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Phenomenological study of two-meson couplings of �+

Tetsuo Hyodo∗ and Atsushi Hosaka
Research Center for Nuclear Physics (RCNP), Ibaraki, Osaka 567-0047, Japan

(Received 12 September 2005; published 30 November 2005; publisher error corrected 6 December 2005)

We evaluate two-meson couplings of �+, using experimental information of nucleon resonances decaying into
ππN channels, in which the two pions are in scalar- and vector-type correlations. We examine two assignments
of spin and parity of J P = 1/2+ and 3/2−, for which the experimental spectra of known resonances with exotic
baryons are properly reproduced by an octet-antidecuplet representation mixing scheme. With the obtained
coupling constants, total cross sections of the reactions π−p → K−�+ and K+p → π+�+ are calculated.
Substantial interference of two terms may occur in the reaction processes for the JP = 1/2+ case, whereas the
interference effect is rather small for the 3/2− case.
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I. INTRODUCTION

Evidence for the existence of the exotic baryon �+ [1]
has been stimulating theoretical and experimental studies in
hadron spectroscopy. The study of multiquark states in QCD
will eventually lead to the understanding of the rich structure
of hadronic matter. Recently, however, the existence of the
�+ has become controversial [2]. There are more than 10
experiments that indicate evidence of the �+, whereas a
similar number of experiments claim null results. In such a
situation, confirmation of existence (or nonexistence) of the
�+ is urgent and crucially important. For this, it is strongly
desired to clarify the reaction mechanism for the production
of �+. Among various possibilities, a particularly interesting
property that is expected to be characteristic to exotic baryons
is their strong coupling to two-meson states in transitions to
an ordinary baryon. This is the subject we study in the present
paper.

Studying two-meson coupling is important for several
reasons. First, a heptaquark model has been proposed in the
early stage of development to explain a light mass and a
narrow decay width [3–7]. Although a quantitative study—in
particular with a model of hadrons where �+ is regarded
as a bound state of the πKN system—does not work with
the present knowledge of hadron interactions, a two-meson
contribution to the self-energy of �+ has been shown to
be consistent with the expected pattern of masses of the
antidecuplet members [8].

Second, the importance of two-meson coupling has been
implied from an empirical observation of the extended OZI
rule [9]. The dominance of connected quark lines favors
creation of a qq̄ pair in the transition of �+(qqqqq̄) →
N (qqq), which is naturally associated with the coupling to two
mesons, whereas a coupling to a single meson is suppressed.

Finally, two-meson coupling plays an important role in
reaction studies. Without two-meson coupling, all the am-
plitudes for �+ production are proportional to the �+KN

coupling, which is fixed by the very small decay width of
the �+. However, two-meson coupling is determined from
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other source as we will see in the following, independently
of the �+KN coupling. Therefore, even with the extremely
narrow width of �+, a sizable cross section can be obtained
with two-meson coupling.

In Ref. [8], an analysis of two-meson coupling is performed
in the study of the self-energy of the �+, assuming that JP =
1/2+ with N (1710) in the same antidecuplet (10). Since the �+
cannot decay into the KπN channel, the coupling constants
are determined from the N∗ decay into the ππN channel and
flavor SU(3) symmetry. Two types of Lagrangians are found to
be important for the self-energy of the baryon antidecuplet. It is
also shown that the two-meson contribution is indeed dominant
over a single-meson contribution. However, the assumption of
pure 10 may not be the case in reality.

This point is clarified in Ref. [10], where we study the
phenomenology of flavor partners for the �+. We assign
the masses of experimentally known particles in an octet-
antidecuplet mixing scheme, finding good fits for JP = 1/2+
and 3/2−. The decay width of the �+ is also evaluated
in the same scheme, and the JP = 3/2− case naturally
explains the narrow width, in accordance with the quark
model estimation [11]. In both JP cases, we obtain relatively
large mixing angles, which implies the importance of the
representation mixing.

Hence, combining these two findings, we calculate the two-
meson couplings including the representation mixing. First
we determine the coupling constants of N∗ → ππN from the
experimental widths and separate the 10 component from the
8 component. Then, by using SU(3) symmetry, the coupling
constants of �KπN can be determined for JP = 1/2+ and
3/2−, including representation mixing of 8 and 10. We focus
on the decay channels in which the two pions are correlated in
scalar-isoscalar and vector-isovector channels, which are the
main decay modes of the resonances and play a dominant role
in the �+ self-energy [8].

As an application of the effective Lagrangians, we perform
the analysis of the π−p → K−�+ and K+p → π+�+ reac-
tions. These reactions were studied using effective Lagrangian
approaches [12–15]. Experiments for π−p → K−�+ have
been performed at KEK [16], and a high-resolution experiment
for the K+p → π+�+ reaction is ongoing. We can compare
the results with these experiments.
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This paper is organized as follows. In the next section, we
show the framework of representation mixing and relevant
experimental information of nucleon decay. In Sec. III, the
effective interaction Lagrangians for nucleons and for the
antidecuplet are introduced for both JP = 1/2+ and 3/2−
cases. The coupling constants are determined in Sec. IV
by considering the decay widths of N∗ resonances and the
self-energy of the �+. With the effective Lagrangians, the
reaction processes π−p → K−�+ and K+p → π+�+ are
analyzed in Sec. V. The final section is devoted to a summary.

II. REPRESENTATION MIXING SCHEME AND
EXPERIMENTAL INFORMATION

Let us briefly review the previous study of representation
mixing [10] and summarize the experimental decays of
nucleon resonances. We have performed a phenomenological
analysis on the exotic particles using flavor SU(3) symmetry.
It is found that the masses of �(1540) and �3/2(1860) are well
fitted in an antidecuplet (10) representation which mixes with
an octet (8), with known baryon resonances of JP = 1/2+ or
3/2−. The 1/2− case gives too large a decay width for the �+,
and not enough resonances are well established for 3/2+ to
complete the analysis. Under the representation mixing, the
physical nucleon states are defined as

|N1〉 = |8, N〉 cos θN − |10, N〉 sin θN,
(1)

|N2〉 = |10, N〉 cos θN + |8, N〉 sin θN .

The two states N1 and N2 represents N (1440) and N (1710)
for the 1/2+ case and N (1520) and N (1700) for the 3/2−
case. The mixing angles θN can be determined by experimental
spectra of known resonances as

θN = 29◦ for JP = 1/2+, (2)

θN = 33◦ for JP = 3/2−. (3)

Both angles are close to the ideal mixing θN ∼ 35.2◦, in which
the nucleon states are classified by the number of strange
quarks (antiquarks). In other words, states are well mixed and
the effect of mixing of states is important.

Using these mixing angles and decay widths of nucleon
resonances (�N∗→πN ), we can calculate the decay width of
� (��→KN ) through the SU(3) relation between the coupling
constants

g� =
√

6(gN2 cos θN − gN1 sin θN ),

where g�, gN1 , and gN2 are the coupling constants of � and
nucleon resonances. With the known coupling constants gN1

and gN2 , we obtained �� ∼ 30 MeV for JP = 1/2+ and �� ∼
3 MeV for JP = 3/2−. Here we extend this approach to the
three-body decay, as shown in Fig. 1.

In Table I, we show the experimental information of the
decay pattern of the nucleon resonances N∗ → ππN taken
from the Particle Data Group (PDG) [17]. For convenience,
we refer to ππ (I = 0, s wave)N and ππ (I = 1, p wave)N
modes as “scalar” (s) and “vector” (v), respectively. There is
no information for the scalar decay of N (1700). PDG only
shows the fraction decaying via the ππN mode (85–95%) and
an upper bound for the ρN mode (<35%), although several

FIG. 1. Feynman diagram for the three-body decay of the
N∗ resonance.

intermediate states including ππ (I = 0, s wave)N are shown
in the table. For the estimation of the coupling constants,
we adopt the total branching ratio to the ππN channel as
the upper limit of the branch for the ππ (I = 0)N state,
BRN(1700)→ππ(I=0)N < 85–95%.

III. EFFECTIVE INTERACTION LAGRANGIANS

Here we write down the effective Lagrangians that account
for the interactions in the present analysis. We need two steps,
namely, the extraction of the 10 component from the N∗ →
ππN decay and the extrapolation to the �πKN channel.
Lagrangians for nucleons will be used for the former purpose;
the Lagrangians for the antidecuplet will tell us the SU(3)
relation between channels in the multiplet.

In general, for an N∗ → ππN vertex with an N∗ in octet
or antidecuplet representations, there are several structures of
interaction Lagrangians that are SU(3) symmetric. However,
for octet N∗, information of other channels are not relevant
here, because we do not want to study other channels.
Therefore, we write down only the N∗ππN channels, instead
of writing down all possible Lagrangians.

Using the partial decay widths of the two nucleon reso-
nances �

s,v
i , we determine the absolute values of the coupling

constants |gs,v
i |, where superscripts s and v stand for the scalar-

and vector-type correlations of two mesons. From them, we can
obtain the antidecuplet and octet components of the coupling
constants as

gs,v(10) = −|gs,v
1 | sin θN ± |gs,v

2 | cos θN,
(4)

gs,v(8) = |gs,v
1 | cos θN ± |gs,v

2 | sin θN,

based on Eq. (1). Since the relative phase of the two coupling
constants cannot be determined, the ± sign appears. Here
we use θN obtained from the mass spectra as shown in

TABLE I. Experimental information of two-pion decay of
nucleon resonances. “Scalar” represents the mode ππ (I =
0, s wave)N and “Vector” means ππ (I = 1, p wave)N mode. Val-
ues in parentheses are averaged over the interval quoted in PDG [17].

J P State �tot [MeV] Scalar [%] Vector [%]

1/2+ N(1440) 350 5–10(7.5) <8
N(1710) 100 10–40(25) 5–25(15)

3/2− N(1520) 120 10–40(25) 15–25(20)
N(1700) 100 <85–95a <35

aThe scalar decay of N (1700) is taken from the total branching ratio
to the ππN channel.
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Eqs. (2) and (3). When the coupling constants have experimen-
tal uncertainties, we vary them within the region and check the
minimum and maximum of corresponding values of gs,v(10).

A. Lagrangians for nucleons with J P = 1/2+

Let us consider the JP = 1/2+ case. The interaction
Lagrangians for nucleons can be written as

Ls
i = gs

i

2
√

2f
N

∗
i π · πN + h.c. (5)

and

Lv
i = i

gv
i

4
√

2f 2
N

∗
i (π · ↔

/∂π )N + h.c.

= i
gv

i

4
√

2f 2
N

∗
i (π · /∂π − /∂π · π )N + h.c., (6)

where f = 93 MeV is the pion decay constant, g
s,v
i are

dimensionless coupling constants, and h.c. stands for the her-
mitian conjugate. Subscript i = 1, 2 denotes the two nucleons
N (1440) and N (1710), respectively. The numerical factors
are chosen such that the coupling constants g

s,v
i should be

consistent with the Lagrangians for the antidecuplet, which
will be given later. For nucleon, N∗, and pion fields, we adopt
the convention

N =
(

p

n

)
, N∗

i =
(

p∗
i

n∗
i

)
, π =

(
π0

√
2π+√

2π− −π0

)
. (7)

B. Lagrangians for the antidecuplet with 1/2+

To connect the coupling constant of the process N∗ππN

to that of �KπN , we write down the interaction Lagrangian
for the antidecuplet. Flavor SU(3) structure of these terms are
studied in Ref. [8]. In the present case, for the scalar-type
correlation, we have

Ls
1/2+ = gs

1/2+

2f
P ijkε

lmkφl
aφa

iBm
j + h.c., (8)

whereas for the vector-type correlation, we have

Lv
1/2+ = i

gv
1/2+

4f 2
P ijkε

lmkγ µ(∂µφl
aφa

i − φl
a∂µφa

i)Bm
j + h.c.

(9)
In Eqs. (8) and (9), the coupling constants are for the
antidecuplet baryon, which corresponds to Eq. (4). These
Lagrangians correspond to L8s and L8a in Ref. [8]. The octet
meson (baryon) field φ (B) and the antidecuplet baryon field
P are defined as

φ =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η


 , (10)

B =




1√
2
�0 + 1√

6
 �+ p

�− − 1√
2
�0 + 1√

6
 n

�− �0 − 2√
6



 , (11)

P 333 =
√

6�+
10

, P 133 =
√

2N0
10

,

P 233 = −
√

2N+
10

, P 113 =
√

2�−
10

,

P 123 = −�0
10

, P 223 = −
√

2�+
10

, (12)

P 111 =
√

6�−−
10

, P 112 = −
√

2�−
10

,

P 122 =
√

2�0
10

, P 222 = −
√

6�+
10

.

Note that the coefficients for N∗ππN in the expansion of the
Lagrangians are the same as Eqs. (5) and (6), respectively.
This means that the normalizations of the coupling constants
in both Lagrangians are the same.

There is another Lagrangian for the scalar-type correlation
L27 [8]. However, the contribution of this term can be
expressed by the following parametrization:

aL8s + bL27, b = − 5
4 (1 − a), (13)

with g8s = g27. The ratio of L8s and L27 is controlled by the
parameter a, without changing the total coupling constant of
N∗ππN . The important point is that this combination of the
two Lagrangians also does not change the �KπN channel, as
we can see in the table in Ref. [8]. Therefore, for the present
purpose, it is sufficient to consider the Lagrangians (8) and (9).

C. Lagrangians for nucleons with J P = 3/2−

We express the spin 3/2 baryons as Rarita-Schwinger fields
Bµ [18]. The effective Lagrangians can be written as

Ls
i = i

gs
i

4
√

2f 2
N

∗µ

i ∂µ(π · π)N + h.c.

= i
gs

i

4
√

2f 2
N

∗µ

i (∂µπ · π + π · ∂µπ )N + h.c. (14)

and

Lv
i = i

gv
i

4
√

2f 2
N

∗µ

i (π · ↔
∂µπ )N + h.c. (15)

Here i = 1, 2 denotes the two nucleons N (1520) and N (1700),
respectively. Notice that a derivative of meson field is needed
for the scalar Lagrangian whose Dirac index is to be contracted
with that of the Rarita-Schwinger field. Since the flavor
structure of these Lagrangians is the same as in Eqs. (5) and
(6), we will have the same coefficients up to the coupling
factors. The antidecuplet component of the coupling constants
can be determined as in Eq. (4).

D. Lagrangians for the antidecuplet with 3/2−

We write the Lagrangians for the antidecuplet as a straight-
forward extension of those in 1/2+ case:

Ls
3/2− = i

gs
3/2−

4f 2
P

µ

ijkε
lmk∂µ(φl

aφa
i)Bm

j + h.c. (16)

and

Lv
3/2− = i

gv
3/2−

4f 2
P

µ

ijkε
lmk(∂µφl

aφa
i − φl

a∂µφa
i)Bm

j + h.c.

(17)
Here the flavor structure is the same as in Eq. (9).
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IV. NUMERICAL RESULTS FOR THE COUPLING
CONSTANTS

To study the coupling constants, let us start with the decay
width of a resonance into two mesons and one baryon, which
is given by

�BMM =
∫

d3p

(2π )3

M

E(p)

∫
d3k

(2π )3

1

2ω(k)

∫
d3k′

(2π )3

1

2ω′(k′)

×��|t(ω,ω′, cos θ )|2(2π )4δ(4)(P − p − k − k′)

= M

16π3

∫ ωmax

ωmin

dω

∫ ω′
max

ω′
min

dω′

×��|t(ω,ω′, a)|2�(1 − a2), (18)

with

ωmin = m,

ωmax = M2
R − M2 − 2Mm

2MR

,

a = (MR − ω − ω′)2 − M2 − |k|2 − |k′|2
2|k||k′| ,

where we assign the momentum variables P = (MR, 0), k =
(ω, k), k′ = (ω′, k′), and p = (E, p) as in Fig. 1; MR,M ,
and m are the masses of the resonance, baryon, and mesons,
respectively; and θ is the angle between the momenta
k and k′. The on-shell energies of particles are given

by ω =
√

m2 + k2, ω′ =
√

m2 + (k′)2, and E =
√

M2 + p2;
� denotes the step function; and �� stands for the spin sum
of the fermion states.

In the following, we evaluate the squared amplitude
��|t(ω,ω′, cos θ )|2 for the N∗ → ππN decay in the non-
relativistic approximation. For the 1/2+ case, from Eq. (5),
the scalar Lagrangian gives the term

��|t s1/2+|2 = 3

(
gs

1/2+

2f

)2
E + M

2M
. (19)

Note that we include the normalization factor (E + M)/2M

to be consistent with the other amplitude, although the effect
of this factor is small (of the order of a few percent) in the
results.

For the vector-type coupling, we insert the vector meson
propagator to account for the ρ meson correlation [8], as shown
in Fig. 2. Then the squared amplitude becomes

��|tv1/2+|2 = 6

(
gv

1/2+

4f 2

)2
1

2M

{
(E + M)(ω − ω′)2

+ 2(|k|2 − |k′|2)(ω − ω′)

+ (E − M)(k − k′)2
}

×
∣∣∣∣∣ −m2

ρ

s ′ − m2
ρ + imρ�(s ′)

∣∣∣∣∣
2

, (20)

FIG. 2. Three-body decay of the N∗ resonance with insertion of
the vector meson propagator.

where mρ is the mass of the ρ meson, s ′ = (k + k′)2, and �(s ′)
is the energy-dependent width given by

�(s ′) = �ρ ×
(

pcm(s ′)
pcm(m2

ρ)

)3

,

with the three-momentum of the final particles in the ρ rest
frame given by

pcm(s ′) =
{

λ1/2(s ′,m2
π ,m2

π )

2
√

s ′ for s ′ > 4m2
π ,

0 for s ′ � 4m2
π ,

and λ(a, b, c) is the Källen function. Note that in Eq. (20) we
take the terms up to next to leading order in the nonrelativistic
expansion, since the leading order term (ω − ω′) appears as
the difference of two energies, which can be zero.

The squared amplitudes for JP = 3/2− can be obtained in
a similar way:

��
∣∣t s3/2−

∣∣2 =
(

gs
3/2−

4f 2

)2

(k + k′)2 E + M

2M
, (21)

��
∣∣tv3/2−

∣∣2 = 2

(
gv

3/2−

4f 2

)2

(k − k′)2 E + M

2M

×
∣∣∣∣∣ −m2

ρ

s ′ − m2
ρ + imρ�(s ′)

∣∣∣∣∣
2

. (22)

A. Numerical result for the J P = 1/2+ case

Now we evaluate the coupling constants numerically. Using
the averaged values in Table I, we obtain the coupling constants
gs

i and gv
i for these channels:∣∣gs

N(1440)

∣∣ = 4.28,
∣∣gv

N(1440)

∣∣ < 3.68, (23)∣∣gs
N(1710)

∣∣ = 1.84,
∣∣gv

N(1710)

∣∣ = 0.31. (24)

By substituting them into Eq. (4) (but suppressing the label 10
for simplicity), the antidecuplet components are extracted as∣∣gs

1/2+
∣∣ = 0.47, 3.68, (25)

where two values correspond to the results with different
relative phases between the two coupling constants. For |gv

1/2+ |,
only the upper bound is given for N (1440); therefore we cannot
fix the central value.

When we take into account the experimental uncertainties
in the branching ratio, the antidecuplet components can vary
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FIG. 3. (Color online) Numerical results for the coupling con-
stants with J P = 1/2+. The two choices of the relative phase between
coupling constants are marked as “phase 1” and “phase 2”. Allowed
regions of the coupling constants are shown by the vertical bar.
Horizontal bars represent the results obtained with the averaged
values, which are absent for the vector case. Horizontal dashed lines
show the upper limits of the coupling constants derived from the
self-energy |Re�| < 200 MeV.

within the following ranges:

0 <
∣∣gs

1/2+
∣∣ < 1.37, 0 <

∣∣gv
1/2+

∣∣ < 2.14,

2.72 <
∣∣gs

1/2+
∣∣ < 4.42,

including both cases for the phase. These uncertainties are also
shown by the vertical bar in Fig. 3, with the horizontal bars
being the result with the averaged value in Eq. (25).

Now let us consider the phenomenological implication
of this result. In the study of self-energy [8], the coupling
constants have been derived by assuming that the �+ belongs
to a pure antidecuplet together with N (1710), where we have
determined |gs

1/2+| = 1.88 and |gv
1/2+| = 0.315 [essentially

the same as values in Eq. (24)]. In the calculation of the
self-energy of �+, the effect of mixing only changes the
coupling constants, by neglecting the small contribution from
L27. In this case, the �+ self-energy with the new coupling
constants can be written as

�s
�+

(
gs

1/2+
) = �s

�+(1.88) ×
∣∣gs

1/2+
∣∣2

1.882
, (26)

�v
�+

(
gv

1/2+
) = �v

�+ (0.315) ×
∣∣gv

1/2+
∣∣2

0.3152
. (27)

The real parts of the self-energy depend on the initial energy
and the cutoff value of the loop integral. We have estimated
Re�s

�+ (g = 1.88) ∼ −75 MeV and Re�v
�+(g = 0.315))

∼ −18 MeV for an initial energy of 1540–1700 MeV and
with a cutoff of 700–800 MeV. Using Eqs. (26) and (27) with
the values of Eq. (25), we obtain

�s
�+ = −287, −4.7 MeV, 0 > �v

�+ > −770 MeV.

(28)
The sum of these values are the contribution to the self-energy
of �+ from the two-meson cloud. Naively, we expect that it
should be of the order of 100 MeV, at most ∼20% of the

total energy [8,19]. From this consideration, we adopt the
condition that the magnitude of one of the contributions should
not exceed 200 MeV: |Re�v

�+| < 200.
For the scalar coupling, this condition is satisfied when∣∣gs

1/2+
∣∣ < 3.07. (29)

Therefore, we can exclude the choice of “phase 2” in Fig. 3.
In the same way, the upper limit of |gv

1/2+| should be
imposed as ∣∣gv

1/2+
∣∣ < 1.05 (30)

to be consistent with the condition |Re�v
�+| < 200 MeV. This

is compatible with Eq. (25), although Eq. (30) gives a more
stringent constraint. These upper limits are also shown in Fig. 3
by the dashed lines.

B. Numerical result for the J P = 3/2− case

Now we consider the JP = 3/2− case. Using the central
values in Table I, we obtain the coupling constants gs

i and gv
i

for these channels:∣∣gs
N(1520)

∣∣ = 3.56,
∣∣gv

N(1520)

∣∣ = 1.11, (31)∣∣gs
N(1700)

∣∣ < 2.66,
∣∣gv

N(1700)

∣∣ < 0.32. (32)

In this case, with the same reason as in the vector coupling
for the 1/2+ case, the central value cannot be determined.
Experimental uncertainties allow the antidecuplet components
to vary within the following ranges:

0 < |gs
3/2−| < 4.68, 0.25 < |gv

3/2−| < 0.94, (33)

including both cases for the phase. The results are shown by
the vertical bars in Fig. 4.

It is worth noting that the region of |gv
3/2−| does not reach

zero, even though the |gv
N(1700)| can be zero. The condition for

gs,v(10) = 0 leads to

|gs,v
2 |

|gs,v
1 | = tan θN ∼

{
0.55 for 1/2+,

0.65 for 3/2−.
(34)

This means that gs,v(10) becomes zero only if the con-
dition (34) is satisfied within the uncertainty of coupling
constants.

We can also estimate the magnitude of the self-energy,
by substituting the squared amplitudes for 3/2− case in
the formulas of the self-energy shown in Ref. [8]. For
|gs

3/2−| = 4.17, we estimate the real part of the self-energy as
−1518 MeV for an initial energy of 1540–1700 MeV and a
cutoff of 700–800 MeV. This huge self-energy for 3/2− case is
due to the p-wave nature of the two-meson coupling, namely,
the existence of a momentum variable in the loop integral. A
similar large self-energy was observed when the self-energy
is calculated with the chiral Lagrangian in Ref. [8]. Thus,
to have some reasonable values for the self-energy |Re�s

�+|
< 200 MeV, ∣∣gs

3/2−
∣∣ < 1.51. (35)

In the same way, for the vector term with |gv
3/2−| = 0.61,

we estimate the real part of the self-energy as −130 MeV. In
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FIG. 4. (Color online) Numerical results for the coupling con-
stants with J P = 3/2−. The two choices of the relative phase between
coupling constants are marked as “phase 1” and “phase 2”. Allowed
regions of the coupling constants are shown by the vertical bar.
Horizontal dashed lines show the upper limit of the coupling constants
derived from the self-energy |Re�| < 200 MeV.

this case, the self-energy is suppressed by the vector meson
propagator. The use of the small number 0.61 for the coupling
constant also accounts for the small value of the self-energy.
The condition of the self-energy |Re�v

�+| < 200 MeV gives
the constraint ∣∣gv

3/2−
∣∣ < 0.76. (36)

Both upper limits (35) and (36) are indicated by horizontal
dashed lines in Fig. 4.

V. ANALYSIS OF THE MESON-INDUCED REACTIONS

As an application of effective Lagrangians, we calculate the
reaction processes π−p → K−�+ and K+p → π+�+ via
tree-level diagrams as shown in Fig. 5. These are alternative
reactions to, for instance, photo-induced reactions, which are
useful for further study of the �+. The amplitudes for these
reactions are given by

−it s1/2+ (π−p → K−�+) = −it s1/2+ (K+p → π+�+)

= i
gs

1/2+

2f
(−

√
6)N�+Np, (37)

−itv1/2+ (π−p → K−�+) = itv1/2+ (K+p → π+�+)

= i
gv

1/2+

4f 2
(−

√
6)(2

√
s − M� − Mp)N�+NpF (k − k′)

(38)

FIG. 5. Feynman diagrams for the meson-induced reactions for
�+ production.

FIG. 6. Feynman diagram for the meson-induced reaction for �+

production with a vector meson propagator.

for the 1/2+ case and by

−it s3/2− (π−p → K−�+) = −it s3/2− (K+p → π+�+)

= i
gs

3/2−

4f 2
(−

√
6)(k − k′) · SN�+Np, (39)

−itv3/2− (π−p → K−�+) = itv3/2− (K+p → π+�+)

= −i
gv

3/2−

4f 2
(−

√
6)(k + k′) · SN�+NpF (k − k′) (40)

for the 3/2− case, where the normalization factor is Ni =√
(Ei + Mi)/2Mi, S is the spin transition operator,

√
s is the

initial energy, and k and k′ are the momenta of the incoming
and outgoing mesons, respectively. Here we define the vector
meson propagator (Fig. 6) as

F (k − k′) = −m2
K∗

(k − k′)2 − m2
K∗ + imK∗�[(k − k′)2]

, (41)

which is included in the vector-type amplitude. In the kine-
matical region in which we are interested, the momentum-
dependent decay width of K∗, �[(k − k′)2], vanishes. Note
that the scalar-type amplitude gives the same sign for π−p →
K−�+ and K+p → π+�+, whereas the vector one gives
opposite signs, reflecting the symmetry under exchange of
two meson fields in the effective Lagrangians.

Since the two amplitudes must be summed coherently, the
squared amplitudes are given by

��|t1/2+|2 = ��
∣∣t s1/2+ ± tv1/2+

∣∣2

= 6

(
1

2f

)2

N2
�+N2

p

[(
gs

1/2+
)2 ± 2gs

1/2+gv
1/2+

× 2
√

s − M� − Mp

2f
F (k − k′) + (

gv
1/2+

)2

× (2
√

s − M� − Mp)2

4f 2
F 2(k − k′)

]
, (42)

��|t3/2−|2 = 4

(
1

4f 2

)2

N2
�+N2

p

[(
gs

3/2−
)2

(k − k′)2

∓ 2gs
3/2−gv

3/2− (|k|2 − |k′|2)F (k − k′)

+ (gv
3/2− )2(k + k′)2F 2(k − k′)

]
, (43)
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where ± and ∓ signs denote the π−p → K−�+ and K+p →
π+�+ reactions, respectively. Notice that the relative phase
between the two coupling constants is important, which affects
the interference term of the two amplitudes. To determine
the phase, we use experimental information from the π−p →
K−�+ reaction at KEK [16], where the upper limit of the
cross section has been extracted to be a few µb.

The differential cross section for these reactions is given by

dσ

d cos θ
(
√

s, cos θ ) = 1

4πs

|k′|
|k| MpM�

1

2
��|t(√s, cos θ )|2,

(44)
which is evaluated in the center-of-mass frame. The total cross
section can be obtained by integrating Eq. (44) with respect to
cos θ :

σ (
√

s) =
∫ 1

−1
d cos θ

dσ

d cos θ
(
√

s, cos θ ).

A. Qualitative analysis for J P = 1/2+ and 3/2−

Now let us calculate the cross section using the coupling
constants obtained previously. In this section, we focus on the
qualitative difference between JP = 1/2+ and 3/2− cases. A
more quantitative estimation of cross sections will be given in
later sections.

We first calculate for the 1/2+ case, with coupling constants

gs
1/2+ = 0.47, gv

1/2+ = 0.47, (45)

where gs
1/2+ is one of the solutions that satisfies the condi-

tion (29). Since the result (25) spreads over a wide range, we
choose gv

1/2+ = gs
1/2+ , which is well within the interval (30)

determined from the self-energy. The result is shown in Fig. 7,
with contributions from s and v terms. Each contribution is
calculated by switching off the other term. As we see, the
use of the same coupling constant for both terms result in the
dominance of the vector term. However, there is a sizable inter-
ference effect between s and v terms, although the contribution
from the s term itself is small. The two amplitudes interfere
constructively for the π−p → K−�+ channel, whereas in the
K+p → π+�+ case they destructively interfere.

12

10

8

6

4

2

0

σ 
[m

b]

240020001600

s [MeV]

 s
 v
 Total

12

10

8

6

4

2

0

σ 
[m

b]

240020001600

s [MeV]

π-p -> K-Θ+ K+p -> π+Θ+

FIG. 7. (Color online) Total cross sections for the J P = 1/2+

case with gs = 0.47 and gv = 0.47. The thick line shows the
result with full amplitude. Dash-dotted and dashed lines are the
contributions from s and v terms, respectively.
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FIG. 8. (Color online) Total cross sections for the J P = 1/2+

case with gs = 0.47 and gv = −0.47. The thick line shows the
result with full amplitude. Dash-dotted and dashed lines are the
contributions from s and v terms, respectively.

As already mentioned, the relative phase of the two coupling
constants is not determined. If we change the sign,

gs
1/2+ = 0.47, gv

1/2+ = −0.47, (46)

then the results change as in Fig. 8, where constructive and
destructive interference appears in an opposite manner. It is
worth noting that the amplitudes for π−p → K−�+ with the
relative phase of Eq. (45) and that for K+p → π+�+ with
Eq. (46) are the same, as seen in Eq. (42). The difference only
comes from the kinematic factors in the cross section (44).

There is a preliminary result from KEK [16] that the cross
section of π−p → K−�+ was found to be very small, of the
order of a few µb. At this stage, we do not want to calculate
the cross section quantitatively, but the experimental result
suggests that the relative phase of Eq. (46) should be plausible,
for the small cross section for the π−p → K−�+ reaction. In
this case, the cross section for K+p → π+�+ becomes large.

As a trial, let us search for the set of coupling constants with
which the most destructive interference takes place in π−p →
K−�+, by changing gv

1/2+ within the interval (30). This means
that the difference between cross sections of π−p → K−�+
and K+p → π+�+ is maximal. Then we find

gs
1/2+ = 0.47, gv

1/2+ = −0.08. (47)

The result is shown in Fig. 9. A huge difference between
π−p → K−�+ and K+p → π+�+ can be seen. In this case,
we observe the ratio of cross sections

σ (K+p → π+�+)

σ (π−p → K−�+)
∼ 50. (48)

Here we estimated the cross section σ as the average of
the cross section shown in the figures (from threshold to
2.6 GeV). Notice that the ratio of the coupling constants
gs

1/2+/gv
1/2+ ∼ −5.9 is relevant for the interference effect. It is

possible to scale both coupling constants within experimental
uncertainties. This does not change the ratio of cross sections,
but it does change the absolute values.

Next we examine the case with JP = 3/2−. Again, we
observe constructive and destructive interference, depending
on the relative sign of the two amplitudes. The interference
effect is prominent around the energy region close to the
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FIG. 9. (Color online) Total cross sections for the J P = 1/2+

case with gs = 0.47 and gv = −0.08, when the most destructive
interference for π−p → K−�+ takes place. Note that the vertical
scale is different in the two panels. The thick line shows the result with
full amplitude. Dash-dotted and dashed lines are the contributions
from s and v terms, respectively.

threshold but is not very strong in the higher energy region,
compared with the 1/2+ case.

We search for the coupling constants with which the most
destructive interference takes place for π−p → K−�+. We
find that destructive interference is maximized when the ratio
of the coupling constants is gs

3/2−/gv
3/2− ∼ 0.5. Taking, for

instance, the values

gs
3/2− = 0.2, gv

3/2− = 0.4, (49)

which are within the experimental bounds given in Sec. IV,
we obtain the results shown in Fig. 10. In contrast to the
JP = 1/2+ case, here the ratio of cross sections is not very
large:

σ (K+p → π+�+)

σ (π−p → K−�+)
∼ 3.3. (50)

The high-energy behavior in this case is understood from the
p-wave nature of the coupling.

Let us mention the effect of the vector meson propagator.
For simplicity, we take the same value for the coupling
constants. First, we address the JP = 1/2+ case. Without
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FIG. 10. (Color online) Total cross section for the J P = 3/2−

case with gs = 0.2 and gv = 0.4, when the most destructive inter-
ference for π−p → K−�+ takes place. The thick line shows the
result with full amplitude. Dash-dotted and dashed lines are the
contributions from s and v terms, respectively.

introducing the vector meson propagator F (k − k′), the
magnitude and energy dependence of the vector term is
not similar to the scalar one, reflecting the structure of
amplitudes (37) and (38). The difference between s and v

amplitudes is (2
√

s − M� − Mp)/2f with the same coupling
constant, which ranges from 3 to 14 in the energy region under
consideration. The cross section is proportional to its square,
and therefore the vector term becomes the dominant one. The
inclusion of the vector meson propagator reduces the cross
section of the vector term, especially in the high-energy region.
This eventually leads to a similar energy dependence of the two
amplitudes t s and tv , resulting in a large cancellation between
them, as seen in Fig. 9, although a factor gs

1/2+/gv
1/2+ ∼ −5.9

is still required to make the magnitude the same.
For the JP = 3/2− case, without including the vector

meson propagator, the scalar and vector contributions to the
total cross section [the first and the third terms in Eq. (43)]
become exactly the same, when we take the same coupling
constant. Obviously, as seen in Eq. (43), the difference of the
squared amplitudes is the term proportional to k · k′ ∝ cos θ ,
which goes away when the angular integral is performed. This,
however, does not lead to complete destructive interference,
owing to the second term in Eq. (43). The vector meson
propagator acts in the same way as before, and we obtain
somehow a different energy dependence of the s and v results
(Fig. 10) and a factor gs

3/2−/gv
3/2− ∼ 0.5 to compensate for the

reduction of the cross section of the vector term.

B. Hadronic form factor

Here we consider the reaction mechanism in detail to
give a more quantitative result. First we introduce a hadronic
form factor at the vertices, which accounts for the energy
dependence of the coupling constants. Physically, it is un-
derstood as the reflection of the finite size of the hadrons. In
practice, however, the introduction of the form factor has some
ambiguities in its form and the cutoff parameters [20], which
hopefully can be determined from experiment.

In Ref. [15], the π−p → K−�+ reaction is studied with a
three-dimensional monopole-type form factor

F (
√

s) = 2

2 + q2
, (51)

where q2 = λ(s,M2
N,m2

in)/4s with min being the mass of the
incoming meson and  = 0.5 GeV. Here we adopt this form
factor and apply it to the present process. We obtain the results
for JP = 1/2+ in Fig. 11 and for JP = 3/2− in Fig. 12, with
the coupling constants given in Eqs. (47) and (49). With this
form factor, the energy of the K+p → π+�+ reaction of the
ongoing experiment at KEK (Plab ∼ 1200 MeV,

√
s ∼ 1888

MeV) is close to the maximum value for the cross section.
Notice that the ratio of the cross sections of π−p → K−�+

and K+p → π+�+ becomes larger than those of Eqs. (48)
and (50). This is due to the use of the form factor (51), which
contains the mass of the initial meson. It further contributes a
factor ∼2 for the ratio of π−p → K−�+ and K+p → π+�+.

We observe that the cross section is suppressed down to
∼1 µb for the π−p → K−�+ reaction in the 1/2+ case.
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FIG. 11. (Color online) Total cross sections for the J P = 1/2+

case with gs = 0.47 and gv = −0.08, including a hadronic form
factor (51). The thick line shows the result with full amplitude. Dash-
dotted and dashed lines are the contributions from s and v terms,
respectively.

However, this is also a consequence of our choice of small
coupling constants. Indeed, with these coupling constants, the
self-energy of �+ becomes

Re�1/2+
�+ = Re�s

�+ + Re�v
�+ ∼ −5.3 − 1.6 = −6.9 MeV,

(52)

for p0 = 1700 MeV and a cutoff of 750 MeV. This is too small,
but as we mentioned before, we can scale these constants
without changing the ratio of K+p → π+�+ and π−p →
K−�+. We would like to search for the coupling constants
that provide a small cross section for the π−p → K−�+
reaction compatible with experiment and a moderate amount of
self-energy, which guarantee the dominance of the two-meson
coupling terms compared with the KN�+ vertex.

In Fig. 13, we plot the cross section of the π−p → K−�+
reaction and the self-energy of �+ by fixing the ratio of
coupling constants. The cross section is the value at

√
s =

2124 MeV, which corresponds to the KEK experimental Plab ∼
1920 MeV. The horizontal line denotes the factor F, which is
defined by

gs
1/2+ = F × 0.47, gv

1/2+ = −F × 0.08. (53)
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FIG. 12. (Color online) Total cross sections for the J P = 3/2−

case with gs = 0.2 and gv = 0.4, including a hadronic form fac-
tor (51). The thick line shows the result with full amplitude. Dash-
dotted and dashed lines are the contributions from s and v terms,
respectively.

TABLE II. Summary of the coupling constants, cross sections,
and self-energies. σπ− is the total cross section for π−p → K−�+

at Plab = 1920 MeV; σK+ is that for K+p → π+�+, which is the
upper limit of the cross section at Plab = 1200 MeV.

J P gs gv σπ− [µb] σK+ [µb] Re�� [MeV]

1/2+ 1.59 −0.27 4.1 <1928 −78
1.37 −0.23 3.2 <1415 −58
1.80 −0.31 5.0 <2506 −100

3/2− 0.104 0.209 4.1 <113 −23
0.125 0.25 5.9 <162 −32
0.22 0.44 18 <502 −100

We use F = 1 for the calculation of Fig. 11. Both the cross
section and self-energy are proportional to the square of
the coupling constant. Using the maximum value of cross
section ∼4.1 µb [21] estimated by the KEK experiment [16],
we have

gs
1/2+ = 1.59, gv

1/2+ = −0.27,
(54)

σπ−p→K−�+ = 4.1 µb, Re�� = −78 MeV.

Furthermore, if we use the upper limit of the scalar term of the
coupling constant, we fix

gs
1/2+ = 1.37, gv

1/2+ = −0.23,
(55)

σπ−p→K−�+ = 3.2 µb, Re�� = −58 MeV.

However, if we want to obtain Re�� = −100 MeV, we have

gs
1/2+ = 1.80, gv

1/2+ = −0.31,
(56)

σπ−p→K−�+ = 5.0 µb, Re�� = −100 MeV.

We see that a sizable self-energy is obtained with the coupling
constants (54) and (56). These results are summarized in
Table II.

For the JP = 3/2− case, with gs
3/2− = 0.2 and gv

3/2− = 0.4,
the self-energy of �+ becomes

Re�3/2−
�+ = Re�s

�+ + Re�v
�+ ∼ −4 − 80 = − 84 MeV. (57)

In Fig. 13, we plot the cross section of the π−p → K−�+
reaction and the self-energy of �+ by fixing the ratio of
coupling constants. The horizontal line denotes the factor F,
which is defined by

gs
1/2+ = F × 0.2, gv

1/2+ = F × 0.4. (58)

Using the maximum value of cross section ∼4.1 µb estimated
by the KEK experiment, we have

gs
3/2− = 0.104, gv

3/2− = 0.209,
(59)

σπ−p→K−�+ = 4.1 µb, Re�� = −23 MeV.

In the region plotted in the figure, the coupling constants do not
exceed the upper bounds, but the lower limit of gv

3/2− appears:

gs
3/2− = 0.125, gv

3/2− = 0.25,
(60)

σπ−p→K−�+ = 5.9 µb, Re�� = −33 MeV.
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FIG. 13. (Color online) The total cross section of π−p → K−�+ at Plab = 1920 MeV and the real part of the self-energy of �+ as
functions of the factor F defined in Eqs. (53) and (58) for J P = 1/2+ (left) and J P = 3/2− (right). Solid, dashed, and dash-dotted vertical lines
show the upper limit of the cross section given by the KEK experiment [16], the limit of the coupling constant, and the point where Re� =
−100 MeV, respectively.

To make Re�� = −100 MeV, we have

gs
3/2− = 0.22, gv

3/2− = 0.44,
(61)

σπ−p→K−�+ = 18 µb, Re�� = −100 MeV.

Finally, we show the angular dependence of the cross
sections. In Figs. 14 and 15, we plot the angler dependence of
the differential cross sections at the energy of KEK experiment:
Plab ∼ 1920 MeV for π−p → K−�+ and Plab ∼ 1200 MeV
for K+p → π+�+. For the JP = 1/2+ case, the contribution
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FIG. 14. (Color online) Angular dependence of the differential
cross section for π−p → K−�+ at Plab ∼ 1920 MeV (left) and
for K+p → π+�+ at Plab ∼ 1200 MeV (right) for the J P = 1/2+

case with gs = 1.59 and gv = −0.27, including a hadronic form
factor (51). The thick line shows the result with full amplitude.
Dash-dotted and dashed lines are the contributions from s and
v terms, respectively.

from the s term has no angular dependence, whereas the v term
shows a forward peak, owing to the t-channel exchange of the
vector meson propagator. Because of the interference of the
two amplitudes, the total result becomes zero at cos θ ∼ 0.5
for the π−p → K−�+ reaction. For the JP = 3/2− case, the
s term varies linearly in cos θ , leading to a backward peak.
The v term shows a forward peak, which is enhanced by the
vector meson propagator. Interference of the two amplitude
leads to a clear forward peak for both π−p → K−�+ and
K+p → π+�+ reactions.
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FIG. 15. (Color online) Angular dependence of the differential
cross section for π−p → K−�+ at Plab ∼ 1920 MeV (left) and
for K+p → π+�+ at Plab ∼ 1200 MeV (right) for the J P = 3/2−

case with gs = 0.106 and gv = 0.212, including a hadronic form
factor (51). The thick line shows the result with full amplitude.
Dash-dotted and dashed lines are the contributions from s and
v terms, respectively.
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FIG. 16. Born terms for the reaction: u-channel diagram for
K+p → π+�+ (left); s-channel diagram for π−p → K−�+ (right).

C. Effect of Born terms

In this subsection, we briefly discuss the possible effect
from the Born terms, as shown in Fig. 16, which have not been
taken into account in the present studies. However, there are
reasons that the Born terms are not important in the present
reactions. First, the Born terms are proportional to the decay
width of �+ and therefore suppressed if the decay width
of the �+ is narrow. Second, in the energy region of �+
production, the energy denominator of the exchanged nucleon
suppresses the contribution, especially for the s-channel term
in the π−p → K−�+ reaction. Here we would like to confirm
this explicitly.

At the tree level, there are s-, t-, and u-channel diagrams.
However, assuming I = 0 for �+, there is only a u channel
in K+p → π+�+ (Fig. 16, left), whereas there is only an
s channel in π−p → K−�+ (Fig. 16, right). For these
terms, we need Yukawa couplings such as KN�+ and πNN

couplings. There are two schemes to introduce the Yukawa
couplings, namely, pseudoscalar (PS) and pseudovector (PV)
schemes. For the construction of the Born amplitude, it is
reasonable to rely on chiral symmetry, where the two schemes
should provide the same results.

In this case the meson-baryon scattering amplitude should
be a quantity of O(k) or higher, where k is a momentum of
mesons. In the PV scheme, since each KN� coupling is of
O(k), the Born amplitude behaves as O(k2), consistent with
this observation. In contrast, a naive construction of the Born
term in the PS scheme leads to an amplitude of O(1). It is
well known that a scalar exchange term cancels a term of
O(1). However, the interaction of the scalar channel is not
well understood. Therefore, we adopt the PV scheme in the
following study. Another advantage of the PV scheme is that
it can be extended easily to the JP = 3/2− case, which is not
so simple in the PS scheme [22]. In this respect, our method
differs from the previous study of similar reactions [14,15],
in which the PS scheme was used.

The interaction Lagrangians for 1/2+ are

L1/2+
KN� = g

∗,1/2+
A

2f
�̄+γµγ5∂

µKN + h.c., (62)

LπNN = gA

2f
N̄γµγ5∂

µπN. (63)

The fields N and π are defined in Eq. (7), and the Kaon field
is defined as

K = (−K0K+), (64)

and the coupling constants are determined as

g
∗,1/2+
A = 0.0935, (65)
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FIG. 17. (Color online) Total cross section for the J P = 1/2+

case with gs = 1.59 and gv = −0.27, including a hadronic form
factor (51) and Born terms. The thick line shows the result with full
amplitude. Dash-dotted, dashed, and thin lines are the contributions
from s, v, and Born terms, respectively. The result without Born terms
is shown by the long-dashed lines.

which is determined by ��+ = 1 MeV, and we use

gA = 1.25. (66)

The amplitude for π−(k)p(p) → K−(k′)�+(p′) is given by

−it = i
√

2
g

∗,1/2+
A gA

4f 2
(σ · k′)

M

E

1

p0 + k0 − E( p + k)
(σ · k),

and for K+(k)p(p) → π+(k′)�+(p′),

−it = i
√

2
g

∗,1/2+
A gA

4f 2
(σ · k)

M

E

1

p0 − k′
0 − E( p − k′)

(σ · k′).

In Fig. 17 we show the results including the Born terms. We
can observe that the effect of the Born terms is indeed small
in both reactions.

For the JP = 3/2− case, the interaction Lagrangian can be
written as

L3/2−
KN� = g

∗,3/2−
A

2f
�̄+µγ5∂µKN + h.c., (67)

with the same πNN vertex in Eq. (66). In the nonrelativistic
expansion this term yields a d-wave coupling so that the square
of momenta appears in the vertex. It reduces the contribution
further than the 1/2+ case, and therefore the effect of the Born
terms for JP = 3/2− is also small.

VI. SUMMARY

In this paper, we studied the two-meson couplings of �+ for
JP = 1/2+ and 3/2−. The effective interaction Lagrangians
for the two-meson coupling were given, and these coupling
constants were determined based on the 8–10 representation
mixing scheme, by using information of the N∗ → ππN

decays. These values were further constrained to provide
an appropriate size of the self-energy of the �+. Finally,
we applied the effective Lagrangian to the meson induced
reactions π−p → K−�+ and K+p → π+�+.

We found that there is an interference effect between the
two amplitudes of the scalar and vector types, which can help
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to explain the very small cross section for the π−p → K−�+
reaction observed at KEK [16]. In this case, reflecting the
symmetry under exchange of two amplitudes, the large cross
section for the K+p → π+�+ reaction was obtained as a
consequence of the interference. The interference occurs in
both 1/2+ and 3/2− cases.

In Table II, we summarize the results obtained in the present
analysis. For a given set of coupling constants, the upper bound
of the cross section of the K+p → π+�+ reaction is estimated
by maximizing the interference effect. We observe that the
large cross section of the order of millibarns for K+p →
π+�+ is obtained for the 1/2+ case, whereas the upper limit of
the cross section is not very large the for 3/2− case. Therefore,
if large cross sections are observed in the K+p → π+�+
reaction, it would indicate JP = 1/2+ for the �+.

For completeness, we would like to mention the case where
the cross sections for both π−p → K−�+ and K+p →
π+�+ reactions are small. If the cross section of K+p →
π+�+ is also small, it could be explained by the small
coupling constants and is not an interference effect. For
the JP = 1/2+ case, both coupling constants can be zero
within the experimental uncertainties. However, for the 3/2−
case, there is a lower limit for the gv

3/2− , which means that
the lower limit is also imposed for the cross sections. We
search for the set of coupling constants that provide the
minimum value for the K+p → π+�+ cross section, keeping
a π−p → K−�+ cross section to be less than 4.1 µb. We

obtain σK+p→π+�+ ∼ 58 µb with gs
3/2− = 0.04 and gv

3/2− =
0.18. However, one should notice that the small coupling
constants do not guarantee the dominance of two-meson
coupling, and the Born terms and interference effect may play
a role, which is beyond our present scope.

The present analysis provides an extension of effective
interactions obtained in Ref. [23] with representation mixing
and JP = 3/2−. It is also interesting to apply the present
extension to the study of the medium effect of �+ [23] and
the production of �+ hypernuclei [24]. From the experimental
point of view, the cross section of the K+p → π+�+ reaction
is of particular importance to the present results. To perform a
better analysis for the two-meson coupling, more experimental
data for three-body decays of nucleon resonances are strongly
desired.
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