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Sensitivity to multi-phonon excitations in heavy-ion fusion reactions
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Measured cross sections for the fusion of 64Ni with 64Ni, 74Ge, and 100Mo targets are analyzed in a
coupled-channels approach. The data for the 64Ni target above 0.1 mb are reproduced by including couplings
to the low-lying 2+ and 3− states and the mutual and two-phonon excitations of these states. The calculations
become more challenging as the fusing nuclei become softer and heavier, and excitations to multi-phonon states
start to play an increasingly important role. Thus it is necessary to include up to four-phonon excitations to
reproduce the data for the 64Ni + 74Ge system. Similar calculations for 64Ni + 100Mo, and also for the symmetric
74Ge + 74Ge system, show large discrepancies with the data. Possible ways to improve the calculations are
discussed.
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I. INTRODUCTION

Heavy-ion fusion data have in many cases been reproduced
fairly well at energies close to the Coulomb barrier by
coupled-channels calculations. The best agreement is achieved
for lighter or asymmetric systems, whereas the fusion of
very heavy systems poses a serious challenge [1]. Recently it
was realized that the data for heavy systems are suppressed
compared to single-channel calculations at energies above
the Coulomb barrier [2] and the suppression even persists in
comparison to coupled-channels calculations [3]. There are
also challenges in the theoretical description of heavy-ion
fusion reactions at energies far below the Coulomb barrier,
where the measured cross sections are hindered compared to
coupled-channels calculations [4]. Although the suppression
at high energy is largest for heavy systems, the hindrance
of fusion far below the barrier appears to be a more general
phenomenon.

The structure input to coupled-channels calculations is
commonly based on a vibrational or rotational model, with
parameters determined from the lowest 2+ or 3− excitations.
These models make it possible to calculate the coupling matrix
elements to all orders in the deformation amplitudes [5,6],
but they may not always provide a realistic representation
of the actual structure of the reacting nuclei. It is therefore
desirable to be able to extract the necessary structure input
from other measurements. The most detailed information is
available for quadrupole excitations up to very high spins,
but there are too many states to consider in a practical
coupled-channels calculation. One way to simplify the cal-
culations is to construct effective multi-phonon states. This
has been done for two-phonon quadrupole excitations [7],
and the procedure will be expanded here to the three-phonon
level.

In view of the aforementioned problems it is of interest
to make a systematic coupled-channels analysis of heavy-ion
fusion reactions, ranging from lighter to the heavier systems,
so that one can see exactly how the calculations fail to
reproduce the data as the system gets heavier. It is also
important to know which and how many states are actually

needed to make the calculations converge. For example, it is
well known that couplings to high-lying states, like the giant
resonances, produce an overall energy shift of the calculated
fusion cross section, essentially without affecting the shape of
the energy-dependent cross section [8]. If that is the case, then
there is no need to include such high-lying states because their
effect can be compensated by adjusting the radius or the depth
of the ion-ion potential.

The basic coupled-channels calculations that will be
presented include couplings to the one- and two-phonon
excitations and to the mutual excitations of the lowest 2+ and
3− states in projectile and target. Such calculations reproduce
the fusion cross sections rather well for lighter systems [5,7].
The calculations will be expanded to include up to three-
or four-phonon excitations, and they will be used to analyze
the data for the fusion of 64Ni with 64Ni [9], 74Ge [10], and
100Mo [11], and also the fusion data for 74Ge + 74Ge [12]. The
projectiles and targets are fairly neutron rich in these systems,
so the couplings to transfer channels should have a modest
effect on fusion.

II. DETAILS OF THE CALCULATIONS

The coupled-channels calculations are performed as de-
scribed in Ref. [7]. The main assumption is the rotating
frame (or isocentrifugal) approximation. A basic feature of
this approximation is that the magnetic quantum number M is
a conserved quantity. Thus if we start with two spin-zero nuclei
in the entrance channel, then only the M = 0 component of the
excited states will be populated. This leads to a large reduction
in the number of channels one has to include, in comparison
to a more complete calculation.

The basic nuclear field required in the calculations de-
scribed in Ref. [7] is the ion-ion potential U (r). The couplings
to inelastic channels can be expressed in terms of radial
derivatives of the ion-ion potential, and couplings up to second
order in the deformation amplitudes αnλµ will be included in
the calculations. In the rotating frame approximation we only
consider the µ = 0 component, αnλ0, so the nuclear interaction
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has the form [7]

V (r, αnλ0) = U (r) − dU (r)

dr
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where snλ = Rnαnλ0
√

(2λ + 1)/(4π ) and Rn is the nuclear
radius. The ion-ion potential U (r) that will be used in the
following is the empirical proximity-type potential developed
in Ref. [13],

U (r) = −16πγ aR1R2

R1 + R2

[
1 + exp

(
r − R1 − R2 − �R

a

)]−1

.

(2)

Here the diffuseness a depends on the mass numbers
An of the colliding nuclei, 1/a = 1.17[1 + 0.53(A−1/3

1 +
A

−1/3
2 )] fm−1, and the nuclear radii are Rn = 1.2A

1/3
n −

0.09 fm. The parameter �R is zero in Ref. [13] but is
introduced here as an adjustable parameter. Finally, the surface
tension γ is set to the constant value γ = 0.95 MeV fm−2,
whereas Ref. [13] included some isospin dependence in γ .

The fusion is simulated by ingoing wave boundary condi-
tions at the radial separation rmin, where the total potential in
the elastic channel develops a minimum inside the Coulomb
barrier. The nuclear potential in Eq. (1) is supplemented with
a weak, short-ranged imaginary part iW (r), where

W (r) = −10 MeV

1 + exp([r − rmin]/aW )
, (3)

and aW is set to 0.2 fm. The effect of the imaginary potential is
to reduce certain oscillations in the calculated cross sections,
as discussed later on.

The one-phonon states that will be used are shown in
Table I. The coupling parameters are expressed in terms

TABLE I. Excitation energies and coupling strengths used in the
calculations. The values for 64Ni are the same as used in Ref. [9].
The B values for 74Ge are from Refs. [14,15] and from Ref. [16] for
100Mo. The effective two-phonon quadrupole states are determined
in Table II, and the two-phonon octupole states are estimated in the
harmonic oscillator model.

Nucleus λπ Ex (MeV) B(Eλ)(W.u.) βC
λ βN

λ

64Ni 2+ 1.346 8.6 0.165 0.185
Z = 28 2ph(2+) 2.692 (17.2) 0.165 0.185

3− 3.560 12 0.193 0.200
74Ge 2+ 0.596 33 0.285 0.314
Z = 32 2ph(2+) 1.362 38 0.217 0.239

3− 2.536 8.8 0.145 0.160
2ph(3−) 5.072 (17.6) 0.145 0.160

100Mo 2+ 0.536 37.4 0.231 0.254
Z = 42 2ph(2+) 1.002 68 0.222 0.244

3− 1.908 35 0.220 0.242
2ph(3−) 3.816 (70) 0.220 0.242

of the β values, βC
λ and βN

λ , for the Coulomb and nuclear
fields, respectively. The Coulomb β values are taken from the
literature [14–16]. The nuclear β values are uncertain and they
are often set equal to the Coulomb values. In this work a 10%
higher nuclear β value will be used. This is justified in the case
of 64Ni from the analysis of inelastic scattering data [17], but
such information is not always available.

In the rotating frame we only consider matrix elements
of the µ = 0 component of the deformation amplitudes αλµ

between M = 0 magnetic substates [7]. The matrix elements
are therefore of the form

〈nI0|αλ0|n′I ′0〉 = 〈I ′0 λ0|I0〉 〈nI ||αλ||n′I ′〉√
2I + 1

, (4)

where |nI0〉 denotes a state at the n-phonon level with spin I.
The reduced matrix element determines the B value,

B(Eλ, nI → n′I ′) =
(

3ZeRλ
C

4π

)2 |〈nI ||αλ||n′I ′〉|2
2I + 1

, (5)

where RC = 1.2A1/3 is the Coulomb radius of the nucleus
being excited. General matrix elements of the type given in
Eq. (4) can be used to construct the couplings to effective
two- and three-phonon states as discussed in the following for
quadrupole excitations.

The coupling between the one- and two-phonon quadrupole
states (i.e., between the 2+

1 states and the 0+
2 , 2+

2 and
4+

1 states) can in some cases be obtained from the literature
[16]. Moreover, because the two-phonon states are sometimes
close in energy it is convenient to combine them into one
effective two-phonon state and thereby reduce the number
of channels. That this is possible was first demonstrated by
Takigawa and Ikeda [18], who showed how the 13-dimensional
coupled-channels problem for the zero-, one-, and two-phonon
states of a harmonic quadrupole mode can be reduced to
a three-dimensional problem. The procedure for combining
states at the two-phonon level using the measured energies and
coupling strengths is described in Ref. [7]. The result (in the
rotating frame approximation) is that the square of the coupling
between the one-phonon and the effective two-phonon state is

〈2ph|α20|1ph〉2 =
(

4π

3ZeR2
C

)2 ∑
I=0,2,4

〈2020|I0〉2B(E2, I → 2),

(6)

where the sum is over the spin I of the three two-phonon states,
and B(E2, I → 2) are the reduced transition probabilities for
the decay to the 2+

1 state. The average two-phonon excitation
energy is estimated by the energy-weighted sum

E2ph =
∑

I=0,2,4

E2(I )
|〈2ph, I0|α20|1ph, 20〉|2

|〈2ph|α20|1ph〉|2 . (7)

This construction is possible for 74Ge and 100Mo as shown in
Table II and the results are included in Table I. The information
about the two-phonon state in 64Ni is uncertain but it is
consistent with a harmonic vibration, which is what is assumed
in Table I.
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TABLE II. Energies and reduced transition probabilities (in W.u.) of the 0+, 2+, and 4+ states associated with
a two-phonon quadrupole excitation. The values for 100Mo are from Ref. [16], and the values for 74Ge are from
Ref. [14]. The last two columns show the energy and coupling strength of the effective two-phonon state.

Nucleus States 0+
2 2+

2 4+
1 Eff. 2ph β2(2ph)

74Ge EI (MeV) 1.483 1.204 1.464 1.362 —
B(E2, I → 2) <22 54.2 36.1 <38.5 <0.217

100Mo EI (MeV) 0.695 1.064 1.136 1.002 —
B(E2, I → 2+) 92 51 69 68 0.222

In general, it is useful to characterize the coupling matrix
elements between the n-phonon and (n − 1)-phonon states in
terms of an effective β value, βλ(nph), which is defined by

〈nph|αλ0|(n − 1)ph〉 = √
n

βλ(nph)√
2λ + 1

. (8)

The advantage of this representation is that the effective
β values are identical in the harmonic oscillator model.
Consistent with this definition one can also define the effective
B value,

B(Eλ, nph → (n − 1)ph) =
(

3ZeRλ
C

4π

)2
nβ2

λ(nph)

2λ + 1
. (9)

When the structure of multi-phonon excitations deviates
from the harmonic oscillator model, it can become difficult
to calculate matrix elements of a general nuclear interaction.
However, the calculation is not that difficult if the interaction
only contains terms that are linear and quadratic in the
deformation amplitudes, as in Eq. (1). Matrix elements of the
quadratic terms can be calculated by inserting a complete set
|n′ph〉 of intermediate states,

〈n2ph|α2
λ0|n1ph〉 =

∑
n′

〈n2ph|αλ0|n′ph〉 〈n′ph|αλ0|n1ph〉.

(10)

The intermediate couplings in this expression that are not
known will be estimated in the harmonic limit by extrapolation
from nearby known states.

The information about octupole excitations is usually
limited to the one-phonon excitation. The octupole modes
shown in Table I have been modeled as harmonic vibrations.
The basic two-phonon calculations, referred to as the PH-2
calculations, will include all of the one- and two-phonon states
shown in Table I, in addition to the mutual excitations of the
one-phonon states. All calculations are furthermore restricted
by a 7-MeV cutoff in excitation energy.

III. SYSTEMATICS OF COMPARISON WITH DATA

The measured fusion cross sections for 64Ni on the three
targets—64Ni [9], 74Ge [10], and 100Mo [11]—are compared
to two sets of calculations in Fig. 1. The solid curves show
the basic two-phonon coupled-channels calculations (PH-2)
described in the previous section, and the dashed curves are
the results obtained in the no-coupling limit using the same

ion-ion potential. There is an essentially constant energy shift
between the solid and dashed curves at low energies, and the
energy shift is seen to increase as the target gets heavier and
softer.

All calculations shown in Fig. 1 were based on the value
�R = 0.1 fm in the ion-ion potential, Eq. (2). This value was
chosen because it provides the best fit to the 64Ni + 64Ni
fusion data that are larger than 0.1 mb. The best fit to all of
the 64Ni + 64Ni data is actually quite poor, with a χ2/N = 10,
because the coupled-channels calculations cannot reproduce
the fusion hindrance that occurs far below the Coulomb barrier
[9]. Hence it is better to exclude that energy region from the
analysis.

The χ2 values per point for different calculations are
summarized in Table III. By comparing the values obtained
in the one-phonon (PH-1) and PH-2 calculations it is seen that
the mutual and two-phonon excitations play a very important
role in improving the fit to the data. The improvement is mainly
caused by the second-order (or quadratic) term in the nuclear
interaction, Eq. (1). This has been demonstrated previously in
Refs. [5,6]. It is also seen that the PH-2 fit to the 64Ni + 74Ge
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FIG. 1. Fusion cross sections for the three systems 64Ni + 64Ni
[9], 64Ni + 74Ge [10], and 64Ni + 100Mo [11] as functions of the
c.m. energy Ec.m.. Note that the results for 64Ni + 100Mo have been
shifted by −10 MeV. The dashed curves show the no-coupling limit,
and the solid curves are the results of the PH-2 coupled-channels
calculations described in the text. All calculations were based on the
radius parameter �R = 0.10 fm.

054607-3



H. ESBENSEN PHYSICAL REVIEW C 72, 054607 (2005)

TABLE III. Analysis of fusion data for different heavy-ion systems using the nuclear
interaction, Eqs. (1) and (2), with �R = 0.10 fm, and a 7.0-MeV cutoff in excitation energy.

System Calculation �E (MeV) χ 2/N Data Ref.

64Ni + 64Ni PH-2 0.9 10 All data [9]
PH-2 0.03 0.5 σf > 0.1 mb

64Ni + 74Ge PH-1 −1.53 15.6 All data [10]
PH-2 −0.62 6.4

2PH-3 −0.56 3.9
2PH-4 −0.62 3.1
3PH-4 −0.57 2.6

64Ni + 100Mo PH-1 0.18 44 All data [11]
PH-2 0 33

2PH-3 0.35 27
3PH-3 0.61 25
2PH-4 0.13 31
3PH-4 0.42 34

64Ni + 100Mo PH-1 0.20 38 σf > 0.1 mb
PH-2 0.30 24 [11]

2PH-3 0.70 18
3PH-3 0.94 15
2PH-4 0.56 25
3PH-4 0.85 27

74Ge + 74Ge PH-1 +4.50 30 All data [12]
PH-2 −0.50 25

2PH-4 +0.12 26
3PH-4 +0.20 17

data is not as good as the fit to the 64Ni + 64Ni data, and the
fit to the 64Ni + 100Mo data is even worse. In the next section
we shall try to improve the fits by including more channels in
the calculations.

The third column shows the overall energy shift �E

required to minimize the χ2 for a given calculation and data
set. It is seen that the shift depends on the channels that are
included in the calculations. The energy shift is effectively
equivalent to changing the radius parameter �R of the ion-ion
potential, Eq. (2). Thus one should realize that one cannot
easily beforehand predict the best value of �R, because the
value that gives the best fit to the data depends on channels that
are included in the calculation. This feature was recognized in
Ref. [8] in a study of the influence of couplings to high-lying
states on fusion. Another example is the two-phonon 3− state in
64Ni, which was excluded from the calculations by the 7-MeV
cutoff in excitation energy. If this state and also the mutual
excitations of the 3− states in projectile and target are included
in the analysis of the 64Ni + 64Ni fusion data above 0.1 mb,
one obtains the same good fit as shown in Table III but the
required energy shift is now �E = 0.27 MeV. The same fit is
achieved by reducing �R from 0.10 to 0.07 fm.

A. Logarithmic derivative

One way to illustrate the behavior of the fusion cross section
at low center-of-mass energies, Ec.m., is to plot the logarithmic
derivative of the energy-weighted fusion cross section, which

is defined as [4]

L(Ec.m.) = 1

Ec.m.σf

d(Ec.m.σf )

dEc.m.

. (11)

The results for the three heavy-ion systems are shown in
Fig. 2. The experimental values are seen to increase steeply
with decreasing energy. The top lines in Fig. 2 show the
logarithmic derivative for a constant S factor [4] (i.e., LCS =
πη/Ec.m., where η is the Sommerfeld parameter). It is seen
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FIG. 2. Logarithmic derivatives of the fusion cross sections
shown in Fig. 1. The top lines show the constant S factor limit.
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FIG. 3. Linear plot of the fusion cross sections shown in Fig. 1.

that the data for the 64Ni and 100Mo targets intersect the
constant S factor curves. The experimental S factor, S =
Ec.m.σf exp(2πη), will therefore exhibit a maximum, and the
energy where that occurs has been used to characterize the
onset of the low-energy fusion hindrance [9,11]. The data for
the 74Ge target have not reached the constant S factor limit but
it is likely they will if measurements are performed at lower
energies.

The logarithmic derivatives obtained from the no-coupling
calculations rise steeply near the Coulomb barrier but level off
at lower energies. The results for the PH-2 coupled-channels
calculations show a similar behavior. They are just shifted to
lower energies. They exhibit some oscillations at the lowest
energies. The magnitude of the oscillations depends on where
the ingoing wave boundary conditions are imposed and on
the strength of the imaginary optical potential. However, the
oscillations are not essential since they have not been observed
experimentally. The important point is that it has not yet been
possible, within the coupled-channels approach, to develop
a credible description that reproduces the data at the lowest
energies.

B. High-energy behavior

The cross sections shown in Fig. 1 are plotted on a linear
scale in Fig. 3. It is unfortunate that the measurements do
not reach larger cross sections, so it is difficult to assess the
suppression of the data compared to the no-coupling limit,
which was identified in Ref. [2] for cross sections larger
than 200 mb. It is seen, however, that the coupled-channels
calculations agree fairly well with the data points that are
above the 200 mb limit, and they are shifted to higher energies
(i.e., they are suppressed) when compared to the no-coupling
calculations. The suppression is mainly caused by the long-
range Coulomb excitation of the low-lying quadrupole states,
and it is largest for the 74Ge and 100Mo targets, consistent with
the fact that the quadrupole mode is particularly soft in these
two nuclei.

Another way to illustrate the behavior of the fusion cross
sections for the three systems is to plot the derivative of
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FIG. 4. Derivative of Ec.m.σf , where the fusion cross sections σf

are shown in Fig. 1.

Ec.m.σf , which is shown in Fig. 4. The behavior at energies far
above the Coulomb barrier, VCB, is often parametrized as

σf = πR2
f

(
1 − VCB

Ec.m.

)
. (12)

The derivative of Ec.m.σf should therefore approach the
constant value πR2

f at high energy. The curves shown in Fig. 4
do approach a constant value at high energies and the data are
also consistent with that behavior. There is some uncertainty
in the highest data point for the 64Ni + 100Mo system because
the estimated contribution from fission is large. It is also seen
that the data are suppressed at energies near the Coulomb
barrier and enhanced at lower energies compared to the PH-2
calculation. There are similar but more modest discrepancies
for the 64Ni + 74Ge system.

IV. EFFECTS OF MULTI-PHONON EXCITATIONS

A simple way to expand the PH-2 calculations presented
in the previous section is to include all mutual excitations
of the states given in Table I up to three-phonon (2PH-3) or
four-phonon (2PH-4) excitations. The results of the χ2 analysis
using such calculations, again with a maximum excitation
energy cutoff of 7 MeV, are shown in Table III for the 74Ge
and 100Mo targets, and also for the 74Ge + 74Ge systems,
which will be discussed in the following. It is seen that the
expanded calculations give a much better fit to the 64Ni +
74Ge data, whereas the improvements for the heavier systems
are modest.

In addition to the mutual excitations discussed in the
foregoing, one can also explicitly include three- and four-
phonon excitations in the calculations. The problem is that
the energy and transition strengths of such states are poorly
known. The best known transitions in heavy nuclei are the
quadrupole transitions and below we estimate the effect on
fusion of couplings to an effective three-phonon quadrupole
state. There are many states at the three-phonon level but it is
possible to lump them together into one effective three-phonon
state as described in the Appendix.
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A. Calculations for 64Ni + 74Ge

The quadrupole mode in 74Ge is rather soft and there
are several even-parity states at the three-phonon level.
Unfortunately, because knowledge about the couplings to these
states is poor it is not possible to construct an effective three-
phonon state using the method described in the Appendix. It
is therefore assumed in the following that the three-phonon
quadrupole state is at 2 MeV and that the associated β values
are the same as for the two-phonon state, that is, βC

2 (3ph) =
0.217 and βN

2 (3ph) = 0.239.
The calculations that include the three-phonon quadrupole

mode, in addition to all of the mutual excitations of the states
shown in Table I up to the four-phonon level, are denoted by
3PH-4. These calculations are again restricted to excitation
energies below a 7-MeV cutoff and consist of 35 coupled
channels. They can be compared to the 2PH-4 calculations,
which do not include the three-phonon quadrupole mode in
74Ge. From Table III it is concluded that the three-phonon
state is not very important since both calculations require the
same energy shift to fit the data and give essentially the same
χ2. The required energy shift of −0.57 MeV is equivalent to
increasing the �R parameter from 0.10 to 0.16 fm.

The calculated 3PH-4 cross sections are shown by the solid
curve in the top part of Fig. 5. The results of the PH-2 and
PH-1 calculations and the no-coupling limit are also shown
for comparison. All calculations shown here were based on the
parameter value �R = 0.16 fm, which minimizes the χ2 fit to
the data in the 3PH-4 calculations. It is seen that the 3PH-4 and
the PH-2 calculations do not differ much, except at the lowest
energies. In other words, multi-phonon excitations (beyond
PH-2) do not play a very dramatic role in the calculation of
the 64Ni + 74Ge fusion cross section; they just provide a fine-
tuning that produces a better χ2 fit to the data.

The logarithmic derivatives of the cross sections are shown
in the bottom part of Fig. 5. The shape of the calculated
L(Ec.m.) clearly improves in comparison with the low-energy
data as more channels are included in the calculations. Some
discrepancy is beginning to develop at the lowest energy
where the calculated L(Ec.m.) saturates, whereas the measured
values keep growing with decreasing energy. This behavior is
consistent with the systematic trend of the fusion hindrance
phenomenon at the extreme subbarrier [11], which was
observed in Fig. 2 for the other two systems.

B. Calculations for 64Ni + 100Mo

The experimental structure information about the states
associated with the three-phonon quadrupole excitation in
100Mo is shown in Table IV. The excitation energies and most
of the couplings to two-phonon states are known, and the two
that are not known can be estimated in the harmonic oscillator
model (the values in parenthesis). In that model one has the
sum rule ∑

I2

B(E2, I3 → I2) = 3B(E2, 2 → 0); (13)

that is, the sum is three times the B value for the one-phonon
excitation. That would give a sum of 112 W.u., according to
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FIG. 5. Fusion cross sections for 64Ni + 74Ge [10] (top panel) and
the associated logarithmic derivatives (bottom panel). The dashed
curves show the no-coupling limit (NOC), the PH-1 and the basic
PH-2 calculations. The solid curves show the results of the 3PH-4
calculations. All calculations used the radius parameter �R =
0.16 fm. The upper line in the bottom panel is the result for the
constant S factor.

Table I. It is seen that the sums in Table IV for different values
of the spin I3 are less than the harmonic limit.

We can now use the expressions derived in the Appendix to
estimate the properties of the effective three-phonon state. The
expression (A8) is based on amplitudes, whereas the B values
are proportional to the square of these amplitudes. To proceed
we assume that the amplitudes are positive and determined by
the square root of the B values. This assumption is correct for
the harmonic oscillator. If we use all of the transition strengths
shown in Table IV, including the two harmonic estimates of
the two unknown strengths (indicated by the “?”), we obtain
βC

2 (3ph) = 0.182 and a three-phonon excitation energy of
1.65 MeV. The nuclear coupling is set 10% higher [i.e.,
βN

2 (3ph) = 0.2]. These are the values that will be used in
the 3PH-3 and 3PH-4 calculations discussed in the following.

The estimated three-phonon coupling strength is weaker
than the harmonic limit (which gives βC

2 = 0.231) but the
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TABLE IV. Three-phonon quadrupole excitation in 100Mo. The
B values are shown (in W.u.) for the known E2 transitions, from the
(I3 = 0, 2, 4, 6) three-phonon states to the (I2 = 0, 2, 4) two-phonon
states [16]. Unknown values are indicated by a question mark. The
values in parentheses were obtained for a harmonic vibration. The
second to last row shows the sum of the B values for each I3 spin state.
The last row shows the excitation energies of the states associated
with the three-phonon excitation.

I3

I2 0 2 4 6

0 — 14 (52) — —
2 ? (112) ? (21) 30 (59) —
4 — 36 (38) 28 (53) 94 (112)

Sum ? (112) >50 (112) 58 (112) 94 (112)

Ex(I3) (MeV) 1.5046 1.4639 1.7715 1.8469

excitation energy differs little from the harmonic value
(1.61 MeV). Another limit is to include only the known
transition strengths in Table IV and exclude the harmonic
estimates of the two unknown strengths. That gives the value
βC

2 (3ph) = 0.161 and an excitation energy of 1.70 MeV.
This shows that the three-phonon excitation energy is quite
accurately determined, whereas the β value may have an
uncertainty of 10%,

The results of the χ2 analysis, which was based on the
radius parameter value �R = 0.10 fm, are shown in Table III.
The best fit is obtained with the 3PH-3 calculation but the fit
is still poor. When the analysis is restricted to cross sections
that are larger than 0.1 mb, the χ2/N is reduced from 25 to
15. The poor fit to the data is therefore not entirely due to the
fusion hindrance phenomenon, which occurs at smaller cross
sections.

Inspecting the fusion data for 64Ni + 100Mo shown in
Fig. 1 shows that the fusion hindrance sets in at cross sections
that are smaller than 1 µb. To fit the data above 1 µb with
the 3PH-3 calculation requires an energy shift of 0.7 MeV,
or a new radius parameter of �R = 0.04 fm. To make a
reasonable comparison with the data, all calculations shown
in Fig. 6 have therefore been based on this value for the radius
parameter.

In the top panel of Fig. 6 it is seen that the 3PH-3 calculation
agrees with the largest cross section and the 0.92-mb cross
section measured at 127.5 MeV, but it is too high in between.
The good agreement at the highest energy could be misleading
because 50% of the fusion cross section that is shown (solid
point) is an estimated contribution from fission. The measured
evaporation residue cross sections are shown by the open
circles. If the correction for fission were smaller, then there
would be a general suppression of the data at energies above
the Coulomb barrier, in agreement with systematics [2,3].

The discrepancy between calculations and measurements
at low energies is emphasized by comparing the logarithmic
derivatives, which are shown in the bottom part of Fig. 6.
The discrepancy is large, and the calculated curves fail to
reproduce the value at the lowest energy, where the fusion
hindrance phenomenon sets in. Let us finally show some results
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FIG. 6. Fusion cross sections for 64Ni + 100Mo (top panel) and the
associated logarithmic derivatives (bottom panel). The open circles
are the measured evaporation cross sections; the solid points include
an estimated fission cross section [11]. The dashed curves show the
NOC, the PH-1, and the basic PH-2 calculations. The solid curves are
the results of the 3PH-3 calculation. All calculations used the radius
parameter �R = 0.04 fm. The upper line in the bottom panel is the
result for the constant S factor.

for 74Ge + 74Ge to see how the discrepancies evolve with mass
asymmetry.

C. Results for 74Ge + 74Ge

The results of calculations for the 74Ge + 74Ge system,
using the radius parameter value �R = 0.10 fm, are compared
with the data [12] in Fig. 7. The data are the measured
evaporation residue cross sections whereas the fission cross
sections were estimated to be small, about 15 mb at the
highest energy. The three-phonon quadrupole state used in the
3PH-4 calculation is the same as used in Sec. IV A, where-
as the 2PH-4 calculation does not include that state. By
comparing the two calculations it is seen that couplings to
the three-phonon quadrupole state have a significant influence
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FIG. 7. Fusion cross sections for 74Ge + 74Ge [10] (top panel)
and the associated logarithmic derivatives (bottom panel). The dashed
curves show the NOC and the 2PH-4 calculations. The solid curves
show the result of the 3PH-4 calculation. All calculations used the
radius parameter �R = 0.10 fm. The upper line in the bottom panel
is the result for the constant S factor.

and improve the shape of the calculated cross section in
comparison with the data. Thus the couplings reduce the cross
section at higher energies and enhance it at energies below
the Coulomb barrier. This is what is needed to improve the
fit to the data but the discrepancy with the data remains large,
with a χ2/N = 17. The demonstrated sensitivity to the three-
phonon quadrupole state indicates that the calculation has not
converged.

The logarithmic derivatives are shown in the bottom part
of Fig. 7. The two coupled-channels calculations exhibit
oscillations that are out of phase at low energy, and the 2PH-4
calculation has a bump near 120 MeV. These differences
should not be taken too seriously because the calculations
have not converged with respect to multi-phonon excitations,
as previously explained. The discrepancies with the data in Fig.
7 are similar to those seen in Fig. 6 for the fusion of 64Ni +
100Mo. The measured fusion cross sections are suppressed at

high energies compared to the calculations, in agreement with
systematics [2,3], and they are enhanced below the Coulomb
barrier, where they fall off at a slower pace when compared to
the calculations.

D. Further improvements

To improve the calculations of the fusion of heavy, soft
nuclei, one would have to include excitations to higher
multi-phonon states. That would create several problems. One
problem is that the structure of such states is often poorly
known. Another is that the nuclear interaction, Eq. (1), only
includes terms up to second order in the deformation ampli-
tudes, whereas matrix elements associated with multi-photon
states would be sensitive to high order terms. In the harmonic
oscillator model one can calculate the nuclear coupling matrix
elements to all orders in the deformation amplitudes [5,6].
Unfortunately, the connection to the actual structure of the
reacting nuclei may be poor in such calculations. The most
practical solution to these problems would be to develop and
apply more realistic structure models, such as those presented
in Ref. [19].

V. CONCLUSIONS

The calculated fusion cross sections that were presented and
compared to measurements illustrate nicely how multi-phonon
excitations play an increasingly important role as the fusing
nuclei become softer and heavier. The basic two-phonon
calculations reproduce quite well the data for the lightest
system 64Ni + 64Ni (except at extreme subbarrier energies)
but it is necessary to include up to three- or four-phonon
excitations to reproduce the 64Ni + 74Ge fusion data. In the
analysis of the data for the two heavy systems, 64Ni + 100Mo
and 74Ge + 74Ge, it was not possible to achieve a good fit by
including up to four-phonon excitations. The subbarrier fusion
data were enhanced and the data above the Coulomb barrier
were suppressed compared to the most complete calculations.
It is difficult to ascertain which of these two discrepancies is
the most dominant because the radius parameter of the ion-ion
potential, which determines the energy scale of the calculated
fusion cross sections, cannot be predicted accurately.

The observed suppression of the data above the Coulomb
barrier compared to the no-coupling limit is consistent with
the results of the systematic studies by Newton et al. [2,3].
The fusion cross sections obtained in the coupled-channels
calculations are also suppressed compared to the no-coupling
limit. This is caused by the long-range Coulomb excitation,
which pushes the surfaces of the reacting nuclei away from
each other whereby the attractive nuclear force is reduced.
However, the calculated suppression is apparently not large
enough to explain the data. It has been suggested that
the remaining discrepancy could be due to deep inelastic
reactions [3].

The enhancement of the data at energies below the Coulomb
barrier (ignoring for the moment the hindrance phenomenon at
extreme subbarrier energies) indicates that additional channels
or couplings need to be included in the coupled-channels
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calculations. One possibility is transfer reactions, but those
should play a minor role in the fusion of the symmetric 74Ge +
74Ge system. The most natural explanation is the limitations of
the nuclear interaction that was expanded up to second order in
the deformation parameters. This approximation works very
well in calculations of fusion cross sections for lighter and stiff
systems, but it becomes unrealistic for heavy and soft systems,
where the calculations become sensitive to multi-phonon
excitations and therefore to the nuclear interaction at large
deformation amplitudes [6].

A serious complication and uncertainty in the calculation of
fusion cross sections for heavy and soft nuclei is the sensitivity
to poorly known multi-phonon states. One example is the two-
phonon octupole state. Fortunately, this state did not play a
very crucial role in the calculations that were presented for
64Ni + 64Ni. The main effect of couplings to this state was an
overall shift in energy, whereas the shape of the cross section
was not affected. Knowledge of quadrupole excitations is much
better. Thus it was demonstrated that it is possible to construct
effective two- and three-phonon states in 100Mo from detailed
structure information. Such a construction may become more
difficult to make at the four-phonon level.

In addition to improving the structure input for multi-
phonon excitations and the nuclear interaction at large defor-
mations, one should also seek an explanation for what causes
the fusion hindrance in measurements at extreme subbarrier
energies. This could also be related to the parametrization of
the ion-ion potential, as suggested by Dasso and Pollarolo [20].
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APPENDIX: TWO- AND THREE-PHONON EXCITATIONS

The number of states at the two- and three-phonon level of
quadrupole excitations is so large that it is convenient to lump
them together into effective two- and three-phonon states. The
procedure for doing that in the rotating frame approximation
was discussed in Ref. [7] for two-phonon excitations and in
the following it is shown how it can be generalized to the
three-phonon level.

Let us include all couplings that are linear and quadratic in
the deformation amplitudes and denote the associated radial
form factors by F1(r) and F2(r). The radial wave functions for
the n-phonon state with spin I are denoted by ψn(I ), and the
coupling of the (n, I ) state to the (n − 1, In−1) state is

αn(In, In−1) = 〈In−1020|In0〉 〈nI ||α2||(n − 1)In−1〉√
2In + 1

, (A1)

according to Eq. (4). The notation can be simplified for the
one- and two-phonon couplings by defining α1 = α1(2, 0)
and α2(I ) = α2(I, 2). With these definitions, the coupled
equations have the following form in the rotating frame

approximation:

(H − E)ψ0 = −F1α1ψ1 − F2

∑
I

α1α2(I )ψ2(I ), (A2)

(H − E1)ψ1 = −F1α1ψ0 − F1

∑
I2

α2(I2)ψ2(I2)

−F2

∑
I2,I3

α2(I2)α3(I3, I2)ψ3(I3), (A3)

[H − E2(I2)]ψ2(I2) = −F2α2(I2)α1ψ0 − F1α2(I2)ψ1

−F1

∑
I3

α3(I3, I2)ψ3(I3), (A4)

[H − E3(I3)]ψ3(I3) = −F1

∑
I2

α3(I3, I2)ψ2(I2)

−F2

∑
I2

α3(I3, I2)α2(I2)ψ1, (A5)

where H is the scattering Hamiltonian in the rotating frame,
which is assumed to be the same for all channels. The available
energy in the channel (n, I ) is denoted by En(I ) = E − εn(I ),
where εn(I ) is the excitation energy.

The structure of these equations is actually quite simple.
An effective two-phonon state, with coupling strength α2

and scattering wave function ψ2, can be introduced by the
substitution

α2ψ2 =
∑

I

α2(I )ψ2(I ), where α2
2 =

∑
I

α2(I )2. (A6)

A similar substitution can be made for the three-phonon state,

α2α3ψ3 =
∑
I2,I3

α2(I2)α3(I3, I2)ψ3(I3). (A7)

where the three-phonon coupling strength α3 is determined
by

(α2α3)2 =
∑
I3

[∑
I2

α2(I2)α3(I3, I2)

]2

. (A8)

These substitutions simplify the coupled equations (A2)–(A5).
The first two become

(H − E)ψ0 = −F1α1ψ1 − F2α1α2ψ2, (A9)

(H − E1)ψ1 = −F1α1ψ0 − F1α2ψ2 − F2α2α3ψ3, (A10)

which is just the form we want for a zero- and one-phonon state
that are coupled to each other and to the two- and three-phonon
states.

Equation (A4) can be brought into a similar form if we
assume that the two-phonon energies are almost degenerate,
E2(I ) ≈ E2. We can then multiply Eq. (A4) by α−1

2 α2(I2), sum
over I2, and use the substitutions (A6) and (A7) to obtain

(H − E2)ψ2 = −F2α2α1ψ0 − F1α2ψ1 − F1α3ψ3. (A11)

Equation (A5) can be dealt with in a similar way by assum-
ing a near degeneracy of the three-phonon states, E3(I ) ≈ E3.
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Thus we can multiply Eq. (A5) by (α2α3)−1α2(I2)α3(I3, I2),
sum over I2 and I3, and use Eqs. (A7) and (A8) to obtain

(H − E3)ψ3 = −F1α3ψ2 − F2α3α2ψ1. (A12)

Actually, to derive the first term on the right-hand side of
Eq. (A12) one also needs the assumption ψ2(I2) =
α−1

2 α2(I2)ψ2, which is not unreasonable because it is con-
sistent with Eq. (A6) and it is exact for α3 = 0, as can be seen
from Eqs. (A4) and (A11). That completes the derivation.

If the states at the two- or three-phonon level are not quite
degenerate one can construct the effective two- and three-
phonon excitation energies from the energy-weighted sums

ε2 = 1

α2
2

∑
I

|α2(I )|2ε2(I ), (A13)

ε3 = 1

(α2α3)2

∑
I3

[∑
I2

α2(I2)α3(I3, I2)

]2

ε3(I3). (A14)
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