
RAPID COMMUNICATIONS

PHYSICAL REVIEW C 72, 061302(R) (2005)

Phase transitions in the interacting boson fermion model: The γ -unstable case
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The phase transition around the critical point in the evolution from spherical to deformed γ -unstable shapes is
investigated in odd nuclei within the interacting boson fermion model. We consider the particular case of an odd
j = 3/2 particle coupled to an even-even boson core that undergoes a transition from spherical U(5) to γ -unstable
O(6) situation. The particular choice of the j = 3/2 orbital preserves in the odd case the condition of γ -instability
of the system. As a consequence, energy spectrum and electromagnetic transitions, in correspondence of the
critical point, display behaviors qualitatively similar to those of the even core. The results are also in qualitative
agreement with the recently proposed E(5/4) model, although few differences are present, due to the different
nature of the two schemes.
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The study of phase transitions has recently received
particular attention in nuclear structure. The concept of critical
point symmetry has been first proposed in a number of cases
by Iachello [1–3]. These symmetries apply when a quantal
system undergoes transitions between traditional dynamical
symmetries, as for example those characterizing situations
described in terms of harmonic vibrations or rigid rotations.
Although these symmetries have been obtained within the
formalism based on the Bohr Hamiltonian [4], their concept
has also been used in connection with the interacting boson
model (IBM) [5].

One of these critical point symmetries is associated with the
transition between spherical and γ -unstable shapes. Within the
IBM this can be obtained, for example, from the Hamiltonian

HB = xn̂d − 1 − x

N
Q̂B · Q̂B, (1)

which produces, varying the parameter x from 1 to 0, a
transition between the two extreme situations characteristic of
U(5) and O(6) symmetries. The corresponding second-order
shape phase transition has been investigated within the Bohr
collective model in Ref. [6]. The operators appearing in the
Hamiltonian above are given by

n̂d =
∑

µ

d†
µdµ, (2)

Q̂B = (s† × d̃ + d† × s̃)(2), (3)

and N is the total number of bosons. For any value of x this
Hamiltonian maintains the typical degeneracies of the O(5)
symmetry. Consistently with this, within the IBM coherent
state formalism [7–9], this Hamiltonian always produces an
energy surface which is independent of the γ degree of
freedom. In the β variable, the energy surface displays a
spherical minimum in β = 0 for x larger than the critical value
xc = 4N−8

5N−8 , while having a deformed minimum for values of x
smaller than the critical value. At the critical point, the energy
surface acquires a β4 behavior [10,11], which is approximated
by an infinite square well in the E(5) critical point symmetry [1]
within the framework of the collective Bohr Hamiltonian.

Recently Iachello has discussed a supersymmetrical exten-
sion of this concept, introducing the so-called E(5/4) model,
where the boson part has a γ -independent square well potential
and the boson-fermion coupling is taken as a spin (5) scalar
interaction [12]. This solution describes the spectral properties
of odd-even nuclei at the transition between spherical and
γ -unstable shapes. In this Rapid Communication we want to
discuss the evolution of odd nuclei and the corresponding
behavior at the critical point, within the framework of the
interacting boson fermion model (IBFM) [13], in which a
single fermion is coupled to the even-even bosonic core. The
system will then be described by the Hamiltonian

H = HB + HF + VBF , (4)

where the term VBF couples the bosonic and fermionic parts.
In our case we will assume the boson Hamiltonian to be of
the form given in Eq. (1). For the fermion and boson-fermion
parts we will take the particular choice of a particle moving in
a single j-shell j = 3/2 and a coupling term of the form

VBF = −2
1 − x

N
Q̂B · q̂F , (5)

where Q̂B [taken of the form given in Eq. (3)] and q̂F =
(a†

3/2 × ã3/2)(2) are the boson and fermion quadrupole opera-
tors, respectively.

This choice of the fermion space and the boson-fermion
interaction is such that one recovers, in the extreme cases, the
Bose-Fermi symmetry [13] associated with the spinBF (6) group
(for x = 0) and the vibrational UB(5) ⊗ SUF (4) case (for
x = 1). In analogy with the overall O(5) structure in the
even case, this selection guarantees the preservation of the
degeneracies associated with the spinBF (5) symmetry for any
value of x. This can be more clearly seen within the intrinsic
frame formalism [7–9]. In order to get energy eigenvalues
for the case of a j = 3/2 particle coupled to the ground
state |�B(β, γ )〉 boson condensate one has to diagonalize
the Hamiltonian in a space of dimension four with basis
vectors: |�B(β, γ )〉 ⊗ |j,m〉. The pure boson part for the
case considered here is only a function of β and gives a
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FIG. 1. Energy levels (normalized to the
energy of the first excited state) for the even
and odd systems are displayed as a function
of the parameter (1 − x) for the boson (1)
and boson-fermion (4) Hamiltonians. A number
N = 7 of bosons has been assumed in both cases,
while the odd particle has been taken in the
j = 3/2 orbital. In the left panel (even case) we
indicate for each level the τ quantum number
(in parenthesis), spin and parity. In the right
panel (odd case) we quote the (τ1, τ2) quantum
numbers (in parenthesis) and spin. In the extreme
x = 0 case we also indicate the σ1 quantum
number. The position of the even critical point is
marked.

global diagonal contribution. The pure fermionic part is just
a constant. Thus, the only remaining part, VBF , has to be
diagonalized. Its eigenvalues, doubly degenerate, turn out to
be γ -independent,

E±(β, γ ) = E±(β) = ±2
(1 − x)β

1 + β2
. (6)

In other words, the addition of the odd particle does not destroy
the γ -instability of the system, giving rise to energy surfaces
for the different odd intrinsic states that are still γ -independent
[14]. The particular behavior of the j = 3/2 orbital was first
put in evidence by Bayman and Silverberg [15] within the
collective model.

The resulting energy spectra in the odd system are shown in
the right panel of Fig. 1 as a function of the control parameter
1 − x. The total number of bosons, N, has been assumed
to be equal to 7. For a better comparison, we also show
in the left panel of the figure the corresponding evolution
of the spectrum in the even core. It should be remembered
that the use of a finite number of bosons does not lead
to the same results as the corresponding ones obtained in
the equivalent situation within the Bohr Hamiltonian, which
is only reached in the limit of infinite number of bosons.
Note also that the geometrical limit obtained from the boson
Hamiltonian (1) for large values of N corresponds to the
case of the collective potential behaving as β4, and not
precisely to the E(5) case, that corresponds to the infinite
square well. The level evolution in the odd case shows a
behavior qualitatively similar to that of the even case. The
group structure of spinBF (5) with respect to O(5) simply leads
to a richer pattern for the fermion case and slightly different
ratios for the energy levels. For example in the limiting x
= 0 case, corresponding to spinBF (6) and O(6) symmetry
groups for the odd and even nuclei, respectively, we obtain for
the “ground bands,” with maximum σ values (σ1 = N + 1/2
and σ = N for odd and even nuclei, respectively), the ratios
E(τ1 = 5/2, τ2 = 1/2)/E(τ1 = 3/2, τ2 = 1/2) = 2.4 and

E(τ1 = 7/2, τ2 = 1/2)/E(τ1 = 3/2, τ2 = 1/2) = 4.2 with
respect to the values E(τ = 2)/E(τ = 1) = 2.5 and
E(τ = 3)/E(τ = 1) = 4.5 of the even case.

As in the even case, the levels that in the extreme x = 0 limit
eventually correspond to the “ground band” (σ1 = N + 1/2)
show a rather smooth (or even flat) behavior, aside from the
changes around the critical point. Instead, the levels that will
end up with other values of σ1 (as the levels corresponding
to smaller values of σ in the even case) show a more violent
variation in the whole range. A typical case is the second
(τ1 = 1/2, τ2 = 1/2)j = 3/2 state that starts at one-phonon
energy in the vibrational limit to end up as the third j =
3/2 state in the opposite limit. The position of this 3/2 state
is the key element to characterize the particular situation and
its position along the transitional path. The position of this
state plays the same role as the key position of the first excited
0+ state in even nuclei. The smoother behavior of the ground
band levels with respect to the other bands confirms the fact that
to establish a definite critical situation it is not at all sufficient
to rely just on the sequence of energy levels in the “ground”
band, and that some of the claims for the occurrence of definite
transitional symmetries have to be taken with serious caution.

Crucial and selective information on nuclear spectra comes
from the transition probabilities, in particular from the electric
quadrupole ones. These are obtained in terms of the matrix
elements of the electric quadrupole operator. In our IBFM
case this operator is given by

Q̂BF = Q̂B + q̂F = (s† × d̃ + d† × s̃)(2) + (a†
j × ãj )(2).

(7)

Note that, consistently with the boson quadrupole operator
used in the Hamiltonian, we have not included any (d† × d̃)(2)

term in the transition operator.
Values of the individual transition probabilities, state by

state, for the odd nucleus at the critical point situation are
shown in Fig. 2. In it, we have plotted the lowest six multiplets,
which have been arbitrarily split in order to show the possible
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FIG. 2. Energy levels and quadrupole transition rates B(E2 ↓) for the odd system at the core critical point. For illustration purposes the
various multiplets, labeled by the (τ1, τ2) quantum numbers in parenthesis, have been arbitrarily split according to their j quantum number.
The label on the extreme left is the energy in relative units, while the label at the extreme right corresponds to the label ξ , used in Ref. [12].
B(E2 ↓)’s have been normalized to the value 100 for the transitions (with equal strengths) between the states of the first multiplet and the
ground state.

E2 transitions between the different states. In the figure the
levels have different lengths depending on the ξ value, which
labels diferent families and it is shown along with the spin
of the state (we conform here to the notation introduced in
Ref. [12]). Although the general pattern remains the same, the
detailed energy sequence depends on the number of interacting
bosons, N. Owing to the properties of the spinBF (5) group,
the �τ1 = 0,±1,�τ2 = 0 selection rule still hold. It can be
observed that E2 transitions are stronger between states with
the same ξ value and �τ1 = 1. Transitions between states
pertaining to families with different ξ are one or two orders of
magnitude smaller. Transitions between states with the same
ξ and τ1 values, but different spins, corresponding to the same
multiplets are also one or two orders of magnitude smaller
than the ones between different multiplets in the same band.

The allowed quadrupole transitions are sketched in Fig. 3
for the odd system for the spinBF (6) case and for the critical
point situation, and for the even case at the critical point. In
addition to the difference in the level sequence, in the second
case transitions are allowed between different bands (although
weaker than inband transitions, as already mentioned), in a
similar way as interband transitions are allowed at the critical
point for the even case (as for example between the second
0+, with τ = 0, and the first 2+, with τ = 1, as shown in the
figure).

The comparison of our critical point solution with Iachello’s
one evidences a similar overall organization of the spectrum,
although with sizable differences in the relative position of
the different ξ bands. It must be recalled that, in principle, we

should compare the E(5/4) solution with the large N limit of the
interacting boson model, while we have concentrated, along
this paper, on the N = 7 case. The first τ1 = 5/2 multiplet in
the E(5/4) lies at around 2.20, close to the value 2.29 obtained
in our model. On the other hand, the two first multiplets of
the ξ = 2 family of excited states of the E(5/4) solution lie at
around 3.33 and 5.02, compared with the corresponding values
1.40 and 2.64 of our model. This inversion of the position of

1/2
σ1=15/2

3/2

5/2

τ τ τ1
...

σ 1 = 13/2
1/2

3/2

...

SpinBF(6)

1/2

3/2

5/2
1

...
3/2

...
1/2

...

Critical point - Odd case

0

1

2

... 0

1

...

Critical point - Even case

1/2

FIG. 3. Schematic illustration of allowed quadrupole transitions
for the odd system at the spinBF (6) (left panel) and critical point
(middle panel) cases, and for the even case at the critical point (right
panel). Solid lines indicate stronger in-band transitions with respect
to the interband transitions shown as dashed lines. Horizontal lines
correspond to multiplets including several j values.
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FIG. 4. Energy levels for the odd system
are displayed as a function of the parameter
(1 − x) for the boson-fermion Hamiltonian (4).
A number N = 7 of bosons has been assumed,
while the odd particle has been taken in the j =
3/2 orbital (left panel) and j = 5/2 orbital (right
panel). The spin quantum number is indicated for
each state.

the ξ = 1, τ1 = 5/2 and ξ = 2, τ2 = 1/2 multiplets is the first
evident difference between the two models. Another important
difference is seen in the relative B(E2) values: although
in-band transitions display comparable values, significant
discrepancies are observed in interband transition (notably
the transitions between the ξ = 2, τ1 = 1/2 state and the two
lowest multiplets of the ground state band).

Preserving the degeneracies associated with the spinBF (5)

symmetry is not an exclusive property of the j = 3/2 orbitals.
Other cases are known in the literature, for example the case of
the odd particle moving in the j = 1/2, 3/2, 5/2 orbitals, under
the condition of special values for the fermion quadrupole
matrix elements. Also in this case one recovers, for the x = 0
limiting case, the Bose-Fermi symmetry behavior. But this
does not happen in more general cases with other combinations
of orbitals or fermion quadrupole matrix elements [16]. To give
an idea, we present in Fig. 4 the evolution of the spectrum as
a function of the control parameter 1 − x in the cases of a
single j = 3/2 and j = 5/2. The figure shows a spectrum for
j = 5/2 (right panel) that is qualitatively similar to the one
displayed in the left panel for j = 3/2, but is more complex
due to the removal of all degeneracies.

To summarize, we have considered, within the interacting
boson fermion model, the coupling of an odd j = 3/2 particle
to a boson core that undergoes a transition from spherical
U(5) to γ -unstable O(6) character. The particular choice of
the Hamiltonian and of the j = 3/2 orbital preserves in the
odd case the condition of γ -instability of the system, and it
is reflected in the preservation of the degeneracies associated
with the spinBF (5) symmetry. As a consequence, the energy
spectrum and the electromagnetic transitions for the odd
nucleus with a critical core display behaviors qualitatively
similar to those characterizing the phase transition in the
even core. We have compared our results with the recently
proposed E(5/4) approach, based on the Bohr Hamilto-
nian. Both approaches display similar qualitative pictures,
although we evidence a number of quantitative differences,
that can be traced back to the different nature of the two
schemes.
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