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Incoherent pion photoproduction on the deuteron with polarization observables.
I. Formal expressions
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Formal expressions are developed for the general fivefold differential cross section of incoherent
π -photoproduction on the deuteron, including beam and target polarization. The polarization observables of
the cross section are described by various beam, target, and beam-target asymmetries for polarized photons
and/or polarized deuterons. They are given as bilinear Hermitean forms in the reaction matrix elements divided
by the unpolarized cross section. In addition, the corresponding observables for the semiexclusive reaction
�d( �γ , π )NN are also given.
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I. INTRODUCTION

Photoproduction of pions on light nuclei is an important
topic in medium energy nuclear physics. It is motivated by
different and complementary aspects. On the one hand one
wants to study the elementary reaction on the neutron to which
otherwise one has no access. On the other hand one is interested
in the influence of a nuclear environment on the elementary
production amplitude, and last but not least, one hopes to
obtain information on nuclear structure.

In addition to the study of unpolarized total and differ-
ential cross sections, polarization observables provide very
often further insight into details of the underlying reaction
mechanisms and possible structure effects. In this case, such
observables will serve as additional critical tests or check
points for theoretical models. The considerable progress in
experimental techniques for studying polarization phenomena
has brought into focus also the question regarding the role
polarization effects play in pion photoproduction on nuclei. Of
particular interest is photoproduction of pions on the deuteron
in view of its simple structure. Indeed, it has been studied
quite extensively over the past 50 years (see Ref. [1] and
references therein). Although in earlier work mainly total
and semiexclusive differential cross sections of incoherent
pion production have been studied, polarization observables
were considered more recently, both in experiment [2,3]
as well as in theory. For example, the spin asymmetry
of the total cross section with respect to circular photon
polarization, which determines the Gerasimov-Drell-Hearn
sum rule, was investigated theoretically in Refs. [4–6] and
target asymmetries were considered in Ref. [7].

Subsequently, various polarization asymmetries of the
semiexclusive differential cross section �d( �γ , π )NN were
studied theoretically in a series of papers [8–12]. Unfor-
tunately, many of the results presented there are based on
incorrect expressions for polarization observables, because
the formal expressions for them were taken in analogy from
the corresponding expressions of deuteron photodisintegration
[13]. This is in principle possible, because the spin degrees
of freedom are the same in both reactions, provided one
takes care to check where certain symmetry properties of
the reaction amplitude have been used in the derivation of

the polarization observables in photodisintegration, because
they are not identical in both reactions. This caveat refers
in particular to those observables that are related to linearly
polarized photons. It appears that this fact was not taken into
account so that the results in Refs. [9,10] for them cannot be
trusted. But also the results for circularly polarized photons
are incorrect, namely the claim in Ref. [8] that all of them
vanish identically is wrong. Moreover, this statement is in
contradiction to Ref. [10], where a nonvanishing differential
spin asymmetry for circularly polarized photons is reported,
because this asymmetry is proportional to the beam-target
asymmetry T c

10 for circularly polarized photons and a vector
polarized deuteron, which means that the latter does not vanish.
Thus, it is obvious that the importance of polarization effects
requires a more careful and thorough treatment as done in
Refs. [8–12].

With the present work we want to provide a solid basis for
the formal expressions of the various polarization observables
that determine the differential cross section, for incoherent
pion production on the deuteron with polarized photons and/or
polarized deuterons by deriving the general form of the
differential cross section, including all possible polarization
asymmetries. It complements the work of Blaazer et al. [14],
who have formally derived all possible polarization observ-
ables for coherent pion photoproduction on the deuteron.

II. KINEMATICS

As a starting point, we first consider the kinematics of the
photoproduction reaction

γ (k, �εµ) + d(pd )→π (q) + N1(p1) + N2(p2), (1)

where we have defined the notation of the four-momenta of
the participating particles. The circular polarization vector of
the photon is denoted by �εµ with µ = ±1. The following
formal developments do not depend on the reference frame,
laboratory, or center-of-momentum (c.m.) frame. However, in
view of our explicit application [15] in which the reaction is
evaluated in the laboratory frame, we refer sometimes to this
frame for a definition. We choose as independent variables for
the description of the final state the outgoing pion momentum
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FIG. 1. Kinematics of pion photoproduction on the deuteron in
the laboratory system.

�q = (q, θq, φq) and the spherical angles �p = (θp, φp) of the
relative momentum �p = ( �p1 − �p2)/2 = (p,�p) of the two
outgoing nucleons. Together with the incoming photon energy
ω = k0, the momenta of the outgoing nucleons are fixed, i.e.,
�p1/2 = (�k + �pd − �q)/2 ± �p. The coordinate system is chosen
to have a right-handed orientation with the z axis along the
photon momentum �k. We distinguish in general three planes:
(i) the photon plane spanned by the photon momentum and
the direction of maximal linear photon polarization, which
defines the direction of the x axis, (ii) the pion plane, spanned
by the photon and pion momenta, which intersects the photon
plane along the z axis with an angle φq , and (iii) the nucleon
plane spanned by the momenta of the two outgoing nucleons
intersecting the pion plane along the total momentum of the
two nucleons. This is illustrated in Fig. 1 for the laboratory
frame. In the case where the linear photon polarization
vanishes, one can choose φq = 0 and then the photon and
pion planes coincide.

III. THE T MATRIX

All observables are determined by the T-matrix elements of
the electromagnetic pion production current �Jγπ between the
initial deuteron and the final πNN states. In a general frame,
it is given by the following:

Tsms,µmd
= −(−)〈 �p1 �p2 sms, �q |�εµ · �Jγπ (0)| �pd 1md〉, (2)

where s and ms denote the total spin and its projection on
the relative momentum �p of the outgoing two nucleons and
md is correspondingly the deuteron spin projection on the z

axis as quantization axis. Furthermore, transverse gauge has
been chosen. The knowledge of the specific form of �Jγπ is not
needed for the following formal considerations.

The general form of the T matrix after separation of the
overall c.m. motion is given by the following:

Tsmsµmd
(q, �q, �p) = −(−)〈 �psms, �q |Jγπ,µ(�k )|1md〉

=
√

2π
∑
L

iLL̂(−)〈 �psms, �q |OµL
µ |1md〉

(3)

with µ = ±1 and transverse electric and magnetic multipoles

OµL

M = EL
M + µML

M. (4)

Furthermore, we use throughout the notation L̂ = √
2L + 1.

It is convenient to introduce a partial-wave decomposition of
the final states by the following:

(−)〈 �psms | = 1√
4π

∑
lpjpmp

l̂p(lp0sms |jpms)D
jp

ms,mp

× (φp,−θp,−φp)(−)〈p(lps)jpmp|, (5)

(−)〈�q | = 1√
4π

∑
lqmq

l̂q D
lq
0,mq

(φq,−θq,−φq)(−)〈qlqmq |,

(6)

where mp and mq like md refer to the photon momentum
�k as quantization axis. Here, the rotation matrices D

j

m′m are
taken in the convention of Rose [16]. Using the multipole
decomposition and applying the Wigner-Eckart theorem yields
the following:

(−)〈p(lps)jpmp, q lqmq |OµL

M |1md〉

=
∑
JMJ

(−)jp−lq+J Ĵ

(
jp lq J

mp mq −MJ

) (
J L 1

−MJ M md

)
×〈pq((lps)jplq)J ||OµL||1〉, (7)

with the selection rule mp + mq = MJ = M + md . Rewriting
the angular dependence

D
jp

ms,mp
(φp,−θp,−φp)D

lq
0,mq

(0,−θq,−φq)

= d
jp

ms,mp
(−θp) d

lq
0,mq

(−θq)ei[(mp−ms )φp+mqφq ], (8)

and rearranging, using the foregoing selection rule for M = µ,

(mp − ms)φp + mqφq = (mp − ms)φpq + (µ + md − ms)φq

(9)

with φpq = φp − φq , one finds that the T matrix can be written
as follows:

Tsmsµmd
(�p,�q ) = ei(µ+md−ms )φq tsmsµmd

(θp, θq, φpq), (10)

where the small t matrix depends only on θp, θq , and the
relative azimuthal angle φpq . Explicitly one has

tsmsµmd
(θp, θq, φpq)

= 1

2
√

2π

∑
LlpjpmplqmqJJMJ

iL L̂ Ĵ l̂q l̂p ĵp (−)J+lp+jp−s+ms−lq

×
(

lp s jp

0 ms −ms

) (
jp lq J

mp mq −MJ

) (
J L 1

−MJ µ md

)
×〈pq[(lps)jplq]J ||OµL||1〉djp

ms,mp

× (−θp) d
lq
0,mq

(−θq)ei(mp−ms )φpq . (11)

Using this explicit form for the small t matrix, it is
quite straightforward to show that if parity is conserved,
the following symmetry relation holds for the inverted spin
projections:

ts−ms−µ−md
(θp, θq, φpq)

= (−)s+ms+µ+md tsmsµmd
(θp, θq, −φpq). (12)
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In the derivation of this relation one has made use of the parity
selection rules for the multipole transitions to a final partial
wave |pq[(lps)jplq]J 〉 with parity πJ (lp,lq ) = (−)lp+lq+1{

EL πdπJ (lp,lq ) (−)L = 1 → (−)lp+lq+L = −1

ML πdπJ (lp,lq ) (−)L = −1 → (−)lp+lq+L = 1

}
. (13)

Therefore, invariance under a parity transformation results in
the following property of the reduced matrix element

(−)lp+lq+L〈pq[(lps)jplq]J ||O−µL||1〉
= −〈pq[(lps)jplq]J ||OµL||1〉. (14)

The symmetry property [Eq. (12)] leads to a corresponding
relation for the T matrix

Ts−ms−µ−md
(θp, φp, θq, φq)

= (−)s+ms+µ+md Tsmsµmd
(θp,−φp, θq,−φq). (15)

For an uncoupled spin representation, one finds accordingly,
using the transformation

Tm1m2µmd
(θp, φp, θq, φq) =

∑
sms

(
1

2
m1

1

2
m2|sms

)
× Tsmsµmd

(θp, φp, θq, φq), (16)

where mj denotes the spin projection of the “jth” nucleon on
the quantization axis, as symmetry relation

T−m1−m2−µ−md
(θp, φp, θq, φq)

= (−)1+m1+m2+µ+md Tm1m2µmd
(θp,−φp, θq,−φq). (17)

The small t matrix elements are the basic quantities that
determine differential cross section and asymmetries. The
latter are given as ratios of bilinear hermitean forms in terms
of the t matrix elements [see Eqs. (37) and (38) below].

IV. THE DIFFERENTIAL CROSS SECTION, INCLUDING
POLARIZATION ASYMMETRIES

The usual starting point is the general expression for the
differential cross section

d5σ

dqd�qd�p

= c(ω, q,�q,�p)tr(T †Tρi), (18)

where T denotes the reaction matrix and ρi the density matrix
for the spin degrees of the initial system. The trace refers
to all initial- and final-state spin degrees of freedom com-
prising incoming photon, target deuteron, and final nucleons.
Furthermore, c(ω, q,�q,�p) denotes a kinematic factor that
comprises the final-state phase space and the incoming flux.
In an arbitrary frame one has

c(ω, q,�q,�p) = 1

(2π )5

Ēd

Ed + pd

m2
N

4ωωπ

p∗ q2

WNN

, (19)

with

p2 = (p∗ENN )2

E2
NN − P 2

NN

cos(p̂ · P̂NN ), (20)

as the relative momentum of the final two nucleons, and

ω = k0, Ed =
√

p2
d + m2

d, ωπ =
√

q2 + m2
π ,

ENN = ω + Ed − ωπ, �PNN = �k + �pd − �q, (21)

p∗ = 1

2

√
E2

NN − P 2
NN − 4m2

N,

and the symbol “ v̂ ” denotes a unit vector along the vector �v.
The density matrix ρi in Eq. (18) is a direct product of the
density matrices ργ of the photon and ρd of the deuteron

ρi = ργ ⊗ ρd. (22)

The photon density matrix has the form

ρ
γ

µµ′ = 1
2 (δµµ′ + �P γ · �σµµ′) (23)

with respect to circular polarization µ = ±1. Here, | �P γ |
describes the total degree of polarization, P γ

z = P
γ
c the degree

of circular polarization, and P
γ

l =
√

(P γ
x )2 + (P γ

y )2 the degree
of linear polarization. By a proper rotation around the photon
momentum, one can choose the x axis in the direction of
maximum linear polarization, i.e., P

γ
x = −P

γ

l and P
γ
y = 0.

Then one has explicitly

ρ
γ

µµ′ = (
1 + µP γ

c

)
δµµ′ − P

γ

l δµ,−µ′ e2iµφq . (24)

Furthermore, the deuteron density matrix ρd can be ex-
pressed in terms of irreducible spin operators τ [I ] with respect
to the deuteron spin space

ρd
mdmd

′ = 1

3

∑
I M

(−)MÎ 〈1md |τ [I ]
M |1m′

d〉P d
I−M, (25)

where P d
00 = 1 and P d

1M and P d
2M describe vector and tensor

polarization components of the deuteron, respectively. The
spin operators are defined by their reduced matrix elements

〈1||τ [I ]||1〉 =
√

3 Î for I = 0, 1, 2. (26)

From now on we assume that the deuteron density matrix is
diagonal with respect to an orientation axis �d having spherical
angles (θd, φd ) with respect to the coordinate system associated
with the photon plane in the lab frame. Then one has with
respect to �d as quantization axis

ρd
mm′ = pm δmm′ , (27)

where pm denotes the probability for finding a deuteron spin
projection m on the orientation axis. With respect to this
axis one finds from Eq. (25) P d

I M ( �d ) = P d
I δM,0, where the

orientation parameters P d
I are related to the probabilities {pm}

by the following:

P d
I =

√
3 Î

∑
m

(−)1−m

(
1 1 I
m −m 0

)
pm

= δI0 +
√

3

2
(p1 − p−1) δI1 + 1√

2
(1 − 3 p0) δI2. (28)

The polarization components in the chosen lab frame are ob-
tained from the P d

I by a rotation, transforming the quantization
axis along the orientation axis into the direction of the photon
momentum, i.e.,

P d
IM (�z ) = P d

I eiMφd dI
M0(θd ), (29)
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where d
j

mm′ denotes a small rotation matrix [16]. Thus the
deuteron density matrix becomes finally

ρd
mdmd

′ = 1√
3

(−)1−md

×
∑
I M

Î

(
1 1 I

m′
d −md M

)
P d

I e−iMφd dI
M0(θd ). (30)

This means, the deuteron target is characterized by four param-
eters, namely the vector and tensor polarization parameters P d

1
and P d

2 , respectively, and by the orientation angles θd and φd . If
one chooses the c.m. frame as the reference frame, one should
note that the deuteron density matrix undergoes no change in
the transformation from the lab to the c.m. system, because
the boost to the c.m. system is collinear with the deuteron
quantization axis [17].

The evaluation of the general expression of the differential
cross section in Eq. (18) can be done analogously to deuteron
photodisintegration as described in detail in Ref. [13]. In
fact, one can follow the same steps except for the use of the
symmetry relation of Eq. (2) in Ref. [13], which is different in
case of pion production [see Eq. (12)] because of the additional
pion degree of freedom in the final state, in particular its
pseudovector character. In terms of the small t matrices as
defined in Eq. (10), one finds, inserting the density matrices of
photon and deuteron for the general fivefold differential cross
section,

d5σ

dqd�qd�p

= 1

2

∑
µ′µIM

P d
I eiM(φq−φd )dI

M0(θd )uµ′µ
IM

× [(
1 + µP γ

c

)
δµµ′ − P

γ

l δµ,−µ′e2iµφq
]
, (31)

where we have introduced the quantities

u
µ′µ
IM (q, θq, θp, φpq) = c(ω, q,�q,�p)

Î√
3

×
∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)
×

∑
sms

t∗smsµ′m′
d
(q, θq, θp, φpq)

× tsmsµmd
(q, θq, θp, φpq). (32)

It is straightforward to prove that they behave under complex
conjugation as

u
µ′µ
IM (q, θq, θp, φpq)∗ = (−)M u

µµ′
I−M (q, θq, θp, φpq). (33)

Furthermore, with the help of the symmetry in Eq. (12) one
finds

u
−µ′−µ

IM (q,θq,θp,φpq) = (−)I+M+µ′+µu
µ′µ
I−M (q,θq,θp,−φpq),

(34)

which yields in combination with Eq. (33)

u
−µ′−µ

IM (q, θq, θp, φpq) = (−)I+µ′+µ u
µµ′
IM (q, θq, θp,−φpq )∗.

(35)

This relation is quite useful for a further simplification of the
semiexclusive differential cross section later on.

Separating the polarization parameters of photon (P γ

l and
P

γ
c ) and deuteron (P d

I ), it is then straightforward to show that
the differential cross section can be brought into the form

d5σ

dqd�qd�p

= 1

2

∑
I

P d
I

I∑
M=−I

eiMφqd dI
M0(θd )

× [
v1

IM + v−1
IM + P γ

c

(
v1

IM − v−1
IM

)
+P

γ

l

(
w1

IM e−2iφq + w−1
IM e2iφq

)]
, (36)

with φqd = φq − φd , where we have introduced for conve-
nience the quantities

v
µ

IM (q, θq, θp, φpq) = u
µµ

IM (q, θq, θp, φpq), (37)

w
µ

IM (q, θq, θp, φpq) = −u
µ −µ

IM (q, θq, θp, φpq). (38)

According to Eqs. (33) and (35), they have the following
properties under complex conjugation:

v/w
µ

IM (q, θq, θp, φpq)∗ = (−)Mv/w
µ

I−M (q, θq, θp, φpq),

(39)

v
µ

IM (q, θq, θp, φpq)∗ = (−)I v−µ

IM (q, θq, θp,−φpq ), (40)

w
µ

IM (q, θq, θp, φpq)∗ = (−)Iwµ

IM (q, θq, θp,−φpq). (41)

From Eq. (39) it follows that v
µ

I0 and w
µ

I0 are real. The sum
over M in Eq. (36) can be rearranged with the help of the
Eq. (39) and dI

−M0(θd ) = (−)MdI
M0(θd )

I∑
M=−I

eiMφqd dI
M0(θd )

(
v1

IM ± v−1
IM

)
=

I∑
M=0

dI
M0(θd )

1 + δM0

[
eiMφqd

(
v1

IM ± v−1
IM

)
+ e−iMφqd (−)M

(
v1

I−M ± v−1
I−M

)]
=

I∑
M=0

dI
M0(θd )

1 + δM0

[
eiMφqd

(
v1

IM ± v−1
IM

) + c.c.
]
, (42)

and furthermore with ψM = Mφqd − 2 φq

I∑
M=−I

eiMφqd dI
M0(θd )

(
w1

IM e−2iφq + w−1
IM e2iφq

)
=

I∑
M=−I

dI
M0(θd )

[
eiψM w1

IM + e−iψM (−)M w−1
I−M

]
=

I∑
M=−I

dI
M0(θd )

(
eiψM w1

IM + c.c.
)
. (43)

This then yields for the differential cross section

d5σ

dqd�qd�p

=
∑

I

P d
I

{
I∑

M=0

1

1 + δM0
dI

M0(θd )

×	e
[
eiMφqd

(
v+

IM + P γ
c v−

IM

)]
+P

γ

l

I∑
M=−I

dI
M0(θd ) 	e [eiψM w1

IM ]

}
, (44)
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where we have defined

v±
IM = v1

IM ± v−1
IM. (45)

Now, introducing various beam, target and beam-target asym-
metries by the following:

τ
0/c

IM (q, θq, θp, φpq) = 1

1 + δM0
	e v±

IM (q, θq, θp, φpq),

M � 0, (46)

σ
0/c

IM (q, θq, θp, φpq) = −
m v±
IM (q, θq, θp, φpq),

M > 0, (47)

τ l
IM (q, θq, θp, φpq) = 	e w1

IM (q, θq, θp, φpq), (48)

σ l
IM (q, θq, θp, φpq) = −
m w1

IM (q, θq, θp, φpq), M �= 0,

(49)

where we took into account that v
µ

I0 and w
µ

I0 are real, one
obtains as final expression for the general fivefold differential
cross section with beam and target polarization

d5σ

dqd�qd�p

=
∑

I

P d
I

(
I∑

M=0

dI
M0(θd )

{
τ 0
IM cos (Mφqd )

+ σ 0
IM sin (Mφqd ) + P γ

c

[
τ c
IM cos (Mφqd )

+ σ c
IM sin (Mφqd )

]} + P
γ

l

I∑
M=−I

dI
M0(θd )

× (
τ l
IM cos ψM + σ l

IM sin ψM

))
. (50)

This constitutes our central result.
We now turn to the semiexclusive reaction �d( �γ , π )NN

where only the produced pion is detected, which means
integration of the fivefold differential cross section
d5σ/dqd�qd�p over �p. The resulting cross section will
then be governed by the integrated asymmetries

∫
d �p τα

IM

and
∫

d �p σα
IM (α ∈ {0, c, l}), of which quite a few will

vanish, either
∫

d �p τα
IM or

∫
d �p σα

IM . To show this, we
first introduce the quantities

WIM (q, θq ) =
∫

d �p w1
IM (q, θq, θp, φpq)

= − Î√
3

∫
d �p c(ω, q,�q,�p)

×
∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)
×

∑
sms

t∗sms1m′
d
(q, θq, θp, φpq )

× tsms−1md
(q, θq, θp, φpq), (51)

V ±
IM (q, θq ) = V 1

IM (q, θq ) ± V −1
IM (q, θq), (52)

with

V
µ

IM (q, θq) =
∫

d �p v
µ

IM (q, θq, θp, φpq)

= Î√
3

∫
d �p c(ω, q,�q,�p)

×
∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)

×
∑
sms

t∗smsµm′
d
(q, θq, θp, φpq)

× tsmsµmd
(q, θq, θp, φpq). (53)

Using now Eq. (40), one finds with the help of∫ 2π

0
dφpf (−φpq) =

∫ 2π

0
dφpf (φpq) (54)

for a periodic function f (φpq + 2π ) = f (φpq), the relation

V −1
IM (q, θq ) =

∫
d �p v−1

IM (q, θq, θp, φpq)

= (−)I
∫

d �p v1
IM (q, θq, θp,−φpq )∗

= (−)I V 1
IM (q, θq )∗, (55)

and thus

V ±
IM (q, θq ) = V 1

IM (q, θq ) ± (−)I V 1
IM (q, θq )∗. (56)

Correspondingly, using Eq. (41) one obtains

WIM (q, θq )∗ = (−)I
∫

d �p w1
IM (q, θq, θp, −φpq)

= (−)I WIM (q, θq ). (57)

From the two foregoing equations we can conclude that V +
IM

and WIM are real for I = 0 and 2 and imaginary for I = 1,
whereas V −

IM is imaginary for I = 0 and 2 and real for I = 1.
Therefore, according to Eqs. (46) through (49) the following
integrated asymmetries vanish∫

d �p τα
IM = 0 for

{
α ∈ {0, l}, and I = 1

α ∈ {c}, and I = 0, 2

}
, (58)

∫
d �p σα

IM = 0 for

{
α ∈ {0, l}, and I = 0, 2

α ∈ {c}, and I = 1

}
. (59)

Instead of using these results for deriving from Eq. (50) the
threefold semiexclusive differential cross section, we prefer to
start from the expression in Eq. (44) and obtain the following:

d3σ

dqd�q

=
∑

I

P d
I

{
I∑

M=0

1

1 + δM0
dI

M0(θd )

×	e
[
eiMφqd

(
V +

IM + P γ
c V −

IM

)] + P
γ

l

×
I∑

M=−I

dI
M0(θd ) 	e [eiψM WIM ]

}
. (60)

This expression can be simplified using the fact that
iδI1 WIM, iδI1 V +

IM and i1−δI1 V −
IM are real according to

Eqs. (56) and (57). The latter two quantities can be written
as follows:

iδI1 V +
IM = 2 	e

(
iδI1 V 1

IM

)
, (61)

i1−δI1 V −
IM = 2 	e

(
i1−δI1 V 1

IM

) = −2 
m
(
i−δI1 V 1

IM

)
.

(62)
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Using now

	e [eiMφqd V +
IM ] = 	e [ei(Mφqd−δI1 π/2) iδI1 V +

IM ]

= 2 	e
(
iδI1 V 1

IM

)
cos[Mφqd − δI1 π/2],

(63)

	e [eiMφqd V −
IM ] = 	e

[
1

i
ei(Mφqd+δI1 π/2)i1−δI1 V −

IM

]
= −2 
m

(
i−δI1 V 1

IM

)
sin[Mφqd + δI1 π/2],

(64)

	e [eiψM WIM ] = 	e [ei(ψM−δI1 π/2) iδI1 WIM ]

= iδI1 WIM cos[ψM − δI1 π/2], (65)

we find as final form for the threefold semiexclusive differen-
tial cross section

d3σ

dqd�q

= d3σ0

dqd�q

[
1 + P

γ

l

{
�̃l cos 2φq

+
2∑

I=1

P d
I

I∑
M=−I

T̃ l
IM cos[ψM − δI1 π/2] dI

M0(θd )

}

+
2∑

I=1

P d
I

I∑
M=0

(
T̃ 0

IM cos[Mφqd − δI1 π/2]

+P γ
c T̃ c

IM sin[Mφqd + δI1 π/2]
)
dI

M0(θd )

]
. (66)

Here the unpolarized cross section and the asymmetries are
given by the following:

d3σ0

dqd�q

= V 1
00(q, θq), (67)

�̃l(q, θq )
d3σ0

dqd�q

= W00(q, θq ), (68)

T̃ 0
IM (q, θq)

d3σ0

dqd�q

= (2 − δM0)	e
[
iδI1V 1

IM (q, θq )
]
,

for 0 � M � I, (69)

T̃ c
IM (q, θq )

d3σ0

dqd�q

= −(2 − δM0)
m
[
i−δI1V 1

IM (q, θq)
]
,

for 0 � M � I, (70)

T̃ l
IM (q, θq)

d3σ0

dqd�q

= iδI1 WIM (q, θq), for − I � M � I.

(71)

Because V 1
I0 is real according to Eq. (39), the asymmetries T̃10

and T̃ c
20 vanish identically. We point out that in forward and

backward pion emission, i.e., for θq = 0 and π , the following
asymmetries have to vanish:

�̃l = 0, T̃
0,c
IM = 0 for M �= 0, and T l

IM = 0 for M �= 2,

(72)

because in that case the differential cross section cannot depend
on φq , because at θq = 0 or π the azimuthal angle φq is
undefined or arbitrary. This feature can also be shown by
straightforward evaluation of V

µ

IM and WIM using the explicit
representation of the t matrix in Eq. (11). One finds

V
µ

IM (q, θq = 0/π, θp, φpq) = 0 for M �= 0 and
(73)

WIM (q, θq = 0/π, θp, φpq) = 0 for M �= 2.

The authors of Ref. [12] were not aware of this general
kinematic property because they evaluate the asymmetries
numerically for θq = 0 and π and find that the obtained values
are of the order of 10−3. They conclude in the case of T11

that it vanishes there but point out that �l does not vanish.
For completeness and also in view of the numerous errors
in [8–10,12], we list in the appendix the explicit expressions
of the asymmetries in terms of the t-matrix elements.

In the case where only the direction of the outgoing pion is
measured and not its momentum, the corresponding differen-
tial cross section d2σ/d�q is given by an expression formally
analogous to Eq. (66), where only the above asymmetries are
integrated over the pion momentum, i.e., by the replacements

d3σ0

dqd�q

→ d2σ0

d�q

=
∫ qmax(θq )

qmin(θq )
dq

d3σ0

dqd�q

, (74)

d3σ0

dqd�q

�̃l(q, θq ) → d2σ0

d�q

�l(θq)

=
∫ qmax(θq )

qmin(θq )
dq

d3σ0

dqd�q

�̃l(q, θq ), (75)

d3σ0

dqd�q

T̃ α
IM (q, θq) → d2σ0

d�q

T α
IM (θq)

=
∫ qmax(θq )

qmin(θq )
dq

d3σ0

dqd�q

T̃ α
IM (q, θq), α ∈ {0, l, c}. (76)

The upper and lower integration limits are given by the
following:

qmax(θq) = 1

2b

(
a ω cos θq + Eγd

√
a2 − 4b m2

π

)
, (77)

qmin(θq) = max
{

0,
1

2b

(
a ω cos θq − Eγd

√
a2 − 4b m2

π

)}
,

(78)

where

a = W 2
γ d + m2

π − 4 m2
N, (79)

b = W 2
γ d + ω2 sin2 θq, (80)

W 2
γ d = md (md + 2 ω), (81)

Eγd = md + ω. (82)
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The general total cross section is obtained from Eq. (66) by
integrating over q and �q , resulting in the following:

σ
(
P

γ

l , P γ
c , P d

1 , P d
2

)
= σ0

[
1 + P d

2 T
0
20

1

2
(3 cos2 θd − 1) + P γ

c P d
1 T

c

10 cos θd

+P
γ

l P d
2 T

l

22 cos(2φd )

√
6

4
sin2 θd

]
, (83)

where the unpolarized total cross section and the correspond-
ing asymmetries are given by the following:

σ0 =
∫

d�q

∫ qmax(θq )

qmin(θq )
dq

d3σ0

dqd�q

, (84)

σ0 T
α

IM =
∫

d�q

∫ qmax(θq )

qmin(θq )
dq

d3σ0

dqd�q

T̃ α
IM, (85)

with α ∈ {0, l, c}.
Finally, we point out that for coherent photoproduction

of π0 on the deuteron formally the same expression as in
Eq. (66) holds with unpolarized differential cross section
and asymmetries �l(θq), TIM (θq), and T

c/l

IM (θq), which are
defined in analogy to Eqs. (67) through (71) with the following
replacements:

V 1
IM → c(ω,�q)

Î√
3

∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)

×
∑
m′′

d

t∗m′′
d 1m′

d
(θq) tm′′

d 1md
(θq), (86)

WIM → −c(ω,�q )
Î√
3

∑
mdm′

d

(−)1−md

(
1 1 I

m′
d −md M

)

×
∑
m′′

d

t∗m′′
d 1m′

d
(θq) tm′′

d−1md
(θq). (87)

Here, c(ω,�q) denotes a kinematic factor. A complete listing
of all polarization observables including recoil polarization of
the final deuteron can be found in Ref. [14].

V. CONCLUSIONS

In this work we have derived formal expressions for the
differential cross section of incoherent pion photoproduction
on the deuteron, including various polarization asymmetries
with respect to polarized photons and deuterons. Obviously,
these expressions are generally valid for pseudoscalar meson
production. We did not consider polarization analysis of the
final state, i.e., spin analysis of one or both outgoing nucleons.
In this case one has to evaluate the following:

Pα(j )
d5σ

dqd�qd�p

= c(ω, q,�q,�p)tr[T †σα(j )Tρi], (88)

instead of Eq. (18) for the polarization of the “jth” outgoing
nucleon or

Pα1α2

d5σ

dqd�qd�p

= c(ω, q,�q,�p)tr[T †σα1 (1)σα2 (2)Tρi],

(89)

for the polarization of both outgoing nucleons. For the evalu-
ation of these expressions one can proceed straightforwardly
as has been done Ref. in [13]. In a subsequent article [15],
we investigate the influence of NN- and πN -rescattering
on the various asymmetries of the semiexclusive differential
cross section of incoherent pion photoproduction on the
deuteron.
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE
VARIOUS POLARIZATION ASYMMETRIES

We list here the explicit Hermitean, bilinear forms in terms
of the t matrix elements for cross section and the various
asymmetries.

(i) The semiexclusive differential cross section:

d3σ0

dqd�q

= 1

3

∫
d �pc(ω, q,�q,�p)

∑
smsmd

|tsms1md
|2.

(A1)

(ii) The photon asymmetry for linearly polarized photons
and unpolarized deuterons:

�̃l d3σ0

dqd�q

= −1

3

∫
d �pc(ω, q,�q,�p)

×
∑

smsmd

t∗sms1md
tsms−1md

. (A2)

(iii) The target asymmetry for vector polarized deuterons and
unpolarized photons:

T̃ 0
11

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 
m

×
∑
sms

(t∗sms1−1 tsms10 + t∗sms10 tsms11). (A3)

(iv) The target asymmetries for tensor polarized deuterons
and unpolarized photons:

T̃ 0
20

d3σ0

dqd�q

= 1

3
√

2

∫
d �pc(ω, q,�q,�p)

×
∑
sms

(|tsms11|2 + |tsms1−1|2 − 2 |tsms10|2
)
,

(A4)
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T̃ 0
21

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 	e

×
∑
sms

(
t∗sms1−1 tsms10 − t∗sms10 tsms11

)
, (A5)

T̃ 0
22

d3σ0

dqd�q

= 2√
3

∫
d �pc(ω, q,�q,�p) 	e

×
∑
sms

t∗sms1−1 tsms11. (A6)

(v) The beam-target asymmetries for circularly polarized
photons and vector polarized deuterons:

T̃ c
10

d3σ0

dqd�q

= 1√
6

∫
d �pc(ω, q,�q,�p)

×
∑
sms

(|tsms11|2 − |tsms1−1|2
)
, (A7)

T̃ c
11

d3σ0

dqd�q

= −
√

2

3

∫
d �pc(ω, q,�q,�p) 	e

×
∑
sms

(
t∗sms1−1 tsms10 + t∗sms10 tsms11

)
. (A8)

(vi) The beam-target asymmetries for circularly polarized
photons and tensor polarized deuterons:

T̃ c
21

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 
m

×
∑
sms

(
t∗sms10 tsms11 − t∗sms1−1 tsms10

)
, (A9)

T̃ c
22

d3σ0

dqd�q

= − 2√
3

∫
d �pc(ω, q,�q,�p) 
m

×
∑
sms

t∗sms1−1 tsms11. (A10)

(vii) The beam-target asymmetries for linearly polarized
photons and vector polarized deuterons:

T̃ l
10

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 
m

×
∑
sms

(
t∗sms11 tsms−11

)
, (A11)

T̃ l
11

d3σ0

dqd�q

= −
√

2

3

∫
d �pc(ω, q,�q,�p) 
m

×
∑
sms

(
t∗sms1−1 tsms−10

)
, (A12)

T̃ l
1−1

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 
m

×
∑
sms

(
t∗sms11 tsms−10

)
. (A13)

(viii) The beam-target asymmetries for linearly polarized
photons and tensor polarized deuterons:

T̃ l
20

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 	e

×
∑
sms

(
t∗sms10 tsms−10 − t∗sms11 tsms−11

)
,

(A14)

T̃ l
21

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 	e

×
∑
sms

(
t∗sms10 tsms−11

)
, (A15)

T̃ l
2−1

d3σ0

dqd�q

=
√

2

3

∫
d �pc(ω, q,�q,�p) 	e

×
∑
sms

(
t∗sms10 tsms−1−1

)
, (A16)

T̃ l
22

d3σ0

dqd�q

= − 1√
3

∫
d �pc(ω, q,�q,�p)

×
∑
sms

t∗sms1−1 tsms−11, (A17)

T̃ l
2−2

d3σ0

dqd�q

= − 1√
3

∫
d �pc(ω, q,�q,�p)

×
∑
sms

t∗sms11 tsms−1−1. (A18)
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[6] H. Arenhövel, A. Fix, and M. Schwamb, Phys. Rev. Lett. 93,
202301 (2004).

[7] A. Loginov, A. Sidorov, and V. Stibunov, Phys.
At. Nucl. 63, 391 (2000) [Yad. Fiz. 63, 459
(2000)].

[8] E. M. Darwish, J. Phys. G 31, 105 (2005).
[9] E. M. Darwish, Nucl. Phys. A735, 200 (2005).

[10] E. M. Darwish, Nucl. Phys. A748, 596 (2005).

064004-8



INCOHERENT PION . . . . I. . . . PHYSICAL REVIEW C 72, 064004 (2005)

[11] E. M. Darwish, Phys. Lett. B615, 61 (2005).
[12] E. M. Darwish and A. Salam, Nucl. Phys. A759, 170

(2005).
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