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Dynamical interpretation of average fission-fragment kinetic energy systematics
and nuclear scission
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A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments
〈EK〉 over a wide range of the Coulomb parameter (600 < Z2/A1/3 < 2200) is given. Different scission criteria
traditionally employed in fission theory—at zero neck radius and at finite neck radius—have been applied in
dynamical calculations. Both have resulted in a fairly good description of the dependence of 〈EK〉 on the Coulomb
parameter. The results of dynamical calculations of 〈EK〉 within three-dimensional Langevin dynamics show
that the mean distance between the centers of mass of nascent fragments at the scission configuration increases
linearly with the parameter Z2/A1/3. This distance changes approximately from 2.35R0 for 119Xe to 2.6R0 for
256Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence
of 〈EK〉 on the parameter Z2/A1/3 remains approximately valid over a wide range of the Coulomb parameter
Z2/A1/3.
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I. INTRODUCTION

Nuclear scission is a process through which the initial
compound nucleus divides predominantly into two fragments.
Any theoretical description or simulation of nuclear scission
inevitably requires one to consider the condition under which
scission occurs. By scission, one means here a transition from
a continuous nuclear configuration (which becomes unstable
for a number of reasons) to a configuration in which the nuclear
system consists of two separated fragments. The problem of
the rupture of the neck between nascent fragments has been
addressed many times (see, e.g., Refs. [1–10], but it has not
been solved completely yet. So far, the problem of neck rupture
and closely related questions concerning the parameters of
the fission fragment mass-energy distributions still remain an
intricate and unsolved puzzle of fission physics.

For the first time the problem of rupture of the neck in
nuclear fission has been solved quantitatively by Strutinsky
and co-workers [1–4]. They have solved an integro-differential
equation for the determination of the equilibrium shapes in a
liquid drop model (LDM) for a given deformation (a fixed
elongation) of the fissioning nucleus. From these calculations
they have revealed the existence of the so-called critical [1–4]
or exit [5] deformation that has been interpreted as the
scission configuration. As defined in Refs. [1–4] the critical
deformation is almost independent of the fissility parameter.
It was found that the critical deformation is characterized
by a relatively thick neck with a radius Rcrit

N � 0.24R0 for
Z2/A � 0 and Rcrit

N � 0.27R0 for Z2/A � 36 (with R0 the
radius of the initial spherical nucleus) and the following
distances between the centers of mass of nascent fragments:
Dcrit � 2.3R0 for Z2/A � 0 and Dcrit � 2.38R0 for Z2/A �
36. The origin of the critical deformation can be understood
if one considers the structure of the energy surface in the
LDM. The main feature of the energy surface in the LDM for
highly deformed nuclei revealed in Refs. [1–4] is the presence

of three conditional extremes found under the condition that
the elongation parameter has a given value. Two of them
correspond to minima of the deformation energy—one for
usual continuous shapes (the bottom of the fission valley)
and another for separated two-fragment shapes (the bottom
of the fragment valley). The third extremum corresponds to
the maximum (ridge) of the potential barrier that separates
the two minima at the same elongation. We note that the
presence of two valleys and a ridge between them that vanishes
at large nuclear elongations was confirmed by Hartree-Fock
calculations of the potential energy [11]. It is attractive from
the physical point of view to define the scission condition
on the basis of the instability criterion of a nucleus with
respect to variations of the neck thickness [1–5], in which
case the ridge between the fission valley and the valley of
the separated fragments disappears. This scission condition
corresponds to scission configurations of a fissioning nucleus
that are characterized by a neck of finite radius, on average
equal to 0.3R0 [5].

Another acceptable and physically reasonable scission
criterion is based on the equality of the Coulomb repulsion
and nuclear attraction forces between future fragments. It was
shown in Ref. [12] that this scission criterion leads to scission
configurations that have a finite neck radius RN � 0.2R0 for
nuclei with Z2/A1/3 � 500 and a neck radius RN � 0.3R0

for nuclei with Z2/A1/3 � 2000. In a random neck rupture
model Brosa with co-workers [6,7] have used the criterion
of hydrodynamic instability of the neck against rupture. It
leads to scission configurations with a finite neck radius
RN � (0.3–0.4)R0. In contrast, the scission condition of zero
neck radius, RN = 0, has been used very often [13–23] and
successfully in the theory of the fission process. Although this
scission condition is consistent with the model representing
a nucleus as a liquid drop with a sharp surface [1,2,24], it
is unsatisfactory since a description of the nucleus based on
LDM loses significance [5] when the neck radius becomes
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comparable with the distance between nucleons. Summing up,
one can note that at the present time there is no unambiguous
scission criterion, and the fission theory most often employs
two criteria (conditions) that are obvious limiting cases with
respect to each other. One of them is the zero-neck-radius
(RN = 0) scission criterion. Another one is the scission
criterion at finite neck radius. All scission conditions using of
a finite neck radius lead to scission configuration with a rather
thick neck, RN � 0.3R0 on average, that weakly depends on
the fissility parameter.

The average total kinetic energy 〈EK〉 has been used
quite often in two-dimensional Langevin calculations for the
determination of the nuclear viscosity value [20–23,25–28].
It was shown in Refs. [29,30] that the 〈EK〉 values in
three-dimensional Langevin calculations become less depen-
dent on the value of the viscosity coefficient than in the
two-dimensional case owing to the inclusion of the mass-
asymmetry degree of freedom in the dynamical consideration.
From the other side, the 〈EK〉 values depend on the scission
deformation because Coulomb repulsion and nuclear attractive
energies strongly depend on the distance between the mass
centers of nascent fragments as well as on the deformation
of the fragments. Therefore, we chose the quantity 〈EK〉 for
investigating the nuclear scission process in the present study
based on the three-dimensional Langevin approach.

The major part of the average total kinetic energy does
come from Coulomb repulsion at scission configuration. Since
the elongation Dcrit of scission configuration is approximately
identical for all values of the fissility parameter, the Coulomb
repulsion between fission fragments will be proportional
to Z2/A1/3. Consequently, observed values of the average
total kinetic energy can be described by the simple linear
dependence of Z2/A1/3. This is the essence of systematics
established by Terrell [31] from the experimental data on
〈EK〉. All conclusions about existence of the exit scission con-
figuration [5] and its independence on the fissility parameter
have been made by Strutinsky and co-workers [1–4] on the
basis of the performed static variational calculations within
the LDM. Therefore, the identical scission configurations can
be considered as a static interpretation of a linear dependence,
〈EK〉(Z2/A1/3).

At the present time all well-known systematics of the
experimental data on 〈EK〉 use the linear dependence of 〈EK〉
on Z2/A1/3, but with different coefficients. The values of these
coefficients depend particularly on the distance between the
centers of mass of nascent fragments at scission deformation.
Therefore, the aim of our study is twofold. First, we would like
to analyze and elucidate correlations between the calculated
mean kinetic energy of fragments, 〈EK〉, and the exit scission
configurations in fission of excited compound nuclei. The
second one concerns the systematic investigation of fission
fragment energy distribution parameters, especially 〈EK〉, in
a broad range of the Coulomb parameter Z2/A1/3 by using
different scission criteria.

The main purpose of the present study was to explain the
〈EK〉 systematics on the basis of multidimensional Langevin
calculations. The experimentally observed two-dimensional
mass-energy distribution of fission fragments cannot be
obtained in terms of two-dimensional Langevin calculations

[20–23,27,28]. In this case, it is necessary to consider at least
three collective coordinates, since 〈EK〉 is obtained from the
mass-energy distribution of fission fragments by integrating
it over mass. The 〈EK〉 value obtained for a symmetric mass
split in the two-dimensional Langevin approach is 2–3 MeV
larger than 〈EK〉 obtained by integrating the mass-energy
distribution of fission fragments over mass in the case of
light fissioning nuclei. This difference increases to 6–7 MeV
for heavy fissioning nuclei. Therefore, a calculation of 〈EK〉
on the base of the three-dimensional Langevin equations is
more reliable for making a more careful comparison with
the experimental data. To the best of our knowledge such
systematic three-dimensional Langevin calculations of 〈EK〉
over a wide range of fissility parameter have not yet been
performed. A dynamical interpretation of the 〈EK 〉 systematics
within the three-dimensional Langevin approach has also not
been given. In the present study, we have performed systematic
three-dimensional Langevin calculations of 〈EK〉 for a large
number of fissioning nuclei that are close to the line of beta
stability. The equation for the line of beta stability is given in
Ref. [32].

The paper is organized as follows. The dynamical model
with necessary input will be described in the next section.
Section III is devoted to the results obtained from this study
and a discussion. A summary of the results with conclusions
will be given in Sec. IV.

II. THE DYNAMICAL MODEL AND BASIC EQUATIONS

In our dynamical calculations we used a well-known
{c, h, α} parametrization. This conveniently provides a three-
parametric family of shapes that have been employed in
numerous studies of static [5] as well as dynamical [25–28]
characteristics of fissioning nuclei. It was shown [5] that this
simple parametrization describes with rather good quantitative
accuracy the properties of the saddle point shapes obtained in
the LDM calculations, where practically no restrictions were
imposed on nuclear shapes [1,24].

In cylindrical coordinates the surface of the nucleus is given
by

ρ2
s (z) =

{
(c2 − z2)

(
As + Bz2/c2 + αz

c

)
, B � 0,

(c2 − z2)
(
As + αz

c

)
exp(Bcz2), B < 0,

. (1)

where z is the coordinate along the symmetry axis and ρs is the
radial coordinate of the nuclear surface. In Eq. (1) the quantities
As and B are defined by means of the shape parameters as

B = 2h + c − 1

2
,

(2)

As =
{

c−3 − B
5 , B � 0,

− 4
3

B

exp(Bc3)+
(

1+ 1
2Bc3

)√−πBc3erf(
√−Bc3)

, B < 0.

In Eqs. (1) and (3) c denotes the elongation parameter (with
the length of the nucleus equal to 2c in units of the spherical
nucleus radius R0), the parameter h describes a variation in the
thickness of the neck for a given elongation of the nucleus, and
the parameter of the “mirror” (mass) asymmetry α determines
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the ratio of the volumes (masses) of future fragments.
In the symmetrical case α = 0 a family of symmetric shapes
is obtained, ranging from the spherical shape (c = 1, h = 0)
to the two-fragment shapes (As < 0). For the case of α �= 0
different asymmetric shapes are obtained.

The appearance of a neck in the nuclear shape is associated
with the instant at which the profile function ρs(z) starts to
have three extrema, two maxima corresponding to nascent
fragments and a minimum between them, which corresponds
to the minimum neck thickness. The minimum appears at the
point

zN = 2

√
p

3
cos

(
4π + arcos

(
q
√

27

6(p)3/2

))
− αc

4B
, (3)

where

p = − c2

4B

(
2

c3
− 12

5
B − 3α2

4B

)
, (4)

q = −αc3

4B

(
α2

8B2
− 2

5
− 1

2Bc3

)
. (5)

The condition of the existence of a neck in the nuclear shape
can be written in the form

q2

4
− p3

27
< 0. (6)

Before the appearance of the neck, the profile function has
only one extremum, a maximum; the corresponding nuclear
shapes are monoshapes. The coordinates of the extrema of the
profile function and the values of ρs(z) at these extrema vary
in response to variations in the shape parameters. The equation
for the scission surface can be written in the form

ρs(zN ) = RN, (7)

where RN is the neck radius corresponding to the prescission
shape. The condition of zero neck radius corresponds to the
case of ρs(z) = 0 and could be written in the following way:

4BAs − α2 = 0. (8)

The hydrodynamic scission criterion proposed in Refs. [6,7]
has the form l = 11RN , where l is the length of the nucleus.
In the case of {c, h, α} parametrization it can be written as

ρs(zN ) = 2c/11. (9)

The shape of the nucleus lies between the limits zmin =
−c and zmax = c. The continuous shapes of the nucleus are
determined from the condition that ρ2

s is equal to zero only
at the two end points, at z = ±c of the interval [zmin, zmax].
If another two roots of the equation ρ2

s = 0 lie within the
interval [zmin, zmax] then ρ2

s will describe separated shapes of
the nucleus. All other cases correspond to shapes that have no
physical interpretation (the nonphysical shapes). A detailed
discussion of such shapes is presented in Ref. [33].

We would like to discuss the problem with nonphysical
shapes that arises in dynamical calculations. The problem of
excluding such shapes from the dynamical treatment arises
inevitably, and then one must use the {c, h, α} parametrization
over a wide range of changes of the parameters c, h, and α.

Usually, the restriction of a rectangular grid along the shape
parameters h, α is the only way to avoid the appearance
of the nonphysical shapes in dynamical calculations. But
this simple restriction of the parameters h, α by some limit
values will exclude from dynamical consideration not only
the nonphysical shapes but also the possible shapes of the
nucleus. To exclude from dynamical consideration only the
nonphysical shapes and keep the rectangular grid with respect
to the shape parameters, we have introduced in Ref. [34] a
new set of collective coordinates. As a new mass-asymmetry
parameter we used

q3 =
{
α/(As + B), B � 0,

α/As, B < 0.
. (10)

In this case all possible mass-asymmetric shapes of the nucleus
for any values of c and h can be generated by the parameter
|q3| � 1. The value q3 = 0 corresponds to the symmetrical
shapes, and the values q3 = ±1 correspond to the limit cases,
so then the mass of one fragment is equal to zero.

It is attractive to choose a new neck parameter in such
a way that the condition of the zero neck radius (RN = 0)
will be satisfied at the one value of a new neck parameter. In
the symmetrical case α = 0 the condition ρs(zN) = 0 will be
satisfied if h will be equal to hsc which is given by the following
expression

hsc = 5

2c3
+ 1 − c

4
. (11)

It is seen from Eq. (11) that hsc is substantially dependent on
the parameter c. As a new neck parameter we chose

q2 = h + 3/2

hsc + 3/2
. (12)

If the neck parameter q2 equals zero then h will be equal to
−3/2. This value of h guarantees high potential energy values
of continuous nuclear shapes, so the value q2 = 0 could be a
lower limit for the new neck parameter q2. In the symmetrical
case (q3 = 0) the value q2 = 1 corresponds to the nuclear
shapes with zero neck radius for any values of the parameter c.
In the asymmetric case (q3 �= 0) the condition RN = 0 will
be satisfied at values of q2 close to 1. So, in our opinion, the
collective coordinates {q1 = c, q2, q3} are the most appropriate
for dynamical calculations on the basis of the {c, h, α}
parametrization because they help to avoid the nonphysical
shapes in dynamical calculations and keep all possible shapes
given by the {c, h, α} parametrization in the rectangular grid. In
the present calculations we used {q1 = c, q2, q3} parameters
within the following limits: q1 ∈ [0.5, 4.5], q2 ∈ [0, 1], and
q3 ∈ [−1, 1].

In the present study a stochastic approach [29,35–37] has
been used to describe the dynamics of the fission process.
In the stochastic approach the evolution of the collective
coordinates is considered as a motion of Brownian particles,
which interact stochastically with a large number of internal
degrees of freedom, constituting the surrounding “heat bath.”
The hydrodynamic friction force is assumed to be derived
from the random force averaged over a time larger than the
collisional time scale between collective and internal degrees
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of freedom. The random part is modeled as a Gaussian white
noise, which causes fluctuations of the collective variables,
and, as a final result, fluctuations of the physical observables
in the fission process. The coupled Langevin equations used
in the dynamical calculations have the form

q̇i = µijpj ,

ṗi = −1

2
pipk

∂µjk

∂qi

− ∂F

∂qi

− γijµjkpk + θij ξj , (13)

where q = (q1, q2, q3) are the collective coordinates, p =
(pq1 , pq2 , pq3 ) are the conjugate momenta, F (q) = V (q) −
a(q)T 2 is the Helmholtz free energy, V (q) is the zero-
temperature potential energy, mij (‖µij‖ = ‖mij‖−1) is the
tensor of inertia, γij is the friction tensor, θij ξj is a random
force, and ξj is a random variable satisfying the relations

〈ξi〉 = 0,

〈ξi(t1)ξj (t2)〉 = 2δij δ(t1 − t2). (14)

Thus, the Markovian approximation is assumed to be valid. In
these equations, and further in this paper, we use the convention
that repeated indices are to be summed over from 1 to 3,
and the angular brackets denote averaging over an ensemble.

Eigenvalues and eigenvectors of the diffusion matrix Dij ,
which are used [37] for calculation of the strength of the
random force, have been calculated by the Jacoby method [38].
The strength of the random force is related to the diffusion
tensor Dij by the equation

Dij = θikθkj , (15)

which, in turn, satisfies the Einstein relation

Dij = T γij . (16)

Here T is the temperature of the “heat bath,” which is
determined by the Fermi-gas model [39] formula

T = (Eint/a(q))1/2, (17)

where Eint is the internal excitation energy of the nucleus, and
a(q) is the level density parameter, which has been taken from
the work of Ignatyuk et al. [40].

We start modeling fission dynamics from a spherical
nucleus that is, q(t = 0) = (q1 = 1, q2 = 0.375, q3 = 0). The
initial state is assumed to be characterized by the thermal
equilibrium momentum distribution, and by a spin distribution
F (L) for heavy-ion complete fusion. We have parametrized
the compound nuclei spin distribution F (L) according to the
scaled prescription proposed in Ref. [37]. During a random
walk along the Langevin trajectory in space of the collective
coordinates, we used the energy conservation law in the form

E∗ = Eint + Ecoll + V (q) + Eevap(t), (18)

where E∗ is the total excitation energy of the nucleus, Ecoll is
the kinetic energy of the collective degrees of freedom, and
Eevap(t) is the energy carried away by evaporated particles by
time t.

The inertia tensor was calculated by means of the Werner-
Wheeler approximation for incompressible irrotational flow.
A description of the method is given, for example, in
Refs. [15,41]. The potential energy of the nucleus was

calculated within the framework of a macroscopic model
with a finite range of nuclear forces [32,42]. A modified
one-body mechanism of nuclear dissipation [43,44] with a
reduction factor ks from a wall formula has been used for
determination of the dissipative part of the driving forces.
We used the value ks = 0.25 in the present calculations. The
experimental parameters of mass-energy distributions as well
as multiplicities of prescission particles can be described quite
well in theoretical calculations with ks = 0.25 [45,46].

As has been noted before, many theoretical models predict
that scission of the nucleus into fragments takes place at
the finite neck radius RN � 0.3R0. Therefore, in the present
calculations we used three different scission criteria: The
scission criterion at the zero neck radius RN = 0, that at the
finite neck radius RN = 0.3R0, and the scission criterion of
hydrodynamic instability of the neck. A scission criterion
of the nucleus determines a scission surface in the space
of collective coordinates. Equations (7) and (8) determine
scission surfaces in the case of scission criterion at finite and
zero neck radius, whereas Eq. (9) specifies the scission surface
in the case of the hydrodynamic scission criterion. The scission
surface determines the possible scission deformations of the
nucleus. As a result of modeling the fission process on the
basis of the Langevin equations one will obtain an ensemble of
stochastic Langevin trajectories. Each trajectory describes one
fission event that in particular is characterized by the scission
configuration. The scission configuration is determined by
the intersection points of the stochastic Langevin trajectories
of the fissioning system with the scission surface in the
coordinate subspace. Thus it is possible to introduce the notion
of a mean trajectory and mean scission deformation. The
mean dynamical trajectory and mean scission deformation
are obtained by averaging over an ensemble of Langevin
trajectories. The mean trajectory will correspond to the
symmetrical shapes. Examples of mean trajectories obtained
in the three-dimensional Langevin calculations are presented
in Ref. [45].

III. RESULTS AND DISCUSSION

The possible deformations, which determine the mass
distribution of fission fragments, continue to be the subjects of
scientific discussion [9,29,45,47]. At the same time a generally
accepted statement asserts that the kinetic energy of fission
fragments is mainly determined by the scission configuration
of the fissioning nucleus (scission point). Therefore, we will
mainly be concerned with the parameters of energy distribution
of fission fragments during the discussion of the results of our
calculations with different scission conditions.

It is interesting to consider the mean scission configurations
typical for different scission criteria. In this case we would
like to demonstrate the difference between static and dynam-
ical calculations. The mean fission trajectories for different
fissioning nuclei and the bottom of the LDM fission valley are
shown in Fig. 1. The mean fission trajectories correspond to
the symmetrical case q3 = 0. The bottom of the LDM fission
valley lies at h = q3 = 0. Therefore, the two-dimensional grid
in the collective coordinates q1 and q2 is shown together with
the illustration of the possible nuclear shapes. As one can see
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FIG. 1. The mean trajectories for the 256Fm, 224Th, and 142Ce
fissioning nuclei in the collective coordinates q1 and q2 (q3 = 0). The
dashed curve corresponds approximately to the bottom of the LDM
fission valley and lies at h = α = 0. The examples of nuclear shapes
are presented for the appropriate values of the parameters q1 and q2

(q3 = 0).

from this figure, the mean trajectory for the nucleus 142Ce
passes near the bottom of the LDM fission valley, whereas the
mean trajectories for the heavier nuclei deviate from the bottom
of the LDM fission valley to the more elongated shapes. This
deviation arises from the behavior of inertia and friction tensors
on the descent from saddle point to scission [45]. As a result,
more elongated mean scission configurations are realized in
dynamical calculations with the modified one-body dissipation
than in pure static calculations along the bottom of the LDM
fission valley.

FIG. 2. The distance between mass centers of nascent fragments
〈D〉 of the mean scission deformations for the different scission
criteria. The circles correspond to the zero-neck scission criterion.
The triangles correspond to the scission criterion at finite neck radius
RN = 0.3R0. The squares correspond to the hydrodynamic scission
criterion [6,7]. The solid lines connect symbols that correspond to the
calculations along the mean trajectories. The dotted lines correspond
to the calculations along the bottom of the LDM fission valley (h =
α = 0). The value 〈D〉 = 2.62 is obtained for the zero-neck-radius
scission criterion, 〈D〉 = 2.33 for scission criterion RN = 0.3R0, and
〈D〉 = 2.22 for hydrodynamic scission. The dashed line corresponds
to the calculations of the critical deformation Dcrit performed in
Ref. [1].

The comparison of mean scission configurations for differ-
ent scission criteria is presented in Fig. 2. In this figure circles
correspond to the zero-neck scission criterion, triangles to
the finite-neck scission criterion (RN = 0.3R0), and squares
to the hydrodynamic scission criterion [6,7]. As one can
see, the hydrodynamic scission criterion results in the lowest
values of 〈D〉. The dashed line in Fig. 2 corresponds to the
calculations of the critical deformation Dcrit performed in
Ref. [1]. The dotted lines in this figure determine the scission
deformations obtained in the static calculations along the
bottom of the LDM fission valley. These lines correspond to
the following values: 〈D〉 = 2.62R0 for the zero-neck scission
criterion, 〈D〉 = 2.33R0 for the scission criterion RN = 0.3R0,
and 〈D〉 = 2.22R0 for hydrodynamic scission. As one would
expect the mean scission deformations are approximately the
same in static and dynamical calculations for sufficiently
light fissioning nuclei. The mean trajectories deviate from
the bottom of the fission valley to the more elongated shapes
for heavy nuclei. Therefore, the mean scission deformations
for heavy nuclei obtained in dynamical calculations are
different from the scission deformation obtained in the static
calculations along the bottom of the LDM fission valley. The
same results of more elongated scission shapes for heavy nuclei
have been obtained earlier in dynamical calculations based on
the generalized Hamiltonian equations [41].

The average total kinetic energy of fission fragments, 〈EK〉,
is measured in experimental investigations with very high
accuracy at the present time. It was determined in Ref. [8]
that 〈EK〉 does not depend on angular momentum L nor on
the temperature of the fissioning nucleus (a conclusion valid at
high excitation energies when shell effects disappear). Usually,
〈EK〉 is approximated by the expression

〈EK〉 = C1Z
2/A1/3 + C2, (19)

where C1 and C2 are some constants. The most often used
systematics of 〈EK〉 was presented in Ref. [48], where a large
amount of experimental data was used to obtain coefficients
C1 and C2. The systematics of 〈EK〉 from Ref. [48] reads as
follows:

〈EK〉 = 0.1189Z2/A1/3 + 7.3. (20)

At the same time Itkis and co-workers [8,49] determined that
dependence of 〈EK〉 on Z2/A1/3 for heavy and light nuclei
should be described by different linear dependences with
different coefficients C1 and C2 if one uses only experimental
data on 〈EK〉 obtained from fusion-fission reactions. In this
connection the following systematics of 〈EK〉 was proposed
in Refs. [8,49]:

〈EK〉 =
{

0.131Z2/A1/3, Z2/A1/3 < 900,

0.104Z2/A1/3 + 24.3, Z2/A1/3 > 900.
(21)

The mean kinetic energy of fission fragments in the present
paper was calculated as follows:

〈EK〉 = 〈VC〉 + 〈Vn〉 + 〈Eps〉, (22)

where VC is the repulsive Coulomb energy, Vn is the nuclear
attractive energy, and Eps is the kinetic energy of the relative
motion of the nascent fragments (prescission kinetic energy).
All parts of the sum in expression (22) are calculated at the
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FIG. 3. Plot of 〈EK〉, 〈Eps〉, and 〈Vn〉 values as a function of
the parameter Z2/A1/3 for different fissioning nuclei. The solid line
represents the 〈EK〉 systematics proposed in Refs. [8,49], Eq. (21);
the dashed line represents Viola’s systematics [48], Eq. (20). The
filled squares are experimental data of 〈EK〉. The open triangles are
results of 〈EK〉 calculations with scission criterion at the finite neck
radius RN = 0.3R0. The open circles are results of calculations with
the zero-neck scission criterion. Open squares are results of 〈Eps〉
calculations and inverted triangles are results of 〈Vn〉 calculations
with scission criterion at the finite neck radius RN = 0.3R0.

moment of scission. The energies VC and Vn were calculated
within the framework of a macroscopic model with a finite
range of nuclear forces [32,42]. The expressions for the
calculation of these energies may be found in Ref. [50]. In the
present paper the errors of the calculated observables mainly
arise from the finite number of trajectories in the Langevin
calculations. These purely statistical errors are calculated
according to the formulas given in Ref. [51] and do not exceed
0.5% for all data presented in this paper.

The experimental data together with the calculated 〈EK〉
values are presented in Fig. 3 for different scission criteria. As
one can see from this figure the zero-neck scission criterion as
well as the finite-neck-radius scission criterion RN = 0.3R0

result in approximately equal values of 〈EK〉, which are in
good agreement with experimental data for the light fissioning
nuclei with Z2/A1/3 < 900. For the scission criterion RN =
0.3R0 the increasing deviation of calculated 〈EK〉 values from
experimental data and 〈EK〉 systematics suggested in Ref. [8]
is seen in Fig. 3 for heavy nuclei. For these nuclei the calculated
〈EK〉 values are close to Viola’s systematics [48]. At the
same time for heavy nuclei the calculated values of 〈EK〉
are in a good agreement with experimental data for the zero-
neck-radius scission criterion. The hydrodynamic scission
criterion for light fissioning nuclei gives approximately the
same 〈EK〉 values as the scission criterion RN = 0.3R0. For
heavy nuclei the hydrodynamic scission criterion results in
〈EK〉 values that are approximately 10 MeV greater than
Viola’s systematics. But we would like to point out that we
employed the hydrodynamic scission criterion in the {c, h, α}
parametrization, whereas in the original work of Brosa with
co-workers [6,7] another parametrization of nuclear shape has
been used and this generated elongated nuclear shapes with
a thick neck. Thus, in our opinion, this difference could be
the reason for such high 〈EK〉 values obtained in the present
calculations when using the hydrodynamic scission criterion.

FIG. 4. The sum 〈Eps〉 + 〈Vn〉 calculated for different scission
criteria as a function of the parameter Z2/A1/3. Filled circles are
results of calculations with the zero-neck scission criterion. Filled
triangles are results of calculations with scission criterion at the finite
neck radius RN = 0.3R0. Filled squares are results of calculations
with the hydrodynamic scission criterion.

The lower part of Fig. 3 presents 〈Vn〉 and 〈Eps〉 for
the scission criterion RN = 0.3R0. The energies 〈Vn〉 and
〈Eps〉 are approximately equal to each other in magnitude
but have opposite signs. In this connection it is useful to
investigate the dependence of 〈Vn〉 and 〈Eps〉 on the scission
criterion. The descent of the fissioning system from the
saddle point to scission is a slow process in the case of the
one-body dissipation mechanism. Consequently, 〈Eps〉 has
approximately the same values during the descent. Therefore,
the 〈Eps〉 values will be approximately the same and equal
to the values indicated in Fig. 3 for all scission criteria.
In contrast, the nuclear attractive energy 〈Vn〉 of nascent
fragments strongly depends on the scission configuration
of the compound nucleus. It decreases rapidly when the
distance between future fragments increases and the neck
radius decreases. The dependence of the sum 〈Vn〉 + 〈Eps〉
is presented in Fig. 4 for different scission criteria. There is
no compensation of 〈Vn〉 and 〈Eps〉 for the hydrodynamic
scission criterion and scission criterion RN = 0.3R0. For these
criteria the sum 〈Vn〉 + 〈Eps〉 < 0 for all nuclei considered in
the present study. At the same time, the sum 〈Vn〉 + 〈Eps〉 > 0
for the zero-neck scission criterion. Our estimations show that
the compensation of 〈Vn〉 and 〈Eps〉 occurs approximately at
a finite neck radius RN � 0.2R0.

A systematic investigation of experimental data on EK and
scission deformation in the fission process was undertaken
recently and published in Refs. [52,53]. Information about
scission deformation was extracted from experimental data
on EK . The heavy fissioning nuclei with mass numbers
200 < A < 260 (1100 < Z2/A1/3 < 1600) were investigated
in Refs. [52,53]. The distance between the two charge centers
of fragments at scission point D(A1, A2) was estimated from
the following equation:

D(A1, A2) = Z1Z2e
2/EK (A1, A2). (23)

To allow a comparison of the degree of scission deformation
among various fissioning nuclei, a shape elongation β was
defined as

β = D(A1, A2)/D0(A1, A2), (24)
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where D0(A1, A2) is the distance between the charge centers
of two touching spherical fragments.

We used EK instead of VC in Eq. (23) because of an
assumption made in Refs. [52,53] that EK � VC at the
moment of scission. Moreover, the expression for Coulomb
interactions of two point charges is used in Eq. (23). The
main result obtained in Refs. [52,53] is the constancy of
scission deformation, β � 1.65, for symmetric fission at high
excitation energies when the shell effects disappear.

In the present paper we slightly modified Eq. (23) to make
a comparison between the theoretical and experimental values
of β easier. We supposed that A1 = A2 = A/2. In this case
D0(A/2; A/2) = 22/3R0 � 1.59R0. We used the mean kinetic
energy of fission fragments, 〈EK〉, instead of EK (A1, A2)
in Eq. (23) also. We are convinced that such a procedure
is relevant as we only deal with fusion-fission reactions
at high excitation energies, when the shell effects do not
influence the parameters of the fission fragments’ mass-energy
distribution. In this case the mass and energy distributions of
fission fragments are approximated by a Gaussian function
with high accuracy. The maximum value of mass distribution
corresponds to symmetrical fission, and the maximum value
of energy distribution approximately corresponds to 〈EK〉. So,
we propose to investigate the dependence of the parameter
〈βEK

〉 using the following relation:

〈
βEK

〉 = D(A/2, A/2)

D0(A/2, A/2)
= Z2e2

28/3r0A1/3〈EK〉 . (25)

The calculated values of 〈βEK
〉 obtained on the basis of the

〈EK〉 systematics (20) and (21) are presented in Fig. 5. It is
seen from this figure that the obtained values of 〈βEK

〉 are not
the constant over the wide range of Z2/A1/3. The parameter
〈βEK

〉 increases from light to heavy nuclei. Furthermore, if
C2 = 0 in the 〈EK〉 systematics then the parameter 〈βEK

〉 will

FIG. 5. The mean scission deformation parameters 〈βEK
〉 and

〈βD〉 vs the parameter Z2/A1/3. The filled circles, triangles, and
squares are 〈βD〉 values obtained from calculations with the zero neck
radius RN = 0, finite neck radius RN = 0.3R0, and hydrodynamic
scission criterion, respectively. The dashed lines are obtained by the
least-squares method on the basis of circles, triangles, and squares.
The dotted curve is the 〈βEK

〉 dependence given by Eq. (25) with the
coefficients C1 and C2 from the Viola’s systematics [48] [Eq. (20)].
The dashed-dotted curve is the 〈βEK

〉 dependence given by Eq. (25)
with the coefficients C1 and C2 from the 〈EK〉 systematics proposed
in Refs. [8,49] [Eq. (21)].

not depend on Z2/A1/3. In this case 〈βEK
〉 will be equal to

e2/(28/3r0C1).
The coefficient C2 is not equal to zero in the generally

used 〈EK〉 systematics and, as a result, 〈βEK
〉 depends on the

parameter Z2/A1/3. This is easy to check if one calculates the
derivative

d
〈
βEK

〉
d(Z2/A1/3)

= e2C2

28/3r0(C1Z2/A1/3 + C2)2
. (26)

As one can see from this equation, the sign of the derivative
d〈βEK

〉/d(Z2/A1/3) is determined by the sign of the coefficient
C2. The parameter 〈βEK

〉 will increase from light to heavy
nuclei if the coefficient C2 > 0 and vice versa.

In the present paper we also calculated the parameter
〈βD〉 = 〈D〉/D0(A/2; A/2) using the mean distance between
the mass centers of future fragments, 〈D〉, obtained in
dynamical calculations. The results are presented in Fig. 5
by filled symbols. In our opinion the value 〈βD〉 is the most
direct estimate of scission deformation, as it uses explicitly
the distance between the mass centers obtained from the
dynamical calculations and does not use the approximation
about compensation of 〈Vn〉 and 〈Eps〉 and the approximation
for the Coulomb interactions of nascent fragments such as
two point charges. As one can see from Fig. 5 the parameters
〈βD〉 and 〈βEK

〉 are close to each other. But the parameter
〈βD〉 demonstrates a linear increase with increasing Z2/A1/3,
whereas the dependence 〈βEK

〉(Z2/A1/3) is not linear. This
qualitative discrepancy between 〈βD〉 and 〈βEK

〉 arises from
approximations used in the calculations of 〈βEK

〉.
If one approximates the dependence 〈D〉(Z2/A1/3) by

a linear expression of the form 〈D〉 = kZ2/A1/3 + b, then
the coefficients k and b will have the following values:
k = 1.8 × 10−4 and b = 2.21 for the scission criterion at finite
neck radius RN = 0.3R0. By using these values of the coef-
ficients k and b it is easy to demonstrate that the dependence
of Coulomb repulsion energy, 〈VC〉(Z2/A1/3), will be linear
with high accuracy. For symmetric fission, VC is given by the
following expression:

〈VC〉 � Z2e2

4〈D〉R0
= Z2e2

4r0A1/3(kZ2/A1/3 + b)
. (27)

The curves 〈VC〉(Z2/A1/3) obtained from Eq. (27) with the
values e2 = 1.442 MeV fm and r0 = 1.16 fm and coefficients
k, b for scission criterion RN = 0.3R0 are presented in Fig. 6.
In this figure the solid line demonstrates Viola’s systematics
for 〈EK〉. It should be emphasized that the linear dependence,
〈VC〉(Z2/A1/3) stays valid in spite of a small increase of 〈D〉
with increasing parameter Z2/A1/3.

It is necessary to mention that 〈D〉 depends on the scission
condition as well as the type and magnitude of nuclear
viscosity used in dynamical calculations. As an illustration
of this fact we presented in Fig. 5 the dependence of
〈βD〉(Z2/A1/3) for the different scission criteria. It is seen from
this figure that the calculated dependences 〈βD〉(Z2/A1/3) have
different slopes for the different scission criteria.

One can see from our results that in dynamical calculations
the mean scission deformation increases approximately 10–
15% in the interval 600 < Z2/A1/3 < 2200. This increase
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FIG. 6. Comparison of experimental average fission-fragment
kinetic energies and the calculated values of the Coulomb interaction
energies at scission as a function of the parameter Z2/A1/3. The solid
line is Viola’s systematics [48] for 〈EK〉. The dotted curve is the
calculated dependence of 〈VC〉 given by Eq. (27) with the coefficients
obtained from the criterion at finite neck radius RN = 0.3R0.

corresponds to the positive values of the coefficient C2 in
the 〈EK〉 systematics. This increase maintains the validity of
the linear dependence of 〈VC〉(Z2/A1/3) with high accuracy
in the case of the scission criterion at a finite neck radius
RN = 0.3R0 and the calculations of 〈EK〉 following Eq. (22)
do not break the linear dependence of 〈EK〉(Z2/A1/3) as well.
The dependences 〈EK〉(Z2/A1/3) obtained in our calculations
for different scission criteria deviate from Viola’s systematics
by less than 5 MeV for the nucleus 306

122X and by less than
3 MeV for other nuclei. Consequently, we can assert that
the linear dependence of 〈EK〉(Z2/A1/3) could be described
sufficiently well in theoretical calculations performed with
the modified one-body dissipation mechanism, and the mean
scission deformation is dependent on the parameter Z2/A1/3.

IV. CONCLUSIONS

A systematic study of the mean kinetic energy has been
made over a wide range of the Coulomb parameter (600 <

Z2/A1/3 < 2200) on the basis of three-dimensional Langevin
dynamics. The scission criteria at a finite neck radius RN =
0.3R0 and at zero neck radius and the hydrodynamic scission
criterion have been applied in dynamical calculations. The
calculations with scission criterion RN = 0.3R0 as well as
zero-neck scission criterion reproduce sufficiently well the ex-
perimental data and follow Viola’s systematics of experimental
〈EK〉 values. The difference in mean scission deformations
obtained on the basis of static and dynamical calculations has
been demonstrated. The mean scission deformations obtained
in the static calculations along the bottom of the LDM fission
valley have approximately a constant value over a wide range
of the Coulomb parameter. In contrast, the mean scission

deformations obtained in dynamical calculations demonstrate
a linear increase from light to heavy nuclei. This increase
corresponds to the positive values of the coefficient C2 in
many 〈EK〉 systematics that have the following form: 〈EK〉 =
C1Z

2/A1/3 + C2. However, the increase of the mean scission
deformations in dynamical calculations is not considerable,
and the linear dependence of the 〈EK〉 systematics on the
Coulomb parameter Z2/A1/3 remains valid even for very
heavy and light fissioning nuclei. The sum of the nuclear
attractive energy and prescission kinetic energy, 〈Vn〉 + 〈Eps〉,
is always negative in the case of the hydrodynamic scission
criterion and at a finite neck radius RN = 0.3R0. The sum
〈Vn〉 + 〈Eps〉 is positive at the zero-neck scission condition.
The energies 〈Vn〉 and 〈Eps〉 approximately compensate each
other for the configurations of a fissioning nucleus with neck
radius RN � 0.2R0.

A comparison of calculated results obtained by using the
zero-neck scission criterion and the scission criterion at a
finite neck radius RN = 0.3R0 does not allow one to make
a choice between the scission criteria used in the present
study, because both of them describe experimental values
of 〈EK〉 quite well. To discriminate among different scission
criteria one needs quite novel data about the fission-fragment
energy distribution, such as variances and third and fourth
moments of the energy distribution [54,55]. Furthermore, an
investigation of the center-of-mass distance D distribution of
fission fragments is a subject of interest [55,56].

In this connection, one should also mention an interesting
attempt [57,58] to describe the total kinetic energies in
very asymmetric fission, which have been compared with
measurements of intermediate-mass fragments produced in
heavy-ion reactions. The upper and lower limits of the total
kinetic energy have been calculated from the interaction
energy of the two nascent fragments at the conditional saddle
point and at the asymmetric scission points, respectively.
The asymmetric scission points have been determined by
approximate methods without dynamical consideration of the
descent from the saddle point to scission. The calculated limit
estimates agree fairly well with the data but it was concluded
that fully dynamical calculations are necessary. Our dynamical
model is suitable for the solution of this problem, and these
calculations will be performed in the future.
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