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Method for constructing relativistic three-particle models of the pion-nucleon system
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The Bakamjian-Thomas procedure is used to develop a method for constructing relativistic, instant form
models of the pion-nucleon system. A limited model space is used to illustrate the method. The model space
consists of a single-nucleon subspace, a pion-nucleon subspace, a two-pion-nucleon subspace, and a pion-sigma
meson-nucleon subspace. A Poincaré invariant mass operator is constructed that includes vertex interactions that
couple the various subspaces, as well as renormalization terms. It is shown that the pion-nucleon elastic scattering
and production amplitudes can be obtained from the solution of a single, three-dimensional, integral equation
of the Lippmann-Schwinger type. The effective pion-nucleon potential that appears in this equation contains
contributions from direct and crossed nucleon exchanges along with sigma exchange. The production amplitudes
are of the form that arises in isobar models. The elastic scattering and production amplitudes satisfy unitarity. The
method developed makes it possible to extend existing coupled-channel models of the pion-nucleon system to
include three-particle channels in such a way that the requirements of special relativity and unitarity are satisfied
exactly.

DOI: 10.1103/PhysRevC.72.064001 PACS number(s): 13.75.Gx, 11.80.−m, 24.10.Jv

I. INTRODUCTION

The Faddeev [1] formulation of the nonrelativistic three-
body problem, as well as alternative formulations [2–5], rather
quickly inspired the development of a relativistic three-particle
model of the pion-nucleon system. The reduction technique
introduced by Blankenbecler and Sugar [6] to produce three-
dimensional, relativistic equations was used by Aaron, Amado,
and coworkers [7] to develop such a model. Reduction
techniques were also used by Garcilazo and Mathelitsch [8] to
derive a relativistic model for the coupled πN–ππN system.
Three-dimensional equations for this system were derived
by Afnan and Pearce [9] using diagramatic, time-ordered
techniques.

Here we will use the Bakamjian-Thomas [10,11] method
to develop a formalism for constructing relativistic three-
particle models of the πN system. The original motivation
for this approach can be traced back to an important paper
by Dirac [12] in which he pointed out that there are various
possibilities for incorporating interactions in the Poincaré
generators. These possibilities Dirac called the instant form,
the point form, and the front form. Each form is associated
with a three-dimensional hypersurface that is invariant under
a subgroup of the Poincaré transformations, x ′ = ax + b,
and intersects every world line just once. For the instant,
point, and front forms the hypersurfaces can be taken to
be t = const., c2t2 − x2 = a2 > 0 with t > 0 and ct + z = 0,
respectively. In Dirac’s approach the generators associated
with these hypersurfaces are taken to be noninteracting, and
interactions are put into the remaining generators. In the instant
form the three-momentum P and the angular momentum J are
noninteracting, while the Hamiltonian H and the generator of
rotationless boosts K contain interactions.

In the Bakamjian-Thomas approach for the instant form
generators the ten generators are expressed in terms of
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another set of ten operators, {M, P, S, X}, where M is the
mass operator, S is a spin operator, and X is the so-called
Newton-Wigner position operator [11,13]. This second set of
operators satisfies much simpler commutation rules than the
generators, which facilitates the construction of models. In
the Bakamjian-Thomas scheme P, S, and X are taken to be
noninteracting, and an interaction is put only into the mass
operator, M.

It is relatively straightforward to carry out a Bakamjian-
Thomas construction for a system in which there are coupled
one- and two-particle channels. In particular, models of the
pion-nucleon system have been constructed in which there
are single-baryon and meson-baryon channels [14–16]. Such
models contain vertex interactions that couple single-baryon
states to meson-baryon states, as well as interactions that
couple meson-baryon states directly to each other. The vertex
interactions lead to renormalization effects.

There has been a fair amount of activity devoted to using
the Bakamjian-Thomas method to construct relativistic three-
particle models in which the number of particles is fixed.
Coester [17] analyzed the S matrix that arises in an instant
form, three-particle model. The development of three-particle
equations in the front form was carried out by Bakker et al.
[18]. These front form equations have been used in a study of
relativistic proton-deuteron scattering [19]. Relativistic effects
in three-body bound states have been investigated within the
framework of a simplified model of the three-nucleon system,
constucted by using the Bakamjian-Thomas scheme [20].

The Bakamjian-Thomas construction has also been used to
formulate relativistic quark models of the baryons. In particular
Szczepaniak et al. [21] have used the construction to derive a
Poincaré invariant formulation of the Isgur-Karl quark model
for baryons [22,23]. Coester et al. [24] have developed a simply
solvable three-quark model for the baryons, also by using the
Bakamjian-Thomas construction.

There has been a modest amount of effort devoted
to using the Bakamjian-Thomas method to construct
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three-particle models for systems in which the particle number
is not conserved. Such a model has been developed for the
NN–πNN system by Betz and Coester [25] and applied
by Betz and Lee [26]. Pichowsky et al. [27] have used
the Bakamjian-Thomas construction to develop a model that
describes ππ scattering from threshold up to 1400 MeV.
Their model properly includes unitarity cuts for one-, two,
and three-hadron states.

Most relevant to the present work is Klink’s [28]
Bakamjian-Thomas construction of point form mass operators
from vertex interactions. He considered a simplified model
in which a scalar “nucleon” interacts with a “scalar” pion.
A truncated Hilbert space consisting of the direct sum of N
and πN states leads to an eigenvalue problem for the physical
nucleon mass, as well as a Lippmann-Schwinger equation for
πN scattering. Another truncation consisting of NN and πNN

states leads to an eigenvalue problem for the “deuteron”, along
with a model for NN scattering with pion production.

Here we will use a Bakamjian-Thomas construction to
develop an instant form, three-particle model for a system
that has many of the features of the pion-nucleon system.
The model space consists of single-nucleon states, πN states,
ππN states, and πσN states. The model specifies a Poincaré
invariant mass operator that includes vertex interactions along
with renormalization terms. The vertex interactions couple
N to πN states, πN states to ππN states, and πN states
to πσN states. By eliminating the N, ππN , and πσN

states, we will show that the elastic scattering and production
amplitudes can be obtained from the solution of a single, three-
dimensional integral equation of the Lippmann-Schwinger
type. The driving term for this equation is an effective,
energy-dependent, pion-nucleon potential that describes direct
and crossed nucleon exchanges along with sigma exchange.
It turns out that this effective potential can be identified
with expressions derived from effective Lagrangians by using
time-ordered perturbation theory. The production amplitudes
have the well-known isobar form. It is demonstrated explicitly
that the various amplitudes satisfy two- and three-particle
unitarity.

The outline of the paper is as follows. In Sec. II a
brief description of the Bakamjian-Thomas method is given,
and the restrictions on a mass operator necessary to ensure
Poincaré invariance are stated. The various states that enter
into the construction of the Hilbert space of the model are
described and precisely defined in Sec. III. The mass operator
is developed in Sec. IV, and its Poincaré invariance is verified
in Sec. V. In Sec. VI integral equations are derived that
describe the coupling between the various subspaces of the
model, and it is shown that the amplitudes for elastic scattering
and production can be obtained by solving a single integral
equation. Section VII presents specific models for the various
vertex functions that are an essential part of the mass operator,
and these models are used to derive explicit expressions for
the effective pion-nucleon potential. The proof of unitarity is
given in Sec. VIII. Section IX presents a discussion of the
results along with suggestions for future work on the model.
Many of the details on the basis states and the relationships
among them are given in Appendix A.

Throughout we work in units in which h̄ = c = 1.

II. GENERAL BACKGROUND

In a satisfactory relativistic quantum mechanics there exist
unitary operators U (a, b) that correspond to the Poincaré
transformations, x ′ = ax + b and map quantum mechanical
state vectors from the x frame to the x ′ frame. For proper
transformations these unitary operators can be expressed in
terms of ten generators, four of which are the components
of the four-momentum operator, P = (H, P), while the other
six are the components of the three-vector operators J and K.
Here H is the Hamiltonian operator, P is the three-momentum
operator, J is the angular momentum operator, and K is the
generator of rotationless boosts.

In the Bakamjian-Thomas scheme [10,11] the ten genera-
tors {H, P, J, K} are expressed in terms of another set of ten
Hermitian operators, {M, P, S, X}, by means of the relations

H = (P2 + M2)1/2, (2.1a)

J = X × P + S, (2.1b)

K = −1

2
(XH + HX) − P × S

M + H
. (2.1c)

Here M is the mass operator, S is the spin operator, and X is
the Newton-Wigner position operator [11,13]. The operators
P, S, and X are chosen to be the same as those for the system
of particles without interactions, while the mass operator M
contains interactions. The commutation rules for P, S, and
X are then automatically satisfied, and in order to guarantee
Poincaré invariance it is only necessary to ensure that

[M, P] = [M, S] = [M, X] = 0. (2.2)

With this procedure the generators P and J are noninteracting,
while H and K contain interactions. This defines an instant
form of relativistic quantum mechanics, since the Poincaré
transformations related to the noninteracting generators map a
Minkowski space, t = const. hypersurface into itself.

III. MODEL SPACE

The model constructed here describes the nucleon, N,
two pions, π1 and π2, and two sigma mesons, σ1 and σ2,
with the possible types of state given by |N〉, |Nπ1〉, |Nπ2〉,
|Nπ1π2〉, |Nπ1σ2〉, and |Nπ2σ1〉. A state of any type is
orthogonal to any state of another type, e.g., 〈N |Nπ2〉 = 0.

The various energies that will be encountered are given by

Ea(p) = (
p2 + m2

a

)1/2
, (3.1a)

Wab(q) = Ea(q) + Eb(q), (3.1b)

Eab(p, q) = [
p2 + W 2

ab(q)
]1/2

, (3.1c)

Wabc(k, q) = Ea(k) + Ebc(k, q), (3.1d)

Eabc(p, k, q) = [
p2 + W 2

abc(k, q)
]1/2

. (3.1e)

In general W will indicate a c.m. energy. For example, WπN (q)
is the energy of a pion and a nucleon in a c.m. frame in
which the pion has three-momentum q and the nucleon has
three-momentum −q, while EπN (p, q) is their energy in a
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frame in which their total three-momentum is p. The total
four-momentum of a set of particles with total energy E and
total three-momentum p is given by

p = (p0, p) = (E, p). (3.2)

To keep subscripts to a minimum, where convenient we set
ω = Eπ, ε = EN , and σ = Eσ .

States of total four-momentum p are obtained by boosting
a c.m. or rest-frame state, using the unitary operator U [lc(p)]
that corresponds to the so-called canonical boost lc(p). This
particular boost is defined by

x = lc(p)xc.m., (3.3a)

x0 = p0x0
c.m. + p · xc.m.

W
, (3.3b)

x = xc.m. +
(

x0
c.m. +

p · xc.m.

p0 + W

)
p
W

, (3.3c)

W = +(p · p)1/2. (3.3d)

The inverse boost is obtained by interchanging x and xc.m. and
letting p → −p. The state of a nucleon with three-momentum
p, isospin component i, and spin component m is defined by
[see Eq. (A17)]

|pim〉 = U [lc(p)]|0im〉[mN/ε(p)]1/2, (3.4)

where the rest-frame state |0im〉 is an SU(2) basis state
under three-rotations [see Eq. (A2)]. This state, as well as all
of the following states, have delta-function-Kronecker-delta
normalization as given by (A11). The pion-nucleon states are
defined by

|p(ku)im〉a = U [lc(p)]|ku〉a ⊗ | − k, im〉
× [WπN (k)/EπN (p, k)]1/2, (3.5a)

|p(kim)u〉a = U [lc(p)]|kim〉 ⊗ | − k, u〉a
× [WNπ (k)/ENπ (p, k)]1/2, (3.5b)

a = 1, 2,

where in Eqs. (3.5a) and (3.5b) k is the rest-frame three-
momentum of the pion or the nucleon, respectively. Here |ku〉a
is a state of pion πa with three-momentum k and isospin
component u and is obtained from its rest-frame state in a
manner similar to Eq. (3.4). The parentheses around ku and
kim, and in Eqs. (3.6)–(3.10), will play a role when the mass
operator interactions are defined. For now they indicate only
the state on the left in the direct products. The πaπbN states
are defined by

|p(ku)ρt im〉a = U [lc(p)]|ku〉a ⊗ | − k(ρt)im〉b
× [WππN (k, ρ)/EππN (p, k, ρ)]1/2, (3.6)

a = 1, 2; b = 1, 2; a �= b.

Here |− k(ρt)im〉b is obtained from Eq. (3.5a) by letting a →
b, p → −k, k → ρ, and u → t . It is important to note that
in Eq. (3.6) k is the three-momentum of πa in the πaπbN

c.m. frame, while ρ is the three-momentum of πb in a πbN

c.m. frame obtained by an inverse canonical boost from the

πaπbN c.m. frame. An Nσb state is given by

|p(kim)〉b = U [lc(p)]|kim〉 ⊗ | − k〉b
× [WNσ (k)/ENσ (p, k)]1/2, b = 1, 2, (3.7)

where |− k〉b is a state of σb with three-momentum −k. A
πaNσb state is defined by

|p(ku)ξ im〉a = U [lc(p)]|ku〉a ⊗ | − k(ξ im)〉b
× [WπNσ (k, ξ )/EπNσ (p, k, ξ )]1/2, (3.8)

a = 1, 2; b = 1, 2; a �= b,

where k is the three-momentum of πa in the πaNσb c.m.
frame, while ξ is the three-momentum of N in a Nσb c.m.
frame obtained by an inverse canonical boost from the πaNσb

c.m. frame. A πaσb state is given by

|p(ku)〉a = U [lc(p)]|ku〉a ⊗ | − k〉b
× [Wπσ (k)/Eπσ (p, k)]1/2, (3.9)

a = 1, 2; b = 1, 2; a �= b.

An Nπaσb state is defined by

|p(kim)ζu〉a = U [lc(p)]|kim〉 ⊗ | − k(ζu)〉a
× [WNπσ (k, ζ )/ENπσ (p, k, ζ )]1/2, (3.10)

a = 1, 2,

where k is the three-momentum of N in the Nπaσb c.m. frame,
while ζ is the three-momentum of πa in a πaσb c.m. frame
obtained by an inverse canonical boost from the Nπaσb c.m.
frame. It should be noted that the states in Eqs. (3.5) are simply
related by |p(ku)im〉a = |p(−k, im)u〉a . Also, in Eq. (3.6)
the a = 1 states are related to the a = 2 states, since both
are π1π2N states, and the states defined by Eqs. (3.8) and
(3.10) are related to each other, since both are πaσbN states.
The connections between these pairs of states are provided by
Eq. (A27).

IV. MASS OPERATOR

The mass operator that acts in the space spanned by the
states of Eqs. (3.4)–(3.6), (3.8), and (3.10) is of the form

M = M0 + V, (4.1a)

V = VN +
2∑

a=1

(
V π

a + V N
a

)
, (4.1b)

where M0 is the noninteracting mass operator and V contains
the interactions. The noninteracting mass operator is defined
by its action on our basis states, i.e.,

M0|pim〉 = mN |pim〉, (4.2a)

M0|p(ku)im〉a = WπN (k)|p(ku)im〉a, (4.2b)

M0|p(ku)ρt im〉a = WππN (k, ρ)|p(ku)ρt im〉a, (4.2c)

M0|p(ku)ξ im〉a = WπNσ (k, ξ )|p(ku)ξ im〉a, (4.2d)

M0|p(kim)ζu〉a = WNπσ (k, ζ )|p(kim)ζu〉a. (4.2e)

The interaction VN acts in the {|N〉, |Nπ1〉, |Nπ2〉} subspace
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and is given by

VN =
∑
im

∫
|pim〉d3p

[
m

(0)
N − mN

]〈pim|

+ 1√
2

2∑
a=1

{∑
uim

∑
i ′m′

∫
|p(ku)im〉a

×UπNN (kuim, i ′m′)d3p d3k〈pi ′m′| + (†)

}
. (4.3)

The first term on the right-hand side is a mass renormalization
term with m

(0)
N and mN the bare nucleon mass and physical

nucleon mass, respectively. The second term describes the
vertex interactions N ⇔ π1 + N and N ⇔ π2 + N , where
UπNN (kuim, i ′m′) = U ∗

πNN (i ′m′, kuim) is a vertex function,
a model for which will be presented in Sec. VII.

The interaction V π
a describes the vertex interactions N ⇔

πb + N and N ⇔ σb + N , with πa playing the role of a
spectator, and also includes a renormalization term. This
interaction is defined by

V π
a =

∑
uim

∫
|p(ku)im〉a d3p d3k V π

N (k) a〈p(ku)im|

+
{∑

utim

∑
i ′m′

∫
|p(ku)ρt im〉a d3p d3k d3ρ

×VπNN (ρt im, i ′m′; k) a〈p(ku)i ′m′| + (†)

}

+
{∑

uim

∑
m′

∫
|p(ku)ξ im〉a d3p d3k d3ξ

×VσNN (ξm,m′; k) a〈p(ku)im′| + (†)

}
. (4.4)

Note that the parentheses around k and u draw attention to the
variables of the spectator pion πa . Clearly this interaction is
diagonal in these variables, which is consistent with the fact
that they describe a spectator particle.

The interaction V N
a describes the vertex interactions πa ⇔

σb + πa , with N the spectator particle, and also includes a
renormalization term. This interaction is defined by

V N
a =

∑
imu

∫
|p(kim)u〉a d3p d3k V N

π (k) a〈p(kim)u|

+
{∑

imu

∫
|p(kim)ζu〉ad3p d3k d3ζ Vσππ (ζ ; k)

× a〈p(kim)u| + (†)

}
. (4.5)

The first terms on the right-hand sides of Eqs. (4.4) and (4.5)
are renormalization terms. The function V π

N (k) describes the
renormalization of the nucleon in the presence of the spectator
pion, while V N

π (k) describes the renormalization of the pion in
the presence of the spectator nucleon. We will see in Sec. VI
how these functions are determined. Models for the vertex
functions VπNN, VσNN , and Vσππ will be presented in Sec. VII.

V. POINCARÉ INVARIANCE

As we saw in Sec. II, in order to ensure that our model
is Poincaré invariant, we must verify that our mass operator
commutes with P, S, and X. We define the three-momentum
operator P and the Newton-Wigner position operator X by
their representatives in our basis, e.g.,

a〈p(ku)im|P = p a〈p(ku)im|, (5.1)

a〈p(ku)ξ im|X = i∇p a〈p(ku)ξ im|. (5.2)

According to Eq. (2.1b) the spin operator S is determined
by X, P, and the total angular momentum operator J. The
representatives of J can be obtained from the fact that states
such as those that appear in Eqs. (5.1) and (5.2) rotate
according to

U (r)|p(ku)im〉a =
∑
m′

|rp(rk,u)im′〉aD(1/2)
m′m (r), (5.3a)

U (r)|p(ku)ξ im〉a =
∑
m′

|rp(rk,u)rξ ,im′〉aD(1/2)
m′m (r),

(5.3b)

where U (r) = exp(iθ · J), r = exp(iθ · j), and D1/2(r) is
a standard SU(2) matrix. These relations follow from
Eqs. (A18), (A5), (A12b), (3.5a), and (3.8). Expanding to first
order in θ leads to representatives of J, which when combined
with Eqs. (2.1b), (5.1), and (5.2) leads to representatives of S.
We don’t need these representatives, but it is worth noting in
passing that for the states in Eqs. (5.1) and (5.2) they are given
by

a〈p(ku)im|S =
∑
m′

[
L(k)δmm′ + 1

2
σmm′

]
a〈p(ku)im′|,

(5.4a)

a〈p(ku)ξ im|S =
∑
m′

[
L(k)δmm′ + L(ξ )δmm′ + 1

2
σmm′

]
× a〈p(ku)ξ im′|, (5.4b)

L(x) = i∇ × x. (5.4c)

Note that the representatives of S don’t depend on the total
three-momentum p.

Since P, X, and S are the same as those of the noninteracting
system, it follows that

[M0, P] = [M0, X] = [M0, S] = 0, (5.5)

which in turn implies that it is only necessary to verify that

[V, P] = [V, X] = [V, S] = 0. (5.6)

This is most easily done by working with matrix elements of
the interaction such as

a〈p(ku)ξ im|V π
a |p′(k′u′)i ′m′〉a

= δ3(p − p′)δ3(k − k′)δuu′δii ′VσNN (ξm,m′; k), (5.7)

which follows from Eqs. (4.4) and (A11). From here and from
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Eqs. (5.1) and (5.2) we find that

a〈p(ku)ξ im|[V π
a , P

]|p′(k′u′)i ′m′〉a = 0, (5.8)

a〈p(ku)ξ im|[V π
a , X

]|p′(k′u′)i ′m′〉a = 0, (5.9)

which when extended to the complete set of basis states
gives [

V π
a , P

] = [
V π

a , X
] = 0. (5.10)

To verify that S commutes with V π
a let us assume that the

vertex function VσNN is rotationally invariant, i.e.,∑
nn′

D(1/2)
mn (r−1)VσNN (rξ ,n, n′; rk)D(1/2)

n′m′ (r)

= VσNN (ξm,m′; k). (5.11)

It then follows from Eqs. (5.3), (5.7), and the relations δ3(rx) =
δ3(x) and D

(1/2)∗
mm′ (r) = D

(1/2)
m′m (r−1) that

a〈p(ku)ξ im|U−1(r)V π
a U (r)|p′(k′u′)i ′m′〉a

(5.12)
=a 〈p(ku)ξ im|V π

a |p′(k′u′)i ′m′〉a.
Extending Eq. (5.12) to the complete set of basis states, and
expanding U (r) to first order in θ , leads to [V π

a , J] = 0.
When this is combined with Eqs. (2.1b) and (5.10) we find
that [

V π
a , S

] = 0. (5.13)

Clearly the procedure just outlined can be extended to all
of the terms in the mass operator interaction V so as to verify
that Eq. (5.6) is satisfied, which in turn proves that our mass
operator is Poincaré invariant.

VI. THREE-PARTICLE EQUATIONS

To derive integral equations for the various amplitudes, let
us start with the equation for the state vector |
〉, i.e.,

(W − M0)|
〉 = V |
〉, (6.1)

and after inserting Eqs. (4.1b), (4.3), (4.4), and (4.5), contract
with the basis states defined by Eqs. (3.4)–(3.6), (3.8), and
(3.10). Upon so doing we encounter overlap of the a = 1 and
a = 2 states defined by Eq. (3.6), as well as overlap of the
states defined by Eq. (3.8) and those defined by Eq. (3.10)
with the same value of a. We determine these inner products
by using Eq. (A27) with the isospin indices added. For the
overlap of the (3.6) states, we identify πa, πb,N with 1, 2, and
3, respectively, to obtain

a〈p(ku)ρt im|p′(k′u′)ρ ′t ′i ′m′〉b
= δ3(p − p′)δut ′δtu′δii ′δ

3[ρ − fπN (k′,−k − k′)]

× δ3[ρ ′ − fπN (k,−k − k′)]Qmm′(k, k′), a �= b,

(6.2a)

Qmm′(k, k′) = BπN (k′,−k − k′)BπN (k,−k − k′)

×D
(1/2)
mm′

[
rπN (k′,−k − k′)r−1

πN (k,−k − k′)
]
.

(6.2b)

The Kroenecker deltas in the isospin indices follow from the
fact that u and t ′ refer to πa, t and u′ refer to πb, and i and

i ′ refer to N. To determine the overlap of the Eq. (3.8) and
Eq. (3.10) states, in Eq. (A27) we identify πa,N , and σb with
1, 2, and 3, respectively, to obtain

a〈p(ku)ξ im|p′(k′i ′m′)ζ ′u′〉a
= δ3(p − p′)δuu′δii ′δ

3[ξ − fNσ (k′,−k − k′)]
× δ3[ζ ′ − fπσ (k,−k − k′)]Rmm′(k, k′), (6.3a)

Rmm′ (k, k′) = BNσ (k′,−k − k′)Bπσ (k,−k − k′)

×D
(1/2)
mm′ [rσN (−k − k′, k′)]. (6.3b)

Here fab(pa, pb) is the three-momentum of particle a in the
c.m. frame of particles a and b, which according to the inverse
of Eq. (3.3) is given by

fab(pa, pb) = 1

2
(pa−pb)−1

2

[
Ea(pa)−Eb(pb)+m2

a − m2
b√

p · p

]
× p

p0 + √
p · p

, (6.4a)

p = (Ea(pa) + Eb(pb), pa + pb). (6.4b)

The functions Bab(pa, pb) are defined by

Bab(pa, pb) =
{

Ea(pa) + Eb(pb)

Ea(pa)Eb(pb)

× Ea[fab(pa, pb)]Eb[fab(pa, pb)]

Wab[fab(pa, pb)]

}1/2

.

(6.5)

The arguments of the SU(2) representatives D(1/2)are given
by

rab(pa, pb) = rc

[
l−1
c (pa + pb), pb

]
, pa = (Ea(pa), pa),

(6.6)

where rc is a so-called Wigner rotation [11], which for
canonical boosts and a general Lorentz transformation a is
defined by

rc(a, p) = l−1
c (ap)alc(p). (6.7)

Assuming that our state |
〉 has a total three-momentum
p′, we can write for the various components of our state vector
the relations

〈pim|
〉 = δ3(p − p′)ψ(im), (6.8a)

a〈p(ku)im|
〉 = δ3(p − p′)ψ(kuim)/
√

2, (6.8b)

a〈p(ku)ρt im|
〉 = δ3(p − p′)ψ(kuρt im)/
√

2, (6.8c)

a〈p(ku)ξ im|
〉 = δ3(p − p′)ψ(kuξ im)/
√

2, (6.8d)

a〈p(kim)ζu|
〉 = δ3(p − p′)ψ(kimζu)/
√

2. (6.8e)

Using Eqs. (6.1), (4.2), (4.1b), (4.3), (4.4), and (4.5), and
setting z = W + iε, we find the following coupled integral
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equations:

ψ(im) =
∑
u′i ′m′

∫
UπNN (im, k′u′i ′m′)

z − m
(0)
N

d3k′ψ(k′u′i ′m′),

(6.9a)

[
W − WπN (k) − V π

N (k) − V N
π (k)

]
ψ(kuim)

=
∑
i ′m′

UπNN (kuim, i ′m′)ψ(i ′m′)

+
∑
t ′i ′m′

∫
VπNN (im, ρ ′t ′i ′m′; k)d3ρ ′ψ(kuρ ′t ′i ′m′)

+
∑
m′

∫
VσNN (m, ξ ′m′; k)d3ξ ′ψ(kuξ ′im′)

+
∫

Vσππ (ζ ; −k)d3ζψ(−k,imζu), (6.9b)

ψ(kuρt im) =
∑
i ′m′

VπNN (ρt im, i ′m′; k)

z − WππN (k, ρ)
ψ(kui ′m′)

+
∑

m′i ′′m′′

∫
δ3[ρ − fπN (k′,−k − k′)]Qmm′(k, k′)

z − ω(k) − ε(−k − k′) − ω(k′)
d3k′

×VπNN [fπN (k,−k − k′), uim′, i ′′m′′; k′]ψ(k′t i ′′m′′),
(6.9c)

ψ(kuξ im) =
∑
m′

VσNN (ξm,m′; k)

z − WπNσ (k, ξ )
ψ(kuim′)

+
∑
m′

∫
δ3[ξ − fNσ (−k′,−k + k′)]Rmm′(k,−k′)

z − ω(k) − σ (−k + k′) − ε(−k′)
d3k′

×Vσππ [fπσ (k,−k + k′); −k′]ψ(k′uim′), (6.9d)

ψ(−k,imζu) = Vσππ (ζ ; −k)

z − WNπσ (−k, ζ )
ψ(kuim)

+
∑
m′

∫
δ3[ζ − fπσ (k′, k − k′)]R∗

m′m(k′,−k)

z − ε(−k) − σ (k − k′) − ω(k′)
d3k′

×VσNN [fNσ (−k, k − k′)m′,m′′; k′]ψ(k′uim′′). (6.9e)

In deriving (6.9c)–(6.9e) we used the identities

WππN [k, fπN (k′,−k − k′)]
= ω(k) + ε(−k − k′) + ω(k′), (6.10a)

WπNσ [k, fNσ (−k′,−k + k′)]
= ω(k) + σ (−k + k′) + ε(−k′), (6.10b)

WNπσ [−k, fπσ (k′, k − k′)]
= ε(−k) + σ (k − k′) + ω(k′). (6.10c)

Relation (6.10a), for example, follows from Eq. (3.1d) and the
observation that EπN [k, fπN (k′,−k − k′)] is the energy in the

ππN c.m. frame of a pion of energy ω(k′) and a nucleon of
energy ε(−k − k′). Similar considerations lead to Eqs. (6.10b)
and (6.10c).

Substituting Eqs. (6.9a) and (6.9c)–(6.9e) into Eq. (6.9b)
leads to an equation for ψ(kuim), the πN component of
the state vector. The first terms on the right-hand sides of
Eqs. (6.9c)–(6.9e) lead to the following integrals:∑

t ′′i ′′m′′

∫
VπNN (im, ρt ′′i ′′m′′; k)

× d3ρ

z − WππN (k, ρ)
VπNN (ρt ′′i ′′m′′, i ′m′; k)

= δii ′δmm′

∫
d3ρFπNN (ρ; k)

z − WππN (k, ρ)
, (6.11a)

FπNN (ρ; k) =
∫

d�(ρ)

4π

∑
t ′′i ′′m′′

|VπNN (ρt ′′i ′′m′′, im; k)|2,
(6.11b)∑

m′′

∫
VσNN (m, ξm′′; k)

d3ξ

z − WπNσ (k, ξ )
VσNN (ξm′′,m′; k)

= δmm′

∫
d3ξFσNN (ξ ; k)

z − WπNσ (k, ξ )
, (6.11c)

FσNN (ξ ; k) =
∫

d�(ξ )

4π

∑
m′′

|VσNN (ξm′′,m; k)|2, (6.11d)∫
Vσππ (ζ ; −k)

d3ζ

z − WNπσ (k, ζ )
Vσππ (ζ ; −k)

=
∫

d3ζFσππ (ζ ; k)

z − WNπσ (k, ζ )
, (6.11e)

Fσππ (ζ ; k) =
∫

d�(ζ )

4π
|Vσππ (ζ ; −k)|2. (6.11f)

In writing Eqs. (6.11a) and (6.11c) we have anticipated results
obtained in Sec. VII. Combining the above results with the
left-hand side of Eq. (6.9b), we are led to define

d(k, z) = ZπN (k)

[
z − WπN (k) − V π

N (k) − V N
π (k)

−
∫

d3ρ
FπNN (ρ; k)

z−WππN (k, ρ)
−

∫
d3ξ

FσNN (ξ ; k)

z−WπNσ (k, ξ )

−
∫

d3ζ
Fσππ (ζ ; k)

z − WNπσ (k, ζ )

]
, (6.12)

where we have introduced a function ZπN (k), which we will
now define. Since d−1(k, z) is a propagator for the πN system,
we require that

d(k, z) −→
z→WπN (k)

z − WπN (k), (6.13)

which leads us to define

V π
N (k) = −

∫
d3ρ

FπNN (ρ; k)

WπN (k) − WππN (k, ρ)

−
∫

d3ξ
FσNN (ξ ; k)

WπN (k) − WπNσ (k, ξ )
, (6.14a)

V N
π (k) = −

∫
d3ζ

Fσππ (ζ ; k)

WNπ (k) − WNπσ (k, ζ )
. (6.14b)

064001-6



METHOD FOR CONSTRUCTING RELATIVISTIC THREE- . . . PHYSICAL REVIEW C 72, 064001 (2005)

We see that V π
N (k) and V N

π (k) renormalize the nucleon and
the pion in the presence of a spectator pion and nucleon,
respectively. Using Eq. (3.1), it is easy to verify that the
denominators in Eq. (6.14) do not vanish, so that V π

N (k) and
V N

π (k) are real, as they must be to ensure that the interactions
(4.4) and (4.5) are Hermitian. Putting Eq. (6.14) into Eq. (6.12),
we now have

d(k, z) = ZπN (k)[z − WπN (k)]

×
{

1 +
∫

d3ρ
FπNN (ρ; k)

[z − WππN (k, ρ)][WπN (k) − WππN (k, ρ)]

+
∫

d3ξ
FσNN (ξ ; k)

[z − WπNσ (k, ξ )][WπN (k) − WπNσ (k, ξ )]

+
∫

d3ζ
Fσππ (ζ ; k)

[z − WNπσ (k, ζ )][WNπ (k) − WNπσ (k, ζ )]

}
.

(6.15)

A formula for ZπN (k) can be found by combining Eqs. (6.13)
and (6.15).

The second terms on the right-hand sides of Eqs. (6.9c)–
(6.9e), along with Eq. (6.9a), when inserted in Eq. (6.9b), lead
to various energy-dependent, effective πN–πN potentials,
which are given by

Bd (kuim, k′u′i ′m′; z) =
∑
i ′′m′′

Z
1/2
πN (k)UπNN (kuim, i ′′m′′)UπNN (i ′′m′′, k′u′i ′m′)Z1/2

πN (k′)

z − m
(0)
N

, (6.16)

Bc(kuim, k′u′i ′m′; z) =
∑
jnn′

VπNN (im, ρu′jn; k)Z1/2
πN (k)Qnn′(k, k′)Z1/2

πN (k′)VπNN (ρ ′ujn′, i ′m′; k′)
z − ω(k) − ε(−k − k′) − ω(k′)

, (6.17a)

ρ = fπN (k′,−k − k′), ρ ′ = fπN (k,−k − k′), (6.17b)

Be(kuim, k′u′i ′m′; z) = δuu′δii ′ [Bσ (km, k′m′; z) + B∗
σ (k′m′, km; z∗)], (6.18a)

Bσ (km, k′m′; z) =
∑

n

VσNN (m, ξn; k)Z1/2
πN (k)Rnm′(k,−k′)Z1/2

πN (k′)Vσππ (ζ ; −k′)
z − ω(k) − σ (−k + k′) − ε(−k′)

(6.18b)

ξ = fNσ (−k′,−k + k′), ζ = fπσ (k,−k + k′). (6.18c)

Here d indicates a direct or s-channel contribution, c a crossed
or u-channel contribution, and e an exchange or t-channel
contribution.

Solving Eq. (6.1) has now been reduced to solving the
integral equation

d(k, z)Z−1/2
πN (k)ψ(kuim) =

∑
u′i ′m′

∫
B(kuim, k′u′i ′m′; z)

× d3k′Z−1/2
πN (k′)ψ(k′u′i ′m′),

(6.19)

with z = W + iε, and where the complete effective πN–πN

potential is given by

B(kuim, k′u′i ′m′; z) =
∑

x=d,c,e

Bx(kuim, k′u′i ′m′; z). (6.20)

We now derive an equation for the elastic πN scattering
amplitude. We introduce an “initial” state as

|p′k′u′i ′m′〉 = Z
1/2
πN (k′)√

2

2∑
a=1

|p′k′u′i ′m′〉a (6.21)

and now denote our state vector |
〉 as |
(p′k′u′i ′m′)〉. Using

Eqs. (6.8b), (A11), and (6.15), we can rewrite Eq. (6.19) as

Z
−1/2
πN (k)ψ(kuim, k′u′i ′m′) = δ3(k − k′)δuu′δii ′δmm′

+ 1

d(k, z)

∑
u′′i ′′m′′

∫
B(kuim, k′′u′′i ′′m′′; z)d3k′′Z−1/2

πN (k′′)

×ψ(k′′u′′i ′′m′′, k′u′i ′m′), (6.22)

where we have added the initial state labels to the argument
of ψ and identified z = WπN (k′) + iε. We define the elastic
scattering amplitudes as the residue of the pole in d−1(k, z) at
z = WπN (k), i.e.,

X(kuim, k′u′i ′m′; z) =
∑

u′′i ′′m′′

∫
B(kuim, k′′u′′i ′′m′′; z)

× d3k′′Z−1/2
πN (k′′)ψ(k′′u′′i ′′m′′, k′u′i ′m′), (6.23)

where upon using Eq. (6.22) we obtain the Lippmann-
Schwinger-like equation

X(kuim, k′u′i ′m′; z)

= B(kuim, k′u′i ′m′; z) +
∑

u′′i ′′m′′

∫
B(kuim, k′′u′′i ′′m′′; z)

× d3k′′

d(k′′, z)
X(k′′u′′i ′′m′′, k′u′i ′m′; z). (6.24)
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We now derive a formula for the production amplitude for
the process πN → ππN . From Eqs. (A25), (6.6), and (6.7)
we get the relation between a ππN state in which the two
pions are treated in a symmetric way and our states (3.6), i.e.,

|pk1u1k2u2im〉
=

∑
m′

|p(kaua)ρbNubim
′〉aD(1/2)

m′m
{
r−1
c [lc(kbN ), ρN ]

}
×BπN (kb,−k1 − k2), (6.25a)

kbN = (ω(kb) + ε(−k1 − k2),−ka),

ρN = (ε(ρbN ),−ρbN ),

ρbN = fπN (kb,−k1 − k2), a = 1, 2; b = 1, 2; a �= b,

(6.25b)

We have fleshed out the notation by adding subscripts to
the k and ρ that appear in the states of Eq. (3.6) to clarify
which particles they refer to. We now contract Eq. (6.1) with
the symmetric ππN state (6.25a). According to Eqs. (4.1b),
(4.3), (4.4), and (4.5) only the V π

a terms contribute. For the
V π

1 and V π
2 terms we use Eq. (6.25a) with a = 1 and a = 2,

respectively. With the help of Eq. (6.8b) we find

〈pk1u1k2u2im|
(p′k′u′i ′m′)〉

= δ3(p − p′)
z − W̃ππN (k1, k2)

1√
2

2∑
a=1

∑
ni ′′m′′

D(1/2)
mn {rc[lc(kbN ), ρN ]}

×VπNN (ρbNubin, i ′′m′′; ka)ψ(kauai
′′m′′, k′u′i ′m′)

×BπN (kb,−k1 − k2), (6.26)

where the ππN c.m. energy is given by

W̃ππN (k1, k2) = ω(k1) + ω(k2) + ε(−k1 − k2)

= WππN (k1, ρ23) = WππN (k2, ρ13). (6.27)

For the production amplitude we take the residue of the
pole in (6.26) at z = W̃ππN (k1, k2). It is easy to see that the
delta-function term in Eq. (6.22) does not contribute, since it
is not possible to have ka = k′ and WπN (k′) = WπN (ka) =
W̃ππN (k1, k2), so that the production amplitude is given
by

YππN (k1u1k2u2im; k′u′i ′m′)

= 1√
2

2∑
a=1

∑
ni ′′m′′

D(1/2)
mn {rc[lc(kbN ), ρN ]}

×VπNN (ρb3ubin, i ′′m′′; ka)Z1/2
πN (ka)

×X(kauai
′′m′′, k′u′i ′m′; z)

d(ka, z)
BπN (kb,−k1 − k2). (6.28)

Amplitude (6.28) is of the form commonly used in isobar
models. Here the initial pion and nucleon undergo an off-shell
scattering, described by X, to an intermediate pion-nucleon
state that propagates according to d−1(ka, z). This is followed
by the emission of a pion by the intermediate nucleon.

Using the same techniques that led to Eq. (6.28) we can
show that the production amplitude for the process πN →

πσN is given by

YπσN (kπukNim; k′u′i ′m′) =
∑
nm′′

D(1/2)
mn {rc[lc(kNσ ), ξN ]}

×VσNN (ξn,m′′; kπ )Z1/2
πN (kπ )

X(kπuim′′, k′u′i ′m′; z)

d(kπ , z)

×BNσ (kN,−kπ − kN ) + Vσππ (ζ ; kN )Z1/2
πN (kN )

× X(−kN, uim, k′u′i ′m′; z)

d(kN, z)
Bπσ (kπ ,−kπ − kN ),

(6.29a)

kNσ = (ε(kN ) + σ (−kπ − kN ),−kπ ), ξN = (ε(ξ ), ξ ),

ξ = fNσ (kN,−kπ − kN ), ζ = fπσ (kπ ,−kπ − kN ).

(6.29b)

Note that the c.m. energy of the πσN state is given by

W̃πNσ (kπ , kN ) = ω(kπ ) + σ (−kπ − kN ) + ε(kN )

= WπNσ (kπ , ξ ) = WNπσ (kN, ζ ). (6.30)

VII. EXPLICIT MODELS FOR VERTEX FUNCTIONS

Here we will use well-known effective Lagrangians to
develop explicit models for the various vertex functions that
appear in our mass operator. This will lead to models for
the pion-nucleon propagator, d(k, z), and for the effective
pion-nucleon potential, B(kuim, k′u′i ′m′; z). By coupling the
isospins we will simplify the formulas for the potentials, and
for the elastic scattering and production amplitudes.

To develop a model for the ππN vertex function we use
the interaction Hamiltonian, HπNN , given by Eqs. (3.9)–(3.11)
of Ref. [16]. For the process (p1u) + (p2t) + (pNim) ⇔
(p′

1u
′) + (p′

Ni ′m′) the matrix element of this Hamiltonian is
given by

〈p1u, p2t, pNim|HπNN |p′
1u

′, p′
Ni ′m′〉

= δ3(p − p′)δ3(p1 − p′
1)δuu′

(7.1)
×HπNN (p2t, pNim; p′

Ni ′m′) + (p1u ⇔ p2t),

p = p1 + p2 + pN, p′ = p′
1 + p′

N,

where

HπNN (p2t, pNim; p′
Ni ′m′)

= igπNN (ε∗
t · τ )ii ′CπN (p2, pN, p′

N )

× u(pN,m)
(−p2)u(p′
N,m′), (7.2a)

ε± = ∓(1/
√

2)(1,±i, 0), ε0 = (0, 0, 1), (7.2b)


(q) =
[
λ + (1 − λ)

γµqµ

2mN

]
γ5, (7.2c)

Cab(pa, pb, p′
b) = mb/[(2π )32Ea(pa)Eb(pb)Eb(p′

b)]1/2. (7.3)

Here gπNN is the pion-nucleon coupling constant. The pa-
rameter λ varies between 0 and 1 and determines the mix
of pseudoscalar and pseudovector coupling, with λ = 0 and
λ = 1 corresponding to pure pseudovector and pure pseu-
doscalar coupling, respectively. In order to get an expression
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for VπNN (ρt im, i ′m′; k), the mass operator matrix element that
appears in Eq. (4.4), we evaluate Eq. (7.2a) in the c.m. frame
and transform to the basis used in Eq. (4.4). From Eqs. (3.6),
(A22), (A20), and (6.5) it follows that

|p = 0, (ku)ρt im〉1

=
∑
m′

|k = k1, u〉 ⊗ |k2t〉 ⊗ |kNim′〉

×D
(1/2)
m′m {rc[lc(k2N ), ρN ]}B−1

πN (k2, kN ), (7.4a)

k2N = k2 + kN = (ω(k2) + ε(kN ), k2 + kN )

= (EπN (−k, ρ),−k), (7.4b)

ρ= fπN (k2, kN ), ρN = l−1
c (k2N )kN = (ε(ρ),−ρ). (7.4c)

Here k(= k1), k2, and kN are the three-momenta of π1, π2,
and N in their c.m. frame. According to Eq. (3.5a)

|p′ = 0, (k′u′)i ′m′〉1 = |k′ = k′
1, u

′〉 ⊗ | − k′,i ′m′〉. (7.5)

Here k′ = k′
1 = −k′

N = k, where k′
1 and k′

N are the three-
momenta of π ′

1and N ′ in their c.m. frame. Using these
relations, we now find that the πNN vertex function that
appears in Eq. (4.4) is given by

VπNN (ρt im, i ′m′; k)

= GπNN (ρ)
∑
m′′

B−1
πN (k2, kN )D(1/2)

mm′′
{
r−1
c [lc(k2N ), ρN ]

}
×HπNN (k2t, kNim′′; −k,i ′m′), (7.6)

where GπNN (ρ) is a phenomenological cutoff function that is
introduced to provide convergence.

Under a Lorentz transformation a a Dirac spinor transforms
according to

S(a)u(p,m) =
∑
m′

u(ap,m′)D(1/2)
m′m [rc(a, p)]. (7.7)

With the help of this relation and Eq. (6.5), along with the
fact that rc[l−1

c (k2N ), (ε(−k),−k)] = 1, which follows from
Eqs. (3.3) and (6.7), we find that

VπNN (ρt im, i ′m′; k)

= V ∗
πNN (i ′m′, ρt im; k)

= igπNNGπNN (ρ)(ε∗
t · τ )ii ′

[
WπN (ρ)

EπN (−k, ρ)

]1/2

×CπN (ρ, ρ,−k)u(ρN,m)
(−ρπ )u(ρ ′
N,m′), (7.8a)

ρπ = (ω(ρ), ρ), ρN = (ε(ρ),−ρ),

ρ ′
N = l−1

c (k2N )(ε(−k),−k) = (ε(ρ ′),−ρ ′),
(7.8b)

ε(ρ ′) = [EπN (−k, ρ)ε(−k) − k2]/WπN (ρ),

ρ ′ = k[EπN (−k, ρ) − ε(−k)]/WπN (ρ).

It is straightforward to show that

u(ρN,m)
(−ρπ )u(ρ ′
N,m′) = χ †

mσ · Q(ρ, k)χm′ ,

(7.9a)

Q(ρ, k) =
[
ε(ρ) + mN

2mN

]1/2 [
ε(ρ ′) + mN

2mN

]1/2

×
[

ρ

ε(ρ) + mN

A+(ρ) − ρ ′

ε(ρ ′) + mN

A−(ρ)

]
,

(7.9b)

A±(ρ) = λ + (1 − λ)
±WπN (ρ) + mN

2mN

. (7.9c)

Here χm is a two-component, spin-1/2 spinor. Using Eqs. (7.8)
and (7.9) it can be verified that Eq. (6.11a) does indeed contain
δii ′δmm′ and that FπNN is only a function of ρ = |ρ| and k =
|k|.

The vertex function UπNN (kuim, i ′m′) that appears in
Eq. (4.3) can be obtained from Eqs. (7.8) and (7.9) by setting
k = 0 and letting ρ → k. We find

UπNN (kuim, i ′m′) = U ∗
πNN (i ′m′, kuim)

= (i/
√

3)(ε∗
u · τ )ii ′(σ · k̂)mm′UπNN (k),

(7.10a)

UπNN (k) =
√

3g
(0)
πNNG

(0)
πNN (k)

[
mN

(2π )32ω(k)ε(k)

]1/2

×
[
ε(k) + mN

2mN

]1/2
k

ε(k) + mN

A+(k).

(7.10b)

Here g
(0)
πNN and G

(0)
πNN (k) are a “bare” coupling constant and

vertex function. The justification for using different coupling
constants and vertex functions in Eqs. (7.8) and (7.10) is given
in earlier work by Fuda [29] and Pearce and Afnan [30].

To develop models for the vertex functions VσNN and Vσππ

that appear in Eqs. (4.4) and (4.5), we use the Lagrangians
given by Eqs. (A12) and (A13) of Ref. [16]. Using the same
techniques as those that led to Eqs. (7.8) and (7.9), we find

VσNN (ξm,m′; k) = V ∗
σNN (m′, ξm; k)

= −gσNNGσNN (ξ )

[
WNσ (ξ )

ENσ (−k, ξ )

]1/2

×CσN (ξ , ξ ,−k)u(ξN,m)u(ξ ′
N,m′),

(7.11a)

ξN = (ε(ξ ), ξ ),

ξ ′
N = l−1

c (kNσ )(ε(−k),−k) = (ε(ξ ′),−ξ ′),
(7.11b)

ε(ξ ′) = [ENσ (−k, ξ )ε(−k) − k2]/WNσ (ξ ),

ξ ′ = k[ENσ (−k, ξ ) − ε(−k)]/WNσ (ξ ).

It is straightforward to show that

u(ξN,m)u(ξ ′
N,m′) =

[
ε(ξ ) + mN

2mN

]1/2 [
ε(ξ ′) + mN

2mN

]1/2

×χ †
m

{
1 + (σ · ξ )(σ · ξ ′)

[ε(ξ ) + mN ][ε(ξ ′) + mN ]

}
χm′ . (7.12)
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We also find

Vσππ (ζ ; k) = −gσππGσππ (ζ )

[
Wπσ (ζ )

Eπσ (−k, ζ )

]1/2

×Cσπ (ζ , ζ ,−k)
1

2

(
1 + g̃σππ

gσππ

ζπ · ζ ′
π

m2
π

)
,

(7.13a)

ζπ = (ω(ζ ), ζ ),

ζ ′
π = l−1

c (kπσ )(ω(−k),−k) = (ω(ζ ′),−ζ ′),

ω(ζ ′) = [Eπσ (−k, ζ )ω(−k) − k2]/Wπσ (ζ ),

ζ ′ = k[Eπσ (−k, ζ ) − ω(−k)]/Wπσ (ζ ). (7.13b)

Using Eqs. (7.11)–(7.13) it can be verified that Eq. (6.11c) does
contain δmm′ , FσNN is only a function of ξ = |ξ | and k = |k|,
and Fσππ is only a function of ζ = |ζ | and k = |k〉.

We now turn our attention to the effective πN−πN

potentials defined by Eqs. (6.16)–(6.18). We can simplify the
various expressions by coupling the isospins and writing∑

ui

∑
u′i ′

〈1, 1/2, u, i|T ,M〉A(kuim, k′u′i ′m′; z)

×〈1, 1/2, u′, i ′|T ′M ′〉
= δT T ′δMM ′χ †

mAT (k, k′; z)χm′ , A = Bd, Bc, Be, B,X.

(7.14)

Here 〈1, 1/2, u, i|T M〉 is a Clebsch-Gordon coefficient. A
helpful identity in applying Eq. (7.14) is given by [16]

(ε∗
u · τ )ii ′ = −

√
3 〈1, 1/2, u, i|1/2, i ′〉. (7.15)

From Eqs. (6.16) and (7.10) it follows that the s-channel or
direct potential is given by

BT
d (k, k′; z) = δT,1/2Z

1/2
πN (k)(σ · k̂)

UπNN (k)UπNN (k′)

z − m
(0)
N

× (σ · k̂′)Z1/2
πN (k′). (7.16)

The u-channel or crossed potential is given by Eq. (6.17). To
express it in terms of the vertex function defined by Eqs. (7.8)
and (7.9), we invert Eq. (7.6) and use Eqs. (7.4b), (7.4c), (6.6),
and (6.7) to obtain∑

n′
D

(1/2)
m′′n′

[
r−1
πN (k,−k − k′)

]
BπN (k,−k − k′)

×VπNN (ρ ′ujn′, i ′m′; k′)
= GπNN (ρ ′)HπNN (ku,−k − k′, jm′′; −k′,i ′m′).

(7.17a)

Taking the complex conjugate of this expression and relabel-
ing, we obtain∑

n

VπNN (im, ρu′jn; k)BπN (k′,−k − k′)

×D
(1/2)
nm′′ [rπN (k′,−k − k′)]

= GπNN (ρ)H ∗
πNN (k′u′,−k − k′, jm′′; −k,im).

(7.17b)

Now using Eqs. (6.2b), (7.2), (7.3), (7.4), and (7.15), we find

BT
c (k, k′; z) = (−δT,1/2 + 2δT,3/2)g2

πNNGπNN (ρ)Z1/2
πN (k)

×Z
1/2
πN (k′)GπNN (ρ ′)CπN (k, − k − k′, − k′)

×CπN (k′, − k − k′, − k)

× [σ · v(k, k′)][σ · v(k′, k)]

z − ω(k) − ε(−k − k′) − ω(k′)
, (7.18a)

v(k, k′) =
[
ε(−k) + mN

2mN

]1/2 [
ε(−k − k′) + mN

2mN

]1/2

×
{

[1 − �(k, k′)]
k

ε(k) + mN

− [1 + �(k, k′)]
k + k′

ε(−k − k′) + mN

}
, (7.18b)

�(k, k′) = (1 − λ)
ω(k′) + ε(−k − k′) − ε(−k)

2mN

, (7.18c)

ρ= fπN (k′,−k − k′), ρ ′= fπN (k,−k − k′).
(7.18d)

We now turn our attention to the σ -exchange potential given
by Eq. (6.18). Using techniques similar to those that led to
Eq. (7.17), we can show that∑

n

VσNN (m, ξn; k)BNσ (−k′,−k + k′)

×D
(1/2)
nm′ [rσN (−k + k′,−k′)]

= − gσNNGσNN (ξ )CσN (−k + k′,−k′,−k)

×χ †
m�(k, k′)χm′ , (7.19a)

�(k, k′) =
[
ε(−k) + mN

2mN

]1/2 [
ε(−k′) + mN

2mN

]1/2

×
{

1 − (σ · k)(σ · k′)
[ε(−k) + mN ][ε(−k′) + mN ]

}
,

(7.19b)

ξ= fπN (−k′,−k + k′). (7.19c)

We can also show that

Bπσ (k,−k + k′)Vσππ (ζ ; −k′)
= −gσππGσππ (ζ )Cσπ (−k + k′, k, k′)�(k, k′), (7.20a)

�(k, k′) = 1

2

[
1 + g̃σππ

gσππ

ω(k)ω(k′) − k · k′

m2
π

]
, (7.20b)

ζ= fπσ (k,−k + k′). (7.20c)

Using Eqs. (7.19) and (7.20) in Eq. (6.18), along with
Eqs. (6.3b) and (7.14), we find

BT
e (k, k′; z) = Bσ (k, k′; z) + B†

σ (k′, k; z∗), (7.21a)
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Bσ (k, k′; z) = gσNNGσNN (ξ )Z1/2
πN (k)Z1/2

πN (k′)gσππGσππ (ζ )

×CσN (−k + k′,−k′,−k)Cσπ (−k + k′, k, k′)

× �(k, k′)�(k, k′)
z − ω(k) − σ (−k + k′) − ε(−k′)

, (7.21b)

ξ = fNσ (−k′,−k + k′), ζ = fπσ (k,−k + k′). (7.21c)

Combining Eqs. (6.24), (6.20), and (7.14), we find that
the off-shell amplitude for πN–πN elastic scattering is the
solution of the matrix-integral equation

XT (k, k′; z)

= BT (k, k′; z) +
∫

BT (k, k′′; z)
d3k′′

d(k′′, z)
XT (k′′, k′; z),

(7.22a)

BT (k, k′; z) =
∑

x=d,c,e

BT
x (k, k′; z). (7.22b)

With the techniques developed in Ref. [16] this three-
dimensional equation can be reduced to a set of uncoupled,
one-dimensional integral equations whose solutions lead to
the partial-wave, πN → πN scattering amplitudes.

Let us now turn our attention to the production amplitudes.
Using Eq. (7.17a) in Eq. (6.28), along with Eqs. (6.6) and (6.7),
we find

YππN (k1u1k2u2im; k′u′i ′m′)

= − igπNN√
2

2∑
a=1

∑
i ′′m′′

GπNN (ρbN )(ε∗
ub

· τ )ii ′′

×CπN (kb,−k1 − k2,−ka)χ †
m[σ · v(ka, kb)]χm′′

×Z
1/2
πN (ka)

X(kauai
′′m′′, k′u′i ′m′; z)

d(ka, z)
, (7.23a)

ρbN = fπN (kb,−k1 − k2), a �= b. (7.23b)

Coupling the isospins according to∑
u1M ′′

∑
u2i

∑
i ′′

∑
u′i ′

〈1, T ′′, u1,M
′′|T ,M〉〈1, 1/2, u2, i|T ′′,M ′′〉

YππN (k1u1k2u2im; k′u′i ′m′)〈1, 1/2, u′, i ′|T ′,M ′〉
= δT T ′δMM ′χ †

mY T ′′T
ππN (k1, k2; k′)χm′ , (7.24)

where

Y T ′′T
ππN (k1, k2; k′) = i

√
3

2
gπNN

{
δT ′′,1/2GπNN (ρ2N )

×CπN (k2,−k1 − k2,−k1)[σ · v(k1, k2)]

×Z
1/2
πN (k1)

XT (k1, k′; z)

d(k1, z)

+ (−1)T
′′+1/2

√
2(2T ′′ + 1)

{
1 1/2 T

1 T ′′ 1/2

}
GπNN (ρ1N )

×CπN (k1,−k1 − k2,−k2)[σ · v(k2, k1)]

×Z
1/2
πN (k2)

XT (k2, k′; z)

d(k2, z)

}
. (7.25)

We now use Eqs. (6.29), (7.17), and (7.18), and write for the
σ production amplitude∑

ui

∑
u′i ′

〈1, 1/2, u, i|T ,M〉YπσN (kπukNim; k′u′i ′m′)

×〈1, 1/2, u′, i ′|T ′,M ′〉
= δT T ′δMM ′χ †

mY T
πσN (kπ , kN ; k′)χm′ , (7.26)

which leads to

Y T
πσN (kπ , kN ; k′)
= − gσNNGσNN (ξ )CσN (−kπ−kN, kN,−kπ )

×�(kN,−kπ )Z1/2
πN (kπ )

XT (kπ , k′; z)

d(kπ , z)

− gσππGσππ (ζ )Cσπ (−kπ−kN, kπ ,−kN )

×�(kπ ,−kN )Z1/2
πN (kN )

XT (−kN, k′; z)

d(kN, z)
, (7.27a)

ξ = fNσ (kN,−kπ − kN ), ζ = fπσ (kπ ,−kπ − kN ).

(7.27b)

VIII. UNITARITY

We now show that the solutions of Eq. (7.22) in combination
with the production amplitudes, Eqs. (7.25) and (7.27), satisfy
the correct unitarity relation. Let us introduce an operator
notation according to

〈−→k |XT (z)|k′〉 = XT (k, k′; z),

〈−→k |BT (z)|k′〉 = BT (k, k′; z), (8.1)

〈−→k |t(z)|k′〉 = δ3(k − k′)/d(k, z),

which allows us to rewrite Eq. (7.22) in the form

XT (z) = BT (z) + BT (z)t(z)XT (z). (8.2)

Using the techniques employed in Sec. VI of Ref. [31], it is a
matter of straightforward algebra to show that

�XT = �BT + XT (∓)t(∓)�BT + �BT t(±)XT (±)

+XT (∓)[�t + t(∓)�BT t(±)]XT (±), (8.3)

where (±) = (W ± iε),�XT = XT (+) − XT (−), etc. From
Eqs. (7.15) and (7.21) we see that the operator BT (z) has a
discontinuity that arises from factors of the form 1/(z − W ′),
where W ′ is the c.m. energy of the relevant intermediate state.
We have

1

W + iε − W ′ − 1

W − iε − W ′ = −2πiδ(W − W ′). (8.4)

From Eq. (7.18) we encounter the delta function δ[W −
ω(k) − ε(−k − k′) − ω(k′)]. If W = WπN (k) or W =
WπN (k′), the argument of the delta function cannot vanish,
and similarly for the delta function that arises from Eq. (7.21).
As a result of this the discontinuity in the elastic scattering
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amplitude is given by the relation

XT (k, k′; +) − XT (k, k′; −)

=
∫

XT (k, k′′; −)d3k′′
[

1

d(k′′,+)
− 1

d(k′′,−)

]
×XT (k′′, k′; +) +

∫
XT (k, k′′; −)

d(k′′,−)
d3k′′

× [BT(k′′, k′′′; +) −BT (k′′, k′′′; −)]d3k′′′ X
T(k′′′, k′; +)

d(k′′′,+)
,

W = WπN (k) = WπN (k′). (8.5)

We find from Eq. (6.15) that the discontinuity in the πN

propagator is given by

1

d(k,+)
− 1

d(k,−)

= −2πiδ[W − WπN (k)] − d(k,+) − d(k,−)

d(k,−)d(k,+)
. (8.6)

From Eq. (6.12) we find the discontinuity

d(k,+) − d(k,−)

= 2πiZπN (k)

{∫
d3ρ FπNN (ρ; k)δ[W − WππN (k, ρ)]

+
∫

d3ξ FσNN (ξ ; k)δ[W − WπNσ (k, ξ )]

+
∫

d3ζ Fσππ (ζ ; k)δ[W − WπNσ (k, ζ )]

}
. (8.7)

When we use this result in Eqs. (8.6) and (8.5) we encounter
integration elements of the type d3kd3ρ, d3kd3ξ , and d3kd3ζ .
We can convert these elements to integration elements in
terms of the individual particle momenta by introducing
the appropriate Jacobian. The Jacobians can by derived by
inserting Eqs. (A25) into (A26) and comparing the result with
the completeness relation that follows from Eq. (A24). We find

d3k1d
3ρ23 = d3k1d

3k2B
2
23(k2,−k1 − k2),

(8.8)
ρ23 = f23(k2,−k1 − k2).

Using these results along with Eqs. (6.30) (6.11), (6.27), (6.30),
(7.2), and (7.17)–(7.20), we can show that

−
∫

XT (k, k′′; −)d3k′′ d(k′′,+) − d(k′′,−)

d(k′′,−)d(k′′,+)
XT (k′′, k′; +)

= −2πi

{∫
XT (k, k1; −)

d(k1,−)
Z

1/2
πN (k1)d3k1d

3k23g2
πNN

×G2
πNN (ρ)C2

πN (k2,−k1 − k2,−k1)[σ · v(k1, k2)]2

× δ[W − W̃ππN (k1, k2)]Z1/2
πN (k1)

XT (k1, k′; +)

d(k1,+)

+
∫

XT (k, kπ ; −)

d(kπ ,−)
Z

1/2
πN (kπ )d3kπd3kNg2

σNNG2
σNN (ξ )

×C2
σN (−kπ − kN, kN,−kπ )�†(kN,−kπ )�(kN,−kπ )

× δ[W − W̃πNσ (kπ , kN )]Z1/2
πN (kπ )

XT (kπ , k′; +)

d(kπ ,+)

+
∫

XT (k, − kN ; −)

d(kN,−)
Z

1/2
πN (kN )d3kNd3kπg2

σππG2
σππ (ζ )

×C2
σπ (−kπ − kN, kπ ,−kN )�2(kπ ,−kN )

× δ[W − W̃πNσ (kπ , kN )]Z1/2
πN (kN )

XT (−kN, k′; +)

d(kN,+)
,

(8.9a)

ρ = fπN (k2,−k1 − k2),

ξ = fNσ (kN,−kπ − kN ), ζ = fπσ (kπ ,−kπ − kN ). (8.9b)

We can easily obtain the expression for the discontinuity in
BT (k, k′; z) from Eqs. (7.18), (7.21), (7.22b), and (8.4). With
these results in hand it is a matter of straightforward algebra
to verify that it follows from Eqs. (8.5) and (8.9) that the
discontinuity in the elastic scattering amplitude is given by

XT (k, k′; +) − XT (k, k′; −)

= −2πi

∫
XT (k, kπ ; −)d3kπδ[W − WπN (kπ )]

×XT (kπ , k′; +) − 2πi
∑
T ′′

∫
Y

T ′′T †
ππN (k1, k2; k)d3k1d

3k2

× δ[W − W̃ππN (k1, k2)]Y T ′′T
ππN (k1, k2; k′)

− 2πi

∫
Y

T †
πσN (kπ , kN ; k)d3kπd3kN

× δ[W − W̃πNσ (kπ , kN )]Y T
πσN (kπ , kN ; k′). (8.10)

This is the correct unitarity relation.

IX. SUMMARY AND DISCUSSION

We have succeeded in developing a practical method for
constructing relativistic, three-particle models of the pion-
nucleon system. The models will have some of the character
of a quantum field theory in that the basic interactions are
vertex interactions, and moreover renormalization effects are
present. In constrast to a quantum field theory, the Hilbert
space is restricted to a few types of state; e.g., here we have
|N〉, |πN〉, |ππN〉, and |πσN〉 states.

The fact that the various subspaces of the model are coupled
by vertex interactions is what makes the model tractable. As
we saw, the N -, ππN -, and πσN -components of a state vector
of the system can be expressed rather simply in terms of the
πN -components, which makes it possible to reduce solving
the model to solving Eq. (6.19), an equation that involves
only πN components. The way we have coupled the various
subspaces through the vertex interactions is consistent with
quantum field theory. In fact it is interesting to observe that
the results obtained here give credence to the Tamm-Dancoff
method [32] for solving a quantum field theory. In this method
the field theory state vector is expanded in a limited set of
Fock space states, and a set of coupled integral equations
for the components of the state vector is derived. This set
of equations is similar to the coupled equations given by
Eq. (6.9). The Tamm-Dancoff method [32] is often dismissed,
since it appears to be inconsistent with Poincaré invariance and
unitarity. The results obtained here show that with a little care
the Tamm-Dancoff method can yield results that are consistent
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with special relativity and unitarity. Our method also provides
justification for constructing models for the pion-nucleon
system by summing the diagrams of time-ordered perturbation
theory [9,34]. As with the Tamm-Dancoff procedure, this
method appears to have problems with Poincaré invariance
and unitarity. However a little thought shows that the equations
we have obtained for the elastic scattering and production
amplitudes can be thought of as summing subsets of time-
ordered, perturbation theory diagrams, and therefore indirectly
we have demonstrated that summing such diagrams can lead
to results that satisfy the requirements of special relativity and
unitarity.

With the method developed here the elastic πN -scattering
amplitudes are obtained by putting the solutions of Eq. (7.22)
on the energy shell. The production amplitudes are given by
Eqs. (7.25) and (7.27), which are expressed directly in terms
of the half-off-shell solutions of Eq. (7.22). These equations
are quite similar to the Amado-Lovelace equations [3,4] that
were popularized in the 1960’s. The model presented here can
be viewed as an extension of the Aaron, Amado, and Young
(AAY) model [7] of pion-nucleon scattering, an extension in
that here s-channel nucleon exchange and t-channel sigma
exchange have been added to the AAY’s u-channel nucleon
exchange. It should be noted, however, that the pion-nucleon
propagator given by Eq. (6.15), i.e., 1/d(k; z), differs from
the one in the AAY model, and in such a way that it avoids
a difficulty with the AAY propagator that was pointed out by
Garcilazo and Mathelisch [33]. Garcilazo and Mathelisch [33]
presented an alternative to the AAY propagator, however their
propagator has a problem with clustering, which Eq. (6.15)
manages to avoid.

It is clear that the present model can be extended so as
to provide a realistic model of the pion-nucleon system. An
appealing feature of the method developed here is that it
makes it relatively straightforward to extend existing exchange
models of the pion-nucleon system [16,34,35] to include
three-particle channels in such a way that Poincaré invariance
and unitarity are satisfied. Baryons such as the �(1232) and
the P11(1440) can be handled in the three-particle framework
by following the procedure used here for the nucleon. Just
as with the nucleon, these baryons lead to s- and u-channel
exchange processes. The t-channel ρ-meson exchange process
can be treated in exact analogy to the present treatment of the
σ -meson. The extension of the author’s exchange model of the
pion-nucleon system [16] to include three-particle channels is
currently underway.

APPENDIX A: BASIS STATES

Here we define our basis states and determine their inner
products. We also develop relations between various basis
states.

We define single-particle states for a particle with spin s

by

|pm〉 = U [lc(p)]|0m〉N1/2(|p|), p = (E(p), p), (A1)

where lc(p) is the canonical boost defined by Eq. (3.3), with
p the four-momentum of the particle. N is a normalization
parameter, which is determined by the inner product of the

states. We assume that the rest-frame state |0m〉 is an SU(2)
basis state that rotates according to

U (r)|0m〉 =
∑
m′

|0m′〉D(s)
m′m(r), (A2)

where D(s)(r) is a standard SU(2) matrix representative of the
rotation r . We can determine the action of the unitary operator
U (a) on state (A1) by writing

U (a)|pm〉 = U [lc(ap)]U [rc(a, p)]|0m〉N1/2(|p|), (A3)

where rc(a, p) is the Wigner rotation defined by Eq. (6.7).
From here and Eq. (A2) it follows that

U (a)|pm〉 =
∑
m′

|p′m′〉D(s)
m′m[rc(a, p)][N (|p|)/N (|p′|)]1/2,

p′ = ap. (A4)

When a is a three-rotation r , the Wigner rotation simplifies,
i.e.,

rc(r, p) = r. (A5)

This can be verified by expressing the canonical boost in the
form

lc(p) = exp(−iωp̂ · k), ω = tanh−1[|p|/E(p)],
p̂ = p/|p|, (A6)

and using the fact that the generator k is a three-vector operator
under rotations, which implies that rlc(p)r−1 = lc(rp). As a
result of Eq. (A5) the single-particle states rotate according to

U (r)|pm〉 =
∑
m′

|rp,m′〉D(s)
m′m(r). (A7)

We define an n-particle state by

|p{k}{m}〉 = U [lc(p)]|k1m1〉 ⊗ |k2m2〉 ⊗ · · · ⊗
× |knmn〉N1/2(p, {k}), (A8a)

{k} = {k1, k2, . . . , kn−1}, (A8b)

{m} = {m1,m2, . . . , mn}, (A8c)

n∑
i=1

ki = 0, (A8d)

where p is the total three-momentum of the particles, the
ki’s are their c.m. three-momenta, and the mj ’s are their
spin components. The total c.m. energy W and the total
four-momentum p of this state are given by

W ({k}) =
n∑

i=1

Ei(ki), (A9a)

p = (E(p, {k}), p) = ([p2 + W 2({k})]1/2, p). (A9b)

Note that the normalization factor N has the property

N (0, {k}) = 1, (A10)

so that when p = 0 the n-particle state reduces to a simple di-
rect product of the single-particle states. For the orthogonality
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relation of the states we assume

〈p{k}{m}|q{l}{n}〉

= δ3(p − q)
n−1∏
i=1

δ3(ki − li)
n∏

j=1

δmj nj
, (A11)

which determines the normalization factor N, as we now show.
Using Eqs. (6.7) and (A7), we find that

U (a)|p{k}{m}〉 =
∑
{m′}

|p′{rc(a, p)k}{m′}〉D{m′}{m}[rc(a, p)]

× [N (p, {k})/N(p′, {rc(a, p)k})]1/2,

p′ = ap, (A12a)

D{m′}{m} = D
(s1)
m′

1m1
D

(s2)
m′

2m2
· · · D(sn)

m′
nmn

. (A12b)

Inserting U †[l−1
c (p)]U [l−1

c (p)] between the two states in
Eq. (A11) and using Eqs. (A8a), (A12), and (A10), we find

δ3(p − q)
n−1∏
i=1

δ3(ki − li)
n∏

j=1

δmj nj

= [N (p, {k})N (q, {l})]1/2δ3(0 − q′)

×
n−1∏
i=1

δ3
{
ki−rc

[
l−1
c (p), q

]
li
}
D{m}{n}

{
rc

[
l−1
c (p), q

]}
,

q ′ = l−1
c (p)q. (A13)

Because of δ3(0 − q′) we can let q ′ → (W ({l}), 0) in rc[l−1
c (p),

q], and we can also let q = lc(p)q ′ → pW ({l})/W ({k}).
From Eq. (6.7) rc[l−1

c (p), q] = l−1
c (q ′)l−1

c (p)lc(q), while from
Eq. (A6) l−1

c (q ′) → 1 and lc(q) → lc(p), so we find

rc

[
l−1
c (p), q

]|q′=0 = 1. (A14)

Since E(p, {k})δ3(p − q) is a Lorentz invariant form, we can
write

E(p, {k})δ3(p − q) = W ({k})δ3(0 − q′), (A15)

which when put into Eq. (A13) along with Eq. (A14) leads to
the result

N (p, {k}) = W ({k})/E(p, {k}). (A16)

With this result the complete definition of our n-particle states
becomes

|p{k}{m}〉 = U [lc(p)]|k1m1〉 ⊗ |k2m2〉 ⊗ · · · ⊗
× |knmn〉[W ({k})/E(p, {k})]1/2. (A17)

Since N (p, k) depends only on the magnitudes of the vectors,
we can replace Eq. (A12a) with

U (a)|p{k}{m}〉 =
∑
{m′}

|p′{rc(a, p)k}{m′}〉D{m′}{m}[rc(a, p)]

× [E(p′, {k})/E(p, {k})]1/2,

p′ = ap. (A18)

Our states (A17) can be expressed in terms of the simple
direct product states defined by

|p1m1, p2m2, · · · , pnmn〉
= |p1m1〉 ⊗ |p2m2〉 ⊗ · · · ⊗ |pnmn〉. (A19)

If we apply Eq. (A18) to a single-particle state, the equation
simplifies to

U (a)|pm〉 =
∑
m′

|p′m′〉D(s)
m′m[rc(a, p)][E(p′)/E(p)]1/2,

p′ = ap, (A20)

which when used in Eq. (A17) leads to

|p{k}{m}〉 = [W ({k})/E(p, {k})]1/2

×
n∏

i=1

∑
m′

i

|pim
′
i〉D(si )

m′
imi

{rc[lc(p), ki]}

× [Ei(pi)/Ei(ki)]
1/2. (A21)

Convenient three-particle states for constructing ma-
trix elements of interactions can be obtained by replac-
ing the state |k1m1〉 ⊗ |k2m2〉 ⊗ |k3m3〉 with |k1m1〉 ⊗
|k23ρ23m2m3〉, where |k23ρ23m2m3〉 is obtained from
Eq. (A21) by making the replacements p → k23, {k} → ρ23,
and {m} → m2m3. This second state is given explicitly by

|k23ρ23m2m3〉 =
∑
m′

2m
′
3

|k2m
′
2〉 ⊗ |k3m

′
3〉

×D
(s2)
m′

2m2
{rc[lc(k23)ρ2]}D(s3)

m′
3m3

{rc[lc(k23)ρ3]}

×
[
E2(k2)E3(k3)

E23(k23, ρ23)

W23(ρ23)

E2(ρ23)E3(ρ23)

]1/2

,

(A22a)

k23 = k2 + k3 = (E2(k2) + E3(k3), k2 + k3)
(A22b)

= (E23(k23, ρ23), k2 + k3),

ρ2 = l−1
c (k23)k2 = (E2(ρ23), ρ23),

(A22c)
ρ3 = l−1

c (k23)k3 = (E3(ρ23),−ρ23),

where W23 and E23 are defined by Eqs. (3.1b) and (3.1c),
respectively. It should be noted that ρ2 and ρ3 are obtained
by applying an inverse canonical boost, l−1

c (k23), to k2

and k3, respectively, so that ρ23 can be interpreted as the
three-momentum of particle 2, or the negative of the three-
momentum of particle 3, in a 2,3 c.m. frame obtained by an
inverse canonical boost from the 1,2,3 c.m. frame. We now
boost the state |k1m1〉 ⊗ |k23ρ23m2m3〉 from the three-particle
c.m. frame to a frame in which the 3 particles have a total
three-momentum p and define

|pk1ρ23m1m2m3〉 = U [lc(p)]|k1m1〉 ⊗ | − k1, ρ23m2m3〉
× [W123(k1, ρ23)/E123(p, k1, ρ23)]1/2,

(A23)

where W123 and E123 are given by Eqs. (3.1d) and (3.1e),
respectively. Carrying out an analysis similar to the one that
led to Eq. (A17), it can be verified that

〈pk1ρ23m1m2m3|p′k′
1ρ

′
23m

′
1m

′
2m

′
3〉

= δ3(p − p′)δ3(k1 − k′
1)δ3(ρ23 − ρ ′

23)δm1m
′
1
δm2m

′
2
δm3m

′
3
.

(A24)
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We can express the three-particle states |pk1k2m1m2m3〉
as a linear combination of the states (A23) by the following
steps: insert Eq. (A22a) into Eq. (A23), use Eq. (A17) and
the identities W (k1, k2) = W123(k1, ρ23) and E(p, k1, k2) =
E123(p, k1, ρ23), invert the relation between the states by using
the orthogonality of the rotation matrices, use Eqs. (A22c) and
(6.5)–(6.7). Realizing that we can, of course, interchange the
roles of 1 and 2, we find

|pk1k2m1m2m3〉 =
∑
m′

bm
′
3

|pkaρb3mam
′
bm

′
3〉D(sb)

m′
bmb

[r3b(k3, kb)]

×D
(s3)
m′

3m3
[rb3(kb, k3)]Bb3(kb, k3),

a = 1, 2; b = 1, 2; a �= b. (A25)

We now determine the inner product 〈pk1ρ23m1m2m3|
p′k′

2ρ
′
13m

′
2m

′
1m

′
3〉. We begin by inserting the completeness

relation for the states (A25) between the states in the
inner product. According to Eq. (A11) this completeness

relation is

1 =
∑

m1m2m3

∫
|pk1k2m1m2m3〉d3pd3k1d

3k2〈pk1k2m1m2m3|.

(A26)

For the state on the left in Eq. (A26) we use Eq. (A25) with
a = 1 and b = 2, while for the state on the right we use a = 2
and b = 1. We also use ρb3 = fb3(kb, k3) where fb3 is given
by Eq. (6.4). We find

〈pk1ρ23m1m2m3|p′k′
2ρ

′
13m

′
2m

′
1m

′
3〉

= δ3(p − p′)δ3[ρ23 − f23(k′
2,−k1 − k′

2)]

× δ3[ρ ′
13 − f13(k1,−k1 − k′

2)]B23(k′
2,−k1 − k′

2)

×B13(k1,−k1 − k′
2)D(s1)

m1m
′
1

[
r−1

31 (−k1 − k′
2, k1)

]
×D

(s2)
m2m

′
2
[r32(−k1 − k′

2, k′
2)]

×D
(s3)
m3m

′
3

[
r23(k′

2,−k1 − k′
2)r−1

13 (k1,−k1 − k′
2)

]
. (A27)
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