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Description of the yrast states in 24Mg by the self-consistent 3D-cranking model
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With the self-consistent 3D-cranking model, the ground-state rotational band in 24Mg is analyzed. The role of
triaxial deformation is discussed, in particular in a description of the observed two Iπ = 8+ states.
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24
12Mg has been well studied as a typical case of a well-

deformed light-mass nuclear system. After self-consistent mi-
croscopic calculations of the nonrelativistic [1] and relativistic
methods [2] in the late 1980s, the nucleus is believed to
have an axially symmetric and prolate shape in the ground
state. Assuming the core of 16O, the ground-state configura-
tion is supposed to have eight valence particles occupying
the d5/2 orbits (four neutrons and four protons). Because
the Fermi level of this nucleus is in the beginning of the
sd shell (corresponding to the N = 2 harmonic-oscillator
shell), there are many open valence orbitals above the Fermi
level, which may induce deformation and consequently a
collective rotation. Such a rotational band has been already
identified in experiments (for instance, see Refs. [3,4]). A
particular interest is the existence of the two Iπ = 8+ states
observed in experiment. These two states are energetically
close to each other (the difference is about 2 MeV). After
the study of Sheline et al. [5], it is believed that the second
8+ belongs to the ground-state rotational band (g band). Valor
et al. analyzed the g band with the cranked Skyrme HF + BCS
approach as well as the configuration mixing approach based
on the generator coordinate method (GCM) [6]. However,
their calculations assume axial symmetry for descriptions of
intrinsic states. Up to Iπ = 4+, they were able to reproduce
the experimental data very well. The cranked mean-field
calculation gave a fairly good agreement for Iπ = 6+, while
the configuration mixing approaches returned larger energies
for the state. This is simply because these states at high spin
were projected out from the noncranked mean-field state.
Interestingly, the cranked mean-field calculation for Iπ = 8+
matches the observed energy of the first 8+ state, but the
authors dismissed the agreement on the basis of the analysis
of Sheline et al. [5], and they speculated that the disagreement
might mainly come from the triaxial effects at high spin
induced by the disappearance of the pairing correlation in
their calculation.

Inspired by the study by Valor et al. [6], I performed the self-
consistent cranking calculation, allowing triaxial deformation
in a self-consistent manner. As a new aspect in my study,
not only 1D-cranking but also 3D-cranking calculations were
carried out. An advantage of the 3D-cranking model is that
low- and high-K intrinsic structures can be systematically
studied [7].

The Hamiltonian used in my study reads

Ĥ = Ĥ0 + V̂ , (1)

where the first term describes the one-body part, which
is the spherical Nilsson Hamiltonian in this study, and
the second part is the two-body interaction, which is the
pairing-plus-quadrupole force (the so-called P+QQ force).
The model space (valence space) to diagonalize the two-body
part contains two major shells (N = 2, 3) in the spherical
Nilsson model, in accordance with the Kummar-Baranger
criteria for the P+QQ force [8]. The variational state is the
HF-Bogoliubov (HFB) ansatz, which is a generalized product
state. With quasiparticle annihilation operators βq , the ansatz
is expressed as

|HFB〉 =
∏

q

βq |0〉, (2)

where |0〉 is the vacuum for the canonical bases am and a
†
m.

(In my case, the canonical basis corresponds to the spherical
Nilsson basis.) The canonical basis and the quasiparticle basis
are connected by a unitary transformation called the general
Bogoliubov transformation [9]. The variational equation is
derived for

δ〈HFB|Ĥ −
3∑

i=1

(ωiĴi + µiB̂i) −
∑

τ=p,n

λτ N̂τ |HFB〉 = 0. (3)

In the above equation, Ĵi is the ith component of the
angular-momentum operator (the index i takes i = 1, 2, 3),
and N̂τ describes the number operator for protons (τ = p)
and neutrons (τ = n). B̂i is an off-diagonal component of the
quadrupole operator, defined as

B̂i = 1
2 (Q̂jk + Q̂kj ), (4)

where the indices (i, j, k) should be placed in a cyclic
manner. Each term with the Lagrange multipliers (ωi, µi , and
λτ ) is necessary to put constraints in intrinsic states: (〈Ĵ1〉,
〈Ĵ2〉, 〈Ĵ3〉) = (J cosθ,J sin θ sin φ, J sin θ cos φ); 〈N̂τ 〉 = Nτ ;
〈B̂i〉 = 0. The last constraint is necessary so as to keep
the orientation of the angular-momentum vector against the
intrinsic coordinate axes [9]. The variational equation is
solved by means of the method of steepest descent. Details of
the method are presented in Ref. [9]. A deformed Nilsson +
BCS state is used for an initial trial state at J = 0.
Deformation parameters and gap energies for the trial state
are determined by reference to the calculations of the
liquid-drop model by the Möller et al. [10]. In the present
study, the deformation parameters for the ground state are
chosen to be (β, γ ) = (0.347, 0.0◦) and the pairing gap
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TABLE I. Evolution of the deformation in β as a function of the
total spin J, which is obtained from the 1D-cranking calculation.

J 0 2 4 6 8 9

β 0.37 0.38 0.37 0.35 0.31 0.29

energies are (
p,
n) = (1.840 MeV, 1.962 MeV). All the
physical quantities, such as energy, quadrupole moments
(deformation), single-particle spin components, and gap
energies, are self-consistently calculated under the above
constraints in this framework.

First, the results from the 1D-cranking calculation are
reported. Despite the use of a simple separable interaction,
the ground-state rotational spectra are reproduced reasonably
well (Fig. 1). As Valor et al. commented in Ref. [6], the
gap energies disappear for both protons and neutrons before
J = 6h̄ (Fig.1). Triaxial deformation gradually decreases from
γ = 0◦. However, in J � 4h̄, triaxial deformation can still be
regarded as negligible. In other words, axial symmetry is
kept fairly well and large (see Table I). On the other hand,
at high spin (J = 8, 10h̄), substantial triaxial deformation is
formed (γ >∼ −10◦), and axial symmetry is clearly broken. It
should be noted here that the convention for the quadrupole
deformation parameters (β, γ ) in this study follows the Hill-
Wheeler coordinates, which give the opposite sign in γ to
the so-called Lund convention. A fact that the γ deformation

TABLE II. Single-particle components of the total spin in the 1D-
cranking calculation.The first two rows correspond to proton orbitals,
and the last two to neutron orbitals. The numbers in parantheses are
ratios of single-particle spins against the total spin. The unit of spin
is h̄.

Orbital J = 2 J = 4 J = 6 J = 8 J = 9

πd5/2 1.0 (50%) 2.0 (50%) 2.9 (48%) 3.6 (45%) 3.9 (43%)
πd3/2 0.0 (0%) 0.0 (0%) 0.1 (2%) 0.4 (5%) 0.6 (7%)

νd5/2 1.0 (50%) 2.0 (50%) 2.9 (48%) 3.6 (45%) 3.9 (43%)
νd3/2 0.0 (0%) 0.0 (0%) 0.1 (2%) 0.4 (5%) 0.6 (7%)

becomes negatively larger implies that the nucleus is reaching
the noncollective rotational state (γ = −60◦), where the
rotational axis corresponds to the shortest principal axis of
the deformation.

From this result, it is understandable why the cranking
calculation by Valor et al. [6] was successful up to J = 6h̄
and why the deviations from the experimental values become
larger at higher spins. As mentioned earlier, they solved the
HFB equation within the axial symmetry constraint.

In the HFB theory, the total spin is expressed as the sum of
single-particle spins, that is,

〈Ĵi〉 =
∑

m

〈
j

(m)
i

〉 =
∑

mn

(ji)mnρnm, (5)
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FIG. 1. (Top left) Rotational energy obtained in the 1D-cranking calculation (solid curve), and the experimental data (crosses). (Top
right) Gap energies for protons and neutrons, obtained in the 1D-cranking calculation. (Bottom) γ deformation obtained in the 1D-cranking
calculation.
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FIG. 2. Energy surface of the J = 8h̄ state, calculated by means
of the 3D-cranked HFB method. There are two minima as intrinsic
states, which are seen at (θ, φ) = (0◦, 0◦) and = (90◦, 0◦).

where ρ is the density matrix and ji is the single-particle
angular-momentum operator. The indices m and n are for
the canonical bases, and the index i is for the coordinate
axes, that is, i = 1, 2, 3. Using this information of angular
momentum, we can discuss a nuclear structure with single-
particle spins. Table II gives the calculated main components
of single-particle spins for different total spins J. The result
reflects a fact that 24Mg is a N = Z nucleus, that is, the ways
of single-particle excitations are the same for both protons and
neutrons. For low-spin members in the rotational band, the
total spin consists mainly of d5/2. The higher the total spin, the
more the d3/2 orbit is occupied. Therefore the “collectivity”
in this nucleus is attributed to gradual excitations into the
d3/2 orbit.

Next, the results of the 3D-cranking calculations are
presented. In this paper, we focus on the analysis of the
Jπ = 8+ state, in which its triaxial deformation becomes
substantial (γ � −10◦) in the 1D-cranking calculation.

Obviously from Fig. 2, two configurations compete with
each other. This competition can be considered as a kind
of “level crossing” between two different states (or config-
urations), but in the 3D-cranking calculation each “level”
is represented by a curved surface. There are mainly two
minima in the energy surface for the J = 8h̄ state (Fig.2):
(θ, φ) = (0◦, 0◦) and = (90◦, 0◦), and they characterize the
two configurations. The former minimum corresponds to the
1D-cranking solution in which triaxiality is calculated to be
γ � −10◦. The rotation axis is found to be along the shortest
axis, and the corresponding state is expected be of low-K
character. The latter minimum is the energetically lowest state
(yrast state) at this spin, which is about 2.5 MeV lower than
the 1D-cranking solution. This yrast state at Jπ = 8+ is found
to be axially symmetric because the triaxiality is calculated to
be γ � 0◦ (β � 0.24). In this case, the rotational axis points
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FIG. 3. (Color online)(Left) A cross section of the energy surface
at φ = 0◦. (Right) Triaxial deformation at φ = 0◦.

along the longest axis of the axially symmetric shape, so that
the rotation is of single-particle character. As a result, the
major components of the state should be of high-K characters.
Studying in detail the microscopic structure, we find the total
spin to be constructed almost purely by the d5/2 orbits (in
both protons and neutrons): 3.97h̄ each by the d5/2 orbits
of protons and neutrons. In addition to the difference in the
deformation, a lack of the d3/2 component in the first 8+ state
implies that the yrast state is surely different from rotational
members of the g band from a microscopic point of view. The
shell-model calculation by Wiedenhover et al. [4] says that
such a configuration, that is, (d5/2)8, corresponds to the first
8+ state (which does not belong to the g band) observed in
experiment. Therefore my result is consistent with that of the
shell-model calculation too.

From this result, we can conclude that the yrast state found
in our calculation at J = 8h̄ is a high-K state with Kπ = 8+.
It was experimentally observed to be energetically lower than
the second 8+ state by about 2 MeV.

In the right-hand panel of Fig. 3, the triaxial deformation
is seen to have γ � 120◦ at 20◦ <∼ θ <∼ 45◦. Because the level
crossing happens at θ � 20◦, we cannot exactly see how the
graph continues toward θ → 0. However, from the trend of the
graph, it is possible to guess that the graph forms a symmetric
shape with respect to θ = 45◦ in the left-hand panel of
Fig. 3, and that γ → 120◦ for θ → 0◦ in the right-hand panel
of Fig. 3. This reflection symmetry around θ = 45◦ indicates
that the state in 0◦ � θ � 45◦ and the state in 45◦ � θ � 90◦
have the same intrinsic structure. (The calculated β values are
shown in Table III.)

The ground-state rotational band was studied with the
self-consistent 1D-cranking calculation. It was confirmed
in this study that an effect of triaxiality on the nature of
the rotational band is important at high spin, as previously
anticipated by Valor et al. In addition, two high-spin states
at J = 8+ observed in experiment were analyzed by means
of the self-consistent 3D-cranking calculation. It concludes
(in a qualitative manner) that the yrast 8+ state is an axially
symmetric high-K state created by the deformation-aligned
protons and neutrons in the d5/2 orbitals whereas the second

TABLE III. Change of β as a function of the tilt angle θ , obtained in the 3D-cranking calculation
for J = 8h̄ and φ = 0◦.

θ 0 10 20 30 40 50 60 70 80 90

β 0.31 0.25 0.21 0.18 0.14 0.11 0.17 0.21 0.23 0.24
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8+ is a rotational member of the ground-state rotational band
with substantial triaxial deformation.

For the first time, with in the framework of the self-
consistent and microscopic method, the two Iπ = 8+ states
in 24Mg, which correspond to low- and high-K states, respec-
tively, are explained on the same footing, that is, through the
self-consistent 3D-cranking model.
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