
function, because a system with N = 8 favors the p-shell
closed state, which is written by the AMD wave function with
the zero limit of Gaussian centers (Z) for all neutrons.

A. Properties of ground states

The wave functions of the ground states (�0) are obtained
by the energy variation for the AMD wave function without
spin-parity projections. The width parameter ν is fixed and
chosen to be an optimum value for each nucleus to give the
minimum energy of the ground state in most cases. For 15B,
16C, 18C, and 18O, we use slightly larger width parameters
than the optimum values to avoid the numerical problem in the
norm of the wave function. The adopted ν values are listed in
Table I.

TABLE I. The adopted width parameters(ν) of the AMD wave functions.

Isotope 8Be 10Be 14Be 11B 15B 17B 12C 16C 18C 20C 18O

ν (fm−2) 0.200 0.180 0.175 0.175 0.180 0.160 0.180 0.180 0.175 0.165 0.170
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FIG. 1. The root-mean-square radii of the ground states ob-
tained by the AMD calculation. The radii for the proton (neu-
tron) density distributions of the ground state, �0, are plotted
by crosses (squares). The circles indicate the nuclear matter
radii.

As suggested in Refs. [1–3,22], the shape of the proton and
neutron density distribution rapidly changes with the variation
of the proton and neutron numbers. The root-mean-square radii
for the ground states (�0) are shown in Fig. 1. In each series
of isotopes, the neutron radius is enhanced in the neutron-
rich nuclei with the increase of neutron number. In Fig. 2,
we show the deformation parameters (β, γ ) for proton and
neutron densities. The results are qualitatively the same as
the previous results obtained by the simple AMD calculations
[2,3]. In some nuclei, the difference of the shape between
protons and neutrons is found in the γ parameter as well
as the β values. The discrepancy of γ between protons and
neutrons is remarkable in 10Be and 16C. Namely, the opposite
deformation between proton and neutron densities appears in
these nuclei, as discussed in Refs. [2,3].
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FIG. 2. The deformations of the ground states calculated by
AMD. The deformation parameters (a) β and (b) γ for the
proton (neutron) density distributions in �0 are plotted by crosses
(squares). Circles indicate the deformations of nuclear matter
density.

B. Energy-weighted sum rule

The energy-weighted sum rule (EWSR) for isovector-
dipole resonances is given by

S(E1) =
∫

h̄ω
dB(ω; E1)

dω
dω. (18)

If the interaction commutes with the E1 operator, S(E1) is
identical to the classical Thomas-Reiche-Kuhn (TRK) sum
rule:

S(TRK) = 9e2

8πM

NZ

A
, (19)

where M is the nucleon mass. Because of the contributions
of exchange terms and momentum-dependent terms, the
interaction is usually incommutable with the E1 operator
and S(E1) is enhanced compared with S(TRK). Follow-
ing the method explained in Ref. [28], we can calculate
the EWSR with the initial-state expectation value of the
double commutator of the Hamiltonian with the dipole
operator F:

S(E1) = 1
2 〈�0|[F, [H,F ]]|�0〉. (20)

We estimate the enhancement factor, κ = S(E1)/S(TRK) − 1,
for the present interaction by neglecting the contribution of the
spin-orbit force. The incommutable terms in the present inter-
action come from Heisenberg and Majorana exchange terms
in the two-body central force V (2). If we write the two-body
force as V (2) = v(rij ) + vτ (rij )τ i · τ j [τ is the isospin SU(2)
generator], the enhancement �S(E1) = S(E1) − S(TRK) is
given as follows [28]:

�S(E1) = − 3

2π
e2〈�0|

∑
i<j

r2
ij v

τ (rij )

×[tx(i)tx(j ) + ty(i)ty(j )]|�0〉. (21)

Here t = 1
2τ . By calculating the expectation value in Eq. (21)

for the static solution �0 = �(Z0), we can obtain the values
S(E1) and κ .

In Table II, the calculated values of S(E1) and κ are
shown. To demonstrate that the sum rule is kept in the present
framework of the time-dependent AMD, we compare the value
S(E1) = S(TRK) + �S(E1) given by the static calculations
with the EWSR value S(E1; total) that we obtained by
integrating the strengths of Eq. (18) calculated with the
time-dependent AMD. As shown in Table II, the sum rule
S(E1) = S(E1; total) is practically satisfied. It is reasonable
because the present calculation is regarded as a method based
on the small-amplitude TDHF. The enhancement factor κ is
0.71 and 0.74 for 12C and 18O, respectively, and it is κ = 0.6–
0.7 for the neutron-rich Be, B, and C isotopes. These are con-
sistent with κ = 0.4–0.8 because of the effect of the exchange
mixtures of two-body interactions explained in Ref. [29]. In the
shell-model calculations [13,17], the values κ = 40%–50% for
12C and 18O are obtained for S(E1; Ex < 40 MeV) integrated
up to 40 MeV, while κ = 0.13 for S(E1; Ex < 40 MeV) in 18O
is obtained by the quasiparticle random-phase approximation
(QRPA)+phonon-coupling model [16]. In the experimental
photonuclear reactions, the observed cross section integrated
up to 30 MeV for 12C [30] exhausts 63% of the TRK
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TABLE II. The EWSR values of E1 transitions. The S(E1; total) values are obtained by integration of the strengths up to a large enough
energy Ex = 100 MeV in the time-dependent calculations of the AMD. The enhancement �S(E1) = S(E1) − S(TRK) is given by the
ground-state expectation values of the double commutator, Eq. (21). Here we ignore the contribution of the spin-orbit force. The values of the
enhancement factor κ = S(E1)/S(TRK) − 1 are also shown. The unit is MeV e2 fm2 for the EWSR values.

Isotope S(E1; total) S(TRK) �S(E1) S(E1) S(E1; total)/S(E1) (%) κ

8Be 51 30 21 51 100 0.71
10Be 58 36 23 58 99 0.63
14Be 69 42 27 69 99 0.62
11B 67 40 27 67 99 0.66
15B 81 49 32 81 100 0.63
17B 85 52 33 86 100 0.63
12C 76 44 32 76 100 0.71
16C 92 56 36 92 100 0.65
18C 98 59 39 98 100 0.65
20C 103 62 40 102 101 0.66
18O 115 66 49 115 100 0.74

sum-rule value, and 90% of S(TRK) is exhausted by the EWSR
integrated up to 42 MeV in 18O [31]. As shown later, the EWSR
is dominated by the GDR in the present results. It means that
the calculated GDR should be quenched and the large fraction
of the strength should be in the higher-energy region than
the GDR.

C. Dipole resonances

1. 12C and 18O

We first show the results of the dipole resonances in
12C and 18O and compare the results with other theoretical
calculations and experimental data to see the validity of the
present method. The photonuclear cross sections of 12C and
18O are plotted as functions of the excitation energy in Figs. 3
and 4, respectively. Thin dash-dotted, solid, and dotted
curves indicate the contribution of vibration for the x, y, and
z directions, respectively. Here and hereafter, we chose the
x, y, and z axis as 〈�0|x2|�0〉 � 〈�0|y2|�0〉 � 〈�0|z2|�0〉
and 〈xy〉 = 〈yz〉 = 〈zx〉 = 0. The thick solid curves corre-
spond to the total strengths. We use the smoothing parameter
� = 1, 2, 4 MeV. In the present results, the GDR peak lies at
Ex = 26 MeV and Ex = 28 MeV in 12C and 18O, respectively.
These peak positions are about 4 MeV higher than the observed
GDR peaks [30–33] and also higher than other theoretical
values of the shell model [13,17] and the QRPA calculations
[16]. Compared with the observed photonuclear cross section,
here a smoothing parameter � > 4 MeV is needed to reproduce
the width of the GDR. The reason for such a large � is
considered to be due to the limitation of the present model
space and lack of the effects of continuum states. For a
quantitative discussion of the magnitude of the GDR strength,
further quenching and spreading are needed in the present
calculations.

Although the quantitative description of the peak positions
and the magnitudes of the GDR are not sufficient, the
characteristic behavior of the calculated cross section is in
reasonable agreement with that of the experimental data and

is consistent with other theoretical calculations. Because the
ground state of 12C is a oblate state, the vibration for each
of the y and z axes forms a peak in the same energy, which
results in an enhancement of the lower part of the GDR. In
the results of 18O, significant dipole strengths are distributed
in the energy region below the GDR because of the valence
neutrons. The strong resonances have been experimentally
observed in the region 10−15 MeV [20,31], and about 8% [20]
of the TRK sum rule is exhausted by the integrated strength
of the experimental data up to Ex = 15 MeV. These low-lying
resonances are well described by the shell-model calculations
[13], which give S(E1; Ex < 15 MeV)/S(TRK) = 6%. In the
present results, the excitation energies of these low-lying
resonances seem to be overestimated compared with those
of the shell-model and QRPA calculations as well as the GDR.
Namely, the strengths of the low-lying peaks are distributed in
the Ex = 15–20 region, and S(E1; Ex < 17 MeV)/S(TRK) =
6% and S(E1; Ex < 15 MeV)/S(TRK) = 3% in the present
results. Considering the shift of the excitation energies, we can
state that the calculated strengths of the low-lying resonances
reasonably agree with the experimental data.

One of the reasons for the overestimating excitation ener-
gies of the dipole resonances is because the surface diffuseness
may be underestimated by the simple AMD wave function.
It might be improved by the extension of the model wave func-
tion such as deformed-base AMD proposed Kimura et al. [34].

2. C, B, and Be isotopes

Next we investigate the dipole resonances in neutron-rich
Be, B, and C isotopes. We show the E1 strengths in 8Be, 10Be,
and 14Be in Fig. 5, and the photonuclear cross sections in the
left-hand column of Fig. 6.

In 10Be, the dipole resonances in 10Be can be decomposed
into two parts, Ex < 15 MeV and Ex > 20 MeV. The former
consists of the soft resonances with the dominant strengths
in 10 < Ex < 15 MeV. The latter contains the GDR with the
double-peak structure with 7–8-MeV energy splitting, which
is similar to that of 8Be. In the Ex < 5 MeV region, we find
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a peak with the strength B(E1) = 0.06 e2 fm2. We consider
that this is a 1− state and corresponds to the known 1− state
at 5.96 MeV. The present low-lying peaks in the 10 < Ex <

15 MeV region originate in the cluster structure. The details
are discussed in the next section. In the TDHF + absorbing
boundary-condition (ABC) calculations, the strengths of the
soft E1 resonances [18] are not significant in 10Be. On the
other hand, the GDR of the TDHF + ABC calculations in
10Be is consistent with the present results.

In 14Be, the GDR splits into two peaks at Ex = 15 MeV
and at Ex > 25 MeV. The lower peak appears in the vibration
along the longitudinal axis (z). As seen in Figs. 1 and 2, 14Be
has a large prolate deformation of the neutron density as well
as the large neutron radius, and hence it has the enhanced
neutron skin structure along the longitudinal direction. The
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and z directions, respectively. The thick solid curves indicate the total
strengths.

decrease of the excitation energy of the lower GDR peak is
naturally understood because of the developed neutron skin.
Also in the TDHF + ABC calculations [18], the GDR in 14Be
for the longitudinal motion appears at Ex = 15 MeV, while the
higher peak for the transverse motion is around Ex = 25 MeV.
Although the peak position of the GDR for each direction
is similar to the present results, the GDR is not splitting
in the TDHF + ABC results because the widths are largely
spread. Another difference with the present results is that there
exists a very soft resonance at Ex ∼ 5 MeV in TDHF + ABC.
These differences seem natural for the following reason: The
spreading and quenching of the GDR may be large in 14Be,
which has a small neutron separation energy, and therefore
the dipole strengths should be affected by the continuum
states and the long tail of the neutron halo structure. These
effects are not taken into account in the present framework,
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but they are included in the TDHF + ABC. In the shell-model
calculations, the large E1 strength is found in the low-energy
region (5 < Ex < 15 MeV) when the fp shell configurations
are included with the WBP interaction [15].

The E1 strengths and the photonuclear cross sections in
B isotopes are shown in Figs. 7 and 6. In the B isotopes,
the feature of the GDR changes, reflecting the variation of the
deformation as the neutron number increases. In 15B, two peaks
of the GDR appear at Ex = 20 and 27 MeV [see Fig. 7(b)].
Because of the prolate deformation, the lower GDR at Ex =
20 for the longitudinal (z-direction) vibration has a smaller
strength than that of the higher one. The excitation energy of
the GDR is smaller than that of 11B. One of the unique features
in 15B is that a soft resonance appears in the Ex = 10–17 MeV
region, which exhausts 16% of the S(TRK) value. This soft

resonance arises from the longitudinal vibration and decouples
energetically from the GDR region (Ex > 17 MeV). In 17B,
the GDR peaks spread over a wide energy region because of
the triaxial deformation. The peak position of the lowest GDR
further shifts toward the low-energy region: Ex ∼ 18 MeV. We
cannot find a strong soft E1 resonance other than the GDR in
17B.

We show the results of C isotopes in Figs. 8 and 6. In a
comparison between B (Fig. 7) and C isotopes (Fig. 8), it is
found that the feature of the dipole transitions in 16C is quite
similar to that in 15B, which has the same neutron number (N =
10) with 16C. Namely, the dipole strength for the longitudinal
(z-axis) vibration splits into two peaks, the GDR at Ex =
22 MeV and a soft resonance at Ex = 14 MeV. As a result,
16C has a significant dipole strength in the low-energy region
(Ex < 17 MeV) below the GDR region. This soft dipole
resonance at Ex = 14 MeV is consistent with the shell-model
calculations [17], in which a remarkable peak is found at the
same energy. In 18C, because it has a triaxial deformation, as
does 17B, the shape of the strength function in the GDR region
is similar to that of 17B, though the peak positions are slightly
higher than those of 17B. A difference between 18C and 17B is
the soft dipole strengths in the energy region Ex < 17 MeV.
Although there is no noticeable peak in this energy region,
we find some fractions of the dipole strengths in 18C rather
than in 17B. In 20C with an oblate deformation, the shape
of the strength function dB(E1, ω)/dω is similar to the 12C,
whereas the peak positions are 4–5 MeV lower than those
of 12C.

V. DISCUSSION

As shown before, the remarkable peaks of the soft reso-
nances are found in the dipole strengths of 10Be, 15B, and 16C.
They are clearly separated from the GDR region. It is natural
to expect that these soft resonances arise from the coherent
excitations of excess neutrons. To link the E1 resonances
with collective motions, we analyze the time evolution of the
single-particle wave functions. In the time-dependent AMD,
the expectation value of the dipole operator M(E1, µ = 0)
for �(t) = �[Z(t)] is directly related to the real part of the
centers of the single-particle Gaussian wave packets:

〈�(t)|M(E1, µ = 0)|�(t)〉

= Ne

A

Z∑
i=1

Re

[
Ziz(t)√

ν

]
− Ze

A

A∑
i=Z+1

Re

[
Ziz(t)√

ν

]
, (22)

where the ith particle is a proton (neutron) for i =
1, . . . , Z(Z + 1, . . . , A), and Ziz is the z component of the
center Zi for the ith single-particle Gaussian wave function. It
should be stressed that the E1 excitations are expressed by the
motion of the centers of single-particle Gaussian wave packets.
Because the E1 strength is given by the Fourier transform of
Eq. (22) as explained in Sec. II, we can examine separately
the contribution of each single-particle wave-packet motion to
the dipole strengths by Fourier transform of Re[Ziz(t)/

√
ν],

and see explicitly the collective modes. As discussed later, in
the case in which a collective mode appears because of the
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intercluster motion, the mode can be seen as the peak at the
corresponding excitation energy in the sum of the components
for nucleons in each cluster:

− 1

πε
Im

∫
dt

∑
i∈Ck

Re[Ziz/
√

ν]eiωt , (23)

where C1, C2, . . . , are the constituent clusters and ε is the
same parameter as in Eq. (12).

In Fig. 9, we illustrate the density distributions and the
spatial configuration of the Gaussian centers Re[Zi/

√
ν] in

the static solution of 16C. There is a difference between proton
and neutron densities in the ground state. The E1 transitions
are described by the small-amplitude motion around this static
solution. We see a 2n+ 12C + 2n configuration in the spatial
configuration of the Gaussian centers, which forms the prolate
neutron deformation with the longitudinal z axis. After the
instantaneous external dipole field M(E1, µ = 0) is imposed,
four valence neutrons move coherently against the core 12C
with the oscillation energy Ex ∼ 14 MeV to cause the soft
dipole peak. On the other hand, it is found that the strengths
in the GDR region (Ex > 20 MeV) arise from the motion
of the nucleons within the 12C core. In Fig. 10(a), we show
the amplitudes of the motion for four valence neutrons, six
protons, and six neutrons in the 12C core. It is found that the

valence neutrons move with negative amplitudes against six
protons and six neutrons in the Ex ∼ 14 MeV region, whereas
the dipole strengths in the GDR region are dominated by the
relative motion between six protons and six neutrons inside
the 12C core. The reason why four neutrons move coherently
in the 2n+ 12C + 2n configuration is easily understood as
follows. Because the 2n+ 12C + 2n configuration is linear,
one can consider a configuration with two dineutrons on the
opposite sides of the core (12C). Let us imagine the inert
three clusters (2n+ 12C + 2n), which are connected with two
identical springs, as shown in Fig. 9(d). In the motion along the
longitudinal axis, there are two eigenmodes of the oscillation.
One is the mode in which two dineutrons move in phase and the
core moves in the opposite way, and the other is the one with
the opposite motion of the dineutrons to each other. The former
corresponds to the isovector-dipole mode. Thus the coherent
motion of the valence neutron can be interpreted by the relative
motion in the 2n+ 12C + 2n configuration. The soft dipole
resonance that is due to the excess neutrons in the present result
of 16C corresponds well to the shell-model calculations [13],
in which the 0p → 1s0d and 1s0d → 0f 1p transitions work
coherently to enhance the strength at Ex = 12–14 MeV in 16C.

We show the density distribution of the ground state of
10Be in Fig. 11. To understand collective motion for the
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soft dipole resonances, it is useful to regard the 10Be as the
α + 6He cluster state. In the analysis of motion of Gaussian
centers, it is found that the strengths at Ex = 10–15 MeV
contain two independent modes. One is the intercluster motion
between α and 6He, which contributes to the resonance at Ex =
12 MeV in the longitudinal vibration along the z axis. The
other is the coherent motion of the valence neutron against
the core 8Be, which results in the resonance at Ex = 14 MeV
in the vibration along the y axis. In Fig. 10(c), we show the
amplitudes of the α−6He intercluster motion. It has a dominant
peak at Ex = 10–15 MeV, which corresponds to the soft peak
in the z component. On the other hand, as seen in Fig. 10(b),
where we show each of the amplitudes of 4n, 4p and the two
valence neutrons, the relative motion between four protons and
four neutrons contributes to the GDR peak. In other words,
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for the x, y, and z directions, respectively. The total strengths are
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the GDR is described by the motion inside the core 8Be.
Also in 15B, we find that the coherent motion of the valence
neutrons contributes to an enhancement of the strengths of
the soft resonance. It is concluded that the remarkable peaks
at Ex = 10−15 MeV in 16C, 10Be, and 15B arise from the
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written by 2n + 12C + 2n.

coherent motion of the valence nucleons, which decouples
from the motion inside the core.

We show the calculated photonuclear cross section in
Fig. 6 in Subsec. 4.C.2. The shape of the strength function
in the GDR region (Ex > 17 MeV) has a close relation with
the deformation of the system. In oblate systems such as 11B
and 20C as well as 12C, the GDR splits into two parts. The lower
GDR peak has large transition strengths. In the neutron-rich
nucleus, 20C, the peak position of the GDR is the lowest among
the three nuclei. Also in the 8Be and 14Be with the prolate
deformation, the GDR splits into two, but the higher GDR has
a larger strength in contrast to the oblate deformation. The
lower resonance in 14Be appears at Ex = 15 MeV. In triaxial
nuclei such as 17B and 18C, the GDR consists of three peaks
with 5 MeV of the energy splitting. However, considering the
spreading of the widths, three peaks may overlap to form a
broad structure in the Ex = 15–30 MeV. 10Be and 16C have
ground states with opposite deformations between proton and
neutron densities. In spite of these unusual properties of the
deformations, we cannot find an abnormal feature of the dipole
strength in the GDR region in these nuclei. As explained
before, the remarkable soft peaks appear at Ex = 10–15 MeV
because of the motion of the valence nucleons against the core,
whereas the GDR at Ex > 17 MeV arises from the vibration
within the core. Therefore it is considered that the GDR may
reflect mainly the features of the core nuclei instead of the
deformations of the total system. In fact, the GDR of 10Be lies
at an excitation energy similar to that of 8Be.

Below the GDR region, we find the significant strengths
of the soft resonances in such neutron-rich nuclei as 10Be,
15B, 16C, and 18C that are due to the excess neutrons. In
particular, 10Be, 15B, and 16C have remarkable soft peaks,
which are decoupled from the GDR. In the neutron-rich
nuclei, the cluster sum rule [35] is a convenient measure
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C1 consists of four valence neutrons, and C2 (C3) contains six protons
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(c) Relative motion between 4He (C1) and 6He (C2) clusters in 10Be.
The dotted, dash-dotted, and solid curves correspond to C1, C2, and
C3, respectively.

for estimating the contribution of the motion of the excess
neutrons in the dipole strengths [36]. Assuming clustering
with a core and Nv valence neutrons, we consider the core
cluster with Z1 = Z,N1 = N − Nv , and the valence cluster
with Z2 = 0, N2 = Nv . The cluster sum rule is given as

Sclust = h̄2

2m

9

4π

(Z1N2 − Z2N1)2

A(Z1 + N1)(Z2 + N2)
e2

= h̄2

2m

9

4π

Z2N2
v

A(A − Nv)Nv

e2. (24)

This value is the remainder when one subtracts the core
contribution of the classical EWSR from the total S(TRK)
value. Consequently Sclust is the margin that indicates the
contribution of the excess neutrons. The integrated strength
of the low-energy resonances should be compared with Sclust

to see the softness and collectivity of the resonances that are
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due to the valence neutron motion against the core. In Table III,
the calculated EWSR for the low-lying resonances are listed
with the values of the classical TRK sum rule and the cluster
sum rule (Sclust). In the derivation of the cluster sum rule Sclust,
the core cluster is assumed to be 8Be, 11B, 12C, and 16O, in
Be, B, C, and O isotopes, respectively. We show the EWSR
values integrated up to Ex < 15 MeV and Ex < 17 MeV in
the present results and the EWSR with other calculations.
The ratios of the EWSR to S(TRK) and Sclust are shown in
Figs. 12(a) and 12(b), respectively. In C isotopes, S(E1; Ex <

17 MeV) is the largest in 16C and it declines in further
neutron-rich C isotopes. The present results of C isotopes well
agree with the shell-model calculations [13]. A similar feature
is also found in B isotopes. Namely, S(E1; Ex < 17 MeV)
is the largest in 15B and it decreases in further neutron-rich

TABLE III. The EWSR for the soft dipole resonances. The
energy-weighted sums integrated up to Ex < 17 MeV and Ex <

15 MeV are shown in the fourth and fifth columns, respectively.
The core clusters in the derivations of the cluster sum rule Sclust are
8Be, 11B, 12C, and 16O in Be, B, C, and O isotopes, respectively.
The smoothing parameter is chosen to be � = 2.0 MeV. The unit is
e2 fm2 MeV.

Isotope S(TRK) Sclust S(E1)

Ex < 17 MeV Ex < 15 MeV

8Be 29.7 − 0.3 0.2
10Be 35.6 5.9 4.3 4.0
14Be 42.4 12.7 19.0 3.1
12C 44.5 − 0.5 0.3
16C 55.6 11.1 8.3 6.9
18C 59.3 14.8 5.6 3.4
20C 62.3 17.8 2.3 1.6
11B 40.5 − 1.1 0.8
15B 49.4 9.0 8.2 6.4
17B 52.3 11.9 5.8 1.7
18O 65.9 6.6 4.0 1.5

nucleus 17B. The striking point is that the EWSR for the
low-lying resonances is remarkably enhanced in the moder-
ately neutron-rich nuclei with an appropriate number of excess
neutrons, but it is suppressed in very neutron-rich nuclei.
It is reasonable because the enhancement of the soft dipole
strengths is due to the coherent motion of the valence neutrons
relative to the core. It means that the decoupled collective
modes appear based on the relative motion between the core
and the valence neutrons and the motion inside the core in
moderately neutron-rich nuclei such as 15B and 16C. On the

0
 0.2
 0.4
 0.6
 0.8

1
 1.2
 1.4
 1.6

18O20C18C16C17B15B14Be10Be

E
W

S
R

/S
cl

us
t

AMD(17MeV)
AMD(15MeV)

TDHF+ABC
shell model

0

 0.1

 0.2

 0.3

 0.4

 0.5

18O20C18C16C12C17B15B11B14Be10Be8Be

E
W

S
R

/S
(T

R
K

) 

AMD(17MeV)
AMD(15MeV)

TDHF+ABC
shell model

(b)

(a)

FIG. 12. The ratio of the EWSR integrated for the soft dipole
resonances to S(TRK) and Sclust. Circles indicate the ratio for
S(E1; Ex < 17 MeV) and squares are for S(E1; Ex < 15 MeV). The
smoothing parameter is chosen to be � = 2.0 MeV. The results of
TDHF + ABC for S(E1; Ex < 15 MeV) in Be isotopes are indicated
by “+.” The symbols × indicate the results of the shell-model
calculations for S(E1; 5 < Ex < 15 MeV), S(E1; Ex < 14 MeV),
and S(E1; Ex < 15 MeV) in Be [15], C [17], and O [13], respectively.
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other hand, in further neutron-rich nuclei N > 10, the neutron
skin developes, and hence the motion of the excess neutrons
is not decoupled but join the neutrons inside the core. As a
result, in 17B and 20C, the soft dipole mode is assimilated into
the GDR, and the excitation energy of the GDR decreases.
Also in 10Be, the EWSR for the low-lying resonances is
significant as well as in 15B and 16C. In these nuclei, the cluster
sum-rule value Sclust is almost exhausted by the calculated
S(E1; Ex < 17 MeV). In 14Be, the S(E1; Ex < 17 MeV) is
very large because of the peak at Ex = 16 MeV. The reason
for the enhanced S(E1; Ex < 17 MeV) in 14Be is different from
that for other nuclei (10Be,15B and 16C). In the case of 14Be,
the enhanced S(E1; Ex < 17 MeV) does not originate in the
soft resonance decoupled from the GDR, but the GDR for
the longitudinal vibration itself contributes to the EWSR for
the low-energy region because it becomes soft because of the
prolate deformation with a developed neutron skin structure.

VI. SUMMARY

We applied a method of the time-dependent AMD to
studies of dipole transitions in light neutron-rich nuclei. We
investigated the E1 resonances in Be, B, and C isotopes. It
was found that remarkable peaks appear in 10Be, 15B, and 16C
at Ex = 10–15 MeV, which almost exhaust the values of the
cluster sum rule. These soft dipole resonances arise from the
relative motion between excess neutrons and the core, which
is decoupled from the motion inside the core. In other words,
these soft resonances appear because of the excitation of the
excess neutrons around the rather hard core. This nature of
the neutron excitation and the inert core may have a link with
such ground-band properties of 16C as the unusually small
B(E2; 2+

1 → 0+
1 ) [37], which has been recently investigated

in theoretical and experimental studies [3,38–40]. In further
neutron-rich B and C isotopes with N > 10, the strength for
the soft dipole resonances declines compared with that of 15B
and 16C. It is considered to be because the motion of the excess
neutrons is assimilated into the neutron motion within the core.
As a result, the excitation energies of the GDR decrease with
the enhancement of the neutron skin. It is striking that the
strength for the soft dipole resonances does not necessarily
increase with the increase of the excess neutrons. Instead, the
feature of the soft resonances rapidly changes depending on
the proton and neutron numbers of the system. The key of the
soft dipole resonance with a remarkable strength is how
the coherent motion of the valence neutrons is decoupled from
the motion inside the core.

The present method based on the time-dependent AMD
is regarded as types of small-amplitude TDHF calculations
within the AMD model space. The point of the method is that
we are able to study dipole resonances within a framework that
can describe cluster aspect. In the AMD approach, the dipole
excitations are expressed by the motion of single-particle
Gaussian wave packets, because the expectation value of the
dipole operator is directly related to the centers of the Gaussian
wave packets. One of the advantages of time-dependent AMD
is that we can link the excitations with such collective modes as
core vibration, core-neutron motion, and intercluster motion,

which should be important for understanding the role of the
excess neutrons in the dipole resonances.

Recently, extended methods of time-dependent mean-field
calculations have been proposed and applied to the dipole tran-
sitions in neutron-rich nuclei. In the TDHF + ABC approach,
which has been applied to deformed neutron-rich nuclei by
Nakatsukasa and Yabana [18], the effects of continuum states
are taken into account. Another method is the time-dependent
density-matrix theory that has been applied to 22O by the
incorporation of two-body correlations [7]. In this paper, the
contributions of continuum states are omitted, and detailed
descriptions of wave functions and two-body correlations
should be insufficient, as the model space is a simple AMD
wave function written by a Slater determinant of Gaussian
wave packets. Therefore we use an artificial smoothing
parameter to simulate the width of the dipole resonances,
because it is difficult to describe the escape and the spreading
widths of the resonances in the present framework. Further
extensions of the model are essential for providing quantitative
discussions of the excitation energies and the strengths of
the dipole resonances in nuclei near the drip line. It should
be necessary to solve the remaining problem of the soft
resonances in halo nuclei [4–6,12,14,19,21].

We comment that the usual AMD wave functions applied
to the nuclear structure study are the advanced ones with
some extensions, such as parity and spin projections, de-
formed Gaussian base, and a generator coordinate method
[22,34,41–43], though the present AMD wave function is the
simplest one, with no extension. A combination of the time-
dependent method and the extended AMD wave functions
is needed to include higher correlations beyond the present
calculations and also to obtain a better description of the
ground-state properties. We think that a possible modification
to the parity and spin projections is a time-dependent AMD
method within a model space of the linear combination of
Slater determinants, which is beyond mean-field approaches.
Such a method of linear combination may be effective for
taking into account the contributions of higher excitations
than 1p–1h. It could make the artificial smoothing parameter �

smaller than the present value, because the effects of spreading
widths might be incorporated. Other possible modifications
by the parity and spin projections are related to the collective
deformations. For example, parity asymmetric features of the
static solutions might enhance the parity-projected calcula-
tions. It is also expected that soft E1 modes could develop
because of octupole vibration in a deformed system. Studies
of E1 response in N = 8 systems remain to be done because
we could not calculate it because of the difficulties in obtaining
stable solutions with the present method of the simple AMD.
Moreover, the interaction dependence of the dipole transitions
is also another remaining problem.

ACKNOWLEDGMENTS

The authors thank H. Horiuchi for many discussions. Y. K.
is also grateful to T. Nakatsukasa and M. Tohyama for valuable
comments. Discussions during the workshop YITP-W-05-01
on “New Developments in Nuclear Self-Consistent Mean-
Field Theories,” which was held at the Yukawa Institute for

064301-12



DIPOLE RESONANCES IN LIGHT NEUTRON-RICH . . . PHYSICAL REVIEW C 72, 064301 (2005)

Theoretical Physics at Kyoto University, were useful in helping
use complete this work. The computational calculations in
this work were supported by the Supercomputer Projects of
High Energy Accelerator Research Organization. This work
was supported by the Japan Society for the Promotion of

Science and a Grant-in-Aid for Scientific Research of the
Japan Ministry of Education, Science and Culture. A part of
the work was performed in the “Research Project for Study of
Unstable Nuclei from Nuclear Cluster Aspects” sponsored by
the Institute of Physical and Chemical Research.

[1] Y. Kanada-En’yo, H. Horiuchi, and A. Ono, Phys. Rev. C 52,
628 (1995); Y. Kanada-En’yo and H. Horiuchi, ibid. 52, 647
(1995).

[2] Y. Kanada-En’yo and H. Horiuchi, Phys. Rev. C 55, 2860
(1997).

[3] Y. Kanada-En’yo, Phys. Rev. C 71, 014310 (2005).
[4] M. Honma and H. Sagawa, Prog. Theor. Phys. 84, 494 (1990).
[5] T. Hoshino, H. Sagawa, and A. Arima, Nucl. Phys. A523, 228

(1991).
[6] H. Sagawa, N. Takigawa, and Nguyen van Giai, Nucl. Phys.

A543, 575 (1992).
[7] M. Tohyama, Phys. Lett. B323, 257 (1994).
[8] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C 53,

765 (1996).
[9] I. Hamamoto and H. Sagawa, Phys. Rev. C 53, R1492 (1996).

[10] F. Catara, E. G. Lanza, M. A. Nagarajan, and A. Vitturi, Nucl.
Phys. A624, 449 (1997).

[11] I. Hamamoto, H. Sagawa, and X. Z. Zhang, Phys. Rev. C 57,
R1064 (1998).

[12] T. Myo, A. Ohnishi, and K. Kato, Prog. Theor. Phys. 99, 801
(1998).

[13] H. Sagawa and T. Suzuki, Phys. Rev. C 59, 3116 (1999).
[14] T. Suzuki, H. Sagawa, and P. F. Bortignon, Nucl. Phys. A662,

282 (2000).
[15] H. Sagawa, T. Suzuki, H. Iwasaki, and M. Ishihara, Phys. Rev.

C 63, 034310 (2001).
[16] G. Colo and P. F. Bortignon, Nucl. Phys. A969, 427 (2001).
[17] T. Suzuki, H. Sagawa, and K. Hagino, Phys. Rev. C 68, 014317

(2003).
[18] T. Nakatsukasa and K. Yabana, Phys. Rev. C 71, 024301

(2005).
[19] T. Nakamura et al., Phys. Lett. B394, 11 (1997).
[20] A. Leistenschneider et al., Phys. Rev. Lett. 86, 5442 (2001).
[21] R. Palit et al., Phys. Rev. C 68, 034318 (2003).
[22] Y. Kanada-En’yo and H. Horiuchi, Prog. Theor. Phys. Suppl.

142, 205 (2001).
[23] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Phys. Rev.

Lett. 68, 2898 (1992).

[24] A. Ono, H. Horiuchi, T. Maruyama, and A. Ohnishi, Prog.
Theor. Phys. 87, 1185 (1992).

[25] Y. Kanada-En’yo, M. Kimura, and H. Horiuchi, C. R. Phys. 4,
497 (2003).

[26] T. Ando, K. Ikeda, and A. Tohsaki, Prog. Theor. Phys. 64, 1608
(1980).

[27] N. Yamaguchi, T. Kasahara, S. Nagata, and Y. Akaishi,
Prog. Theor. Phys. 62, 1018 (1979); R. Tamagaki, ibid. 39,
91 (1968).

[28] M. W. Kirson, Nucl. Phys. A301, 93 (1978).
[29] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, New York, 1980).
[30] R. E. Pywell, B. L. Berman, J. G. Woodworth, J. W. Jury,

K. G. McNeill, and M. N. Thompson, Phys. Rev. C 32, 384
(1985).

[31] J. G. Woodworth, K. G. McNeill, J. W. Jury, R. A. Alvarez,
B. L. Berman, D. D. Faul, and P. Meyer, Phys. Rev. C 19, 1667
(1979).

[32] S. C. Fults, J. T. Caldwell, B. L. Berman, R. L. Bramblett, and
R. R. Harvey, Phys. Rev. 143, 790 (1966).

[33] B. L. Berman, D. D. Faul, R. A. Alvarez, and P. Meyer, Phys.
Rev. Lett. 36, 1441 (1976).

[34] M. Kimura, Y. Sugawa, and H. Horiuchi, Prog. Theor. Phys.
106, 115 (2001).

[35] Y. Alhassid, M. Gai, and G. F. Bertsch, Phys. Rev. Lett. 49,
1482 (1982).

[36] H. Sagawa and M. Honma, Phys. Lett. B251, 17 (1990).
[37] N. Imai et al., Phys. Rev. Lett. 92, 062501 (2004).
[38] Z. Elekes et al., Phys. Lett. B586, 34 (2004).
[39] H. Sagawa, X. R. Zhou, and X. Z. Zhang and T. Suzuki, Phys.

Rev. C 70, 054316 (2004).
[40] M. Takashina, Y. Kanada-En’yo, and Y. Sakuragi, Phys. Rev.

C 71, 054602 (2005).
[41] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[42] N. Itagaki and S. Aoyama, Phys. Rev. C 61, 024303 (2000).
[43] G. Thiamova, N. Itagaki, T. Otsuka, and K. Ikeda, Nucl. Phys.

A719, 312c (2003).

064301-13


