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We studied the reaction 12C(e, e′p) in quasielastic kinematics at momentum transfers between 0.6 and
1.8 (GeV/c)2 covering the single-particle region. From this the nuclear transparency factors are extracted using
two methods. The results are compared to theoretical predictions obtained using a generalization of Glauber
theory described in this paper. Furthermore, the momentum distribution in the region of the 1s-state up to
momenta of 300 MeV/c is obtained from the data and compared to the correlated basis function theory and the
independent-particle shell model.
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I. INTRODUCTION

Electromagnetic probes are a valuable tool to examine the
structure of nuclei. The distortion of the electron is small
and the entire nucleus is probed. In (e, e′p) reactions one can
assume in good approximation that only one proton is involved
in the primary reaction. However, on the way out of the nucleus
the nucleon is subject to reactions which can remove it from the
reaction channel under consideration. Such inelastic processes
lead to absorption and deflection of the outgoing proton and
consequently to a reduction of the detected yield. At high
outgoing proton energy, the main process of concern is the
reduction of the proton flux. The reduction factor is called
nuclear transparency TA. An understanding of the propagation
of nucleons in nuclear matter is important for the interpretation
of many experiments.

There are two theoretical approaches to deal with absorp-
tion. For low proton kinetic energies (Tp < 200 MeV) an
optical potential is used. The parameters of the potential are
chosen such as to reproduce the phase shifts and cross sections
of nucleon-nucleus scattering. Its imaginary part accounts
for inelastic processes, i.e., absorption. For nucleon momenta
larger than 1 GeV/c where the inelastic part of the free nucleon-
nucleon (NN) cross section dominates, Glauber calculations
are often used. They derive the final state interaction (FSI) of
the propagating nucleon in nuclear medium directly from the
elementary nucleon-nucleon cross section σNN . In the nuclear
medium the NN cross section has a similar energy dependence
as the free one for Tp larger than 1 GeV but is reduced
by about 20%. This value is roughly in agreement with the
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one obtained using a simplified geometrical model assuming
classical attenuation and fitting it to experimental data [1]. At
low Tp stronger modifications of the NN cross section occur
due to Pauli blocking and dispersion effects as it was shown in
Ref. [2]. Therefore Glauber calculations are generally thought
to have a lower limit of validity in the nucleon kinetic energy.

In this paper it will be shown that agreement with the data
down to Tp = 0.3 GeV can be achieved using an approach
based on the correlated Glauber approximation to take into
account these effects. A similar approach [2] was already
able to describe the TA measurement at 180 MeV for 12C,
27Al, 58Ni, and 181Ta within the experimental error bars [3].
Details of the theoretical calculation are given in Sec. II. The
theoretical results are compared to data taken as part of the ex-
periment E97-006 and previously measured values for the
nuclear transparency described in Sec. III. For the extraction
of TA an improved method was applied in this paper and the
transparencies obtained via the standard analysis are given
for comparison. The improvement is not only apparent in
the better agreement of TA with the theory but also when
comparing the momentum distribution in the region of the
1s1/2-state in 12C with the independent-particle shell model
(IPSM) and the correlated basis function theory (CBF) [4].
For this deeper lying state the deviation from the shape
of the IPSM momentum distribution is already apparent at
momenta >150 MeV/c. However, the CBF theory gives a good
description up to 250 MeV/c.

II. THEORY

Neglecting many-body contributions to the target electro-
magnetic current, the nuclear matrix element entering the
definition of the (e, e′p) transition amplitude can be written
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(see, e.g., Ref. [5])

Mn(p, q) = 〈�(−)
np |

∑
k

a
†
k+qak|�0〉, (1)

where p and q denote the momentum of the detected proton and
the momentum transfer, respectively. In the above equation, a†

k
and ak are nucleon creation and annihilation operators, |�0〉 is
the target ground state, satisfying the many-body Schrödinger
equation

HA|�0〉 = E0|�0〉, (2)

and �
(−)
np is the final scattering state.

The effect of FSI between the knocked-out nucleon (la-
belled with index 1) and the spectator particles can be best
analyzed rewriting the A-body nuclear Hamiltonian HA in the
form

HA = H0 + HFSI = (HA−1 + T1) + HFSI, (3)

where HA−1 and T1 are the Hamiltonian of the recoiling
(A − 1)-nucleon system and the kinetic energy operator associ-
ated with the struck nucleon, respectively, while HFSI describes
the interactions between the struck nucleon and the spectators.
Obviously, PWIA amounts to setting HFSI = 0.

The decomposition of Eq. (3) can be used to write |�(−)
np 〉

in the form [6]

|�(−)
np 〉 = �(−)

p |�np〉, (4)

where the asymptotic state |�np〉, describing the system in
absence of FSI, is an eigenstate of H0 of the product form

|�np〉 = |p〉 ⊗ |ϕn〉, (5)

|p〉 and |ϕn〉 being eigenstates of T1 and HA−1, respectively.
In coordinate space |�np〉 can be written (in order to

simplify the notation spin indices will be omitted)

〈R|�np〉 = �np(R) =
√

1

V
eip·r1ϕn(R̃), (6)

where R ≡ {r1, r2 . . . , rA} and R̃ ≡ {r2, . . . , rA} specify the
configurations of the full A-particle system and the (A − 1)-
particle spectator system, respectively, whereas V denotes the
normalization volume.

Setting �
(−)
p = 1, which amounts to disregarding the effects

of FSI, and substituting the resulting final state into Eq. (1),
one obtains the PWIA transition amplitude, that depends upon
the initial momentum k = p − q only.

The scattering operator �
(−)
p in Eq. (4) describes the

distortion of the asymptotic wave function resulting from
rescattering of the knocked-out nucleon. It can be formally
written as [6]

�(−)
p = lim

t→∞ eiHAt e−iH0t

= lim
t→∞ T̂ e−i

∫ t

0 dt ′HFSI(t ′), (7)

where T̂ is the time ordering operator and

HFSI(t) = eiH0tHFSIe
−iH0t . (8)

The calculation of �
(−)
p from Eq. (7) using a realistic nuclear

Hamiltonian involves prohibitive difficulties. However, when
the kinetic energy carried by the knocked-out proton is large,
the structure of �

(−)
p can be greatly simplified using a general-

ization of the approximation scheme originally developed by
Glauber to describe proton-nucleus scattering [7].

The basic assumptions underlying this scheme, generally
referred to as correlated Glauber approximation (CGA) (see,
e.g., Ref. [8] and references therein), are that (i) the fast struck
nucleon moves along a straight trajectory, being undeflected
by rescattering processes (eikonal approximation) and (ii) the
spectator system can be approximated by a collection of fixed
scattering centers (frozen approximation).

Within CGA, �
(−)
p can be written in coordinate space as

〈R|�(−)
p |R〉 = �(−)

p (R) = Pz


1 −

A∑
j=2

�p(1, j )

+
A∑

k>j=2

�p(1, j )�p(1, k) − · · ·

, (9)

where the positive z-axis is chosen along the eikonal trajectory
and the z-ordering operator Pz prevents the occurrence of
backward scattering of the fast struck proton.

The profile function �p, appearing in Eq. (9) is defined as

�p(1, j ) = θ (zj − z1)γp(|b1 − bj |), (10)

where the step function preserves causality and |b1 − bj | is the
projection of the interparticle distance on the impact parameter
plane (i.e., the xy plane). The function γp(b), containing all
the information on the dynamics of the scattering process,
is simply related to the NN scattering amplitude at incident
momentum p and perpendicular momentum transfer kt , fp(kt ),
through

γp(b) = − i

2

∫
d2kt

(2π )2
eikt ·bfp(kt ). (11)

At large p, the scattering amplitude fp(kt ) extracted from
the measured NN cross section is usually parametrized in the
form [9]

fp(kt ) = iσpN (1 − iαpN )e− 1
2

k2
t
B , (12)

where σpN and αpN denote the total cross section and the
ratio between the real and the imaginary part of the amplitude,
respectively, while the slope parameter B is related to the range
of the interaction. In the case of zero range, corresponding to
1/B = 0, the impact parameter dependence of γp(b) reduces
to a two-dimensional δ function.

The calculation of the scattering operator of Eq. (9) requires
the knowledge of the NN scattering amplitude in the nuclear
medium. Pandharipande and Pieper [2] have shown that the
total NN cross sections in nuclear matter and in vacuum can
be easily related to one another. Their approach, in which
the velocity dependence of the nuclear mean field and Pauli
blocking of the final states available to the spectator nucleons
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are both taken into account, allows one to obtain the effective
total cross section, σ̃pN < σpN , from the measured differential
cross section dσpN/d�. The results of Ref. [2] suggest that
medium effect reduce the total cross section by as much as
∼50% and ∼18% at incident energies of 0.2 and 1. GeV,
respectively.

Theoretical studies of the (e, e′p) cross section carried out
using CGA [10] show that at large proton momentum the
dominant FSI effect is a quenching that can be accurately
described introducing a transparency factor TA, written in
terms of the scattering operator of Eq. (9) as [5]

TA = 1

Z

∫
d3rρp(r)|�(−)

p (r)|2. (13)

In the above equation ρp(r) is the proton density of the target,
normalized to Z, and

ρp(r1)|�(−)
p (r1)|2 =

∫
dR̃|�0(R)|2|�(−)

p (R)|2. (14)

The full calculation of the right hand side of Eq. (14),
involves 3(A − 1)-dimensional integrations. It has been carried
out for 4He and 16O using Monte Carlo techniques and realistic
many-body wave functions [5,10].

Approximations to TA can be obtained expanding the
integrand of Eq. (13) according to

ρp(r1)|�(−)
p (r1)|2

= 1 − 1

ρp(r1)

[∫
d3r2�(1, 2)ρ(2)

pN (r1, r2)

−
∫

d3r2d
3r3�(1, 2)�(1, 3)

× ρ
(3)
pNN (r1, r2, r3) +

∫
d3r2d

3r3d
3r4 . . .

]
, (15)

where the distribution functions ρ
(n)
pN...N (r1, r2 . . . rn) yield the

joint probability of finding the struck proton at r1 and the n − 1
spectator nucleons at r2 . . . rn.

The quantity in square brackets in Eq. (15) describes
FSI effects, that lead to a departure from the PWIA result
TA = 1. The contribution of processes in which the struck
proton undergoes n − 1 rescatterings involves the n-nucleon
distribution. For example, the single rescattering term involves
the two-nucleon distribution that can be written in the form [11]

ρ
(2)
pN (r1, r2) = ρp(r1)ρN (r2)g(r1, r2). (16)

The function g(r1, r2) describes the effects of dynamical
correlations. Due to the strongly repulsive nature of NN
interactions at short range, g(r) 
 1 at r = |r1 − r2| <∼ 1 fm,
while at large r g(r) → 1 and the distribution function reduces
to the prediction of the independent particle model.

Equation (15) shows that inclusion of NN correlations
produces a nontrivial pattern of effects. For example, the
presence of g(r1, r2) in the two-body (single rescattering) term
enhances the transparency, since the short-range repulsion

between the struck particle and the spectator reduces the
rescattering probability. On the other hand, the repulsion
between two spectators in the three-body (double rescattering)
term leads to the opposite effect.

As short-range correlations are known to be largely unaf-
fected by shell and surface effects, g(r1, r2) can be obtained
using the local density approximation (LDA), i.e., setting

g(r1, r2) ≈ gNM

[
|r1 − r2|, ρN

(
r1 + r2

2

)]
, (17)

where gNM (r, ρ) is the radial distribution function calculated
in uniform nuclear matter at constant density ρ.

A similar procedure can be employed to construct distri-
bution functions involving three or more nucleons, needed
to evaluate the contributions of processes involving more
than one rescattering. The LDA scheme, combining nuclear
matter results and the measured one-body density, provides a
consistent framework to evaluate TA from Eqs. (13) and (15)
provided the NN scattering amplitude is known.

The theoretical curves shown in Fig. 4 have been obtained
using LDA and an effective NN scattering amplitude written
as in Eq. (12). Medium effects have been taken into account
replacing the total cross sections in vacuum with those of
Ref. [2], while for the slope parameters the free space values
resulting from the fit of Ref. [12], based on the data of Ref. [13],
have been used. The third parameter appearing in Eq. (12),
namely αpN , does not affect the transparency factor.

The calculations have been carried out including two-,
three-, and four-body terms in Eq. (15), corresponding to
single, double, and triple rescattering. The inclusion of three-
and four-body contributions to TA produces a change of
∼10% and ∼3%, respectively, in 12C and ∼15% and ∼5% in
197Au.

III. EXPERIMENT AND DATA ANALYSIS

The experiment was performed at the Thomas Jefferson
National Accelerator Facility (TJNAF) in Hall C. Electrons
were detected in the High Momentum Spectrometer (HMS),
protons in the Short Orbit Spectrometer (SOS). Data were
taken in five kinematics shown in Table I on a 12C target
of 2.5% radiation length thickness. The target thickness was
determined by measuring the weight and the size of the target.

TABLE I. For the five settings in quasielastic kinematics the
averaged momentum transfer Q2, the beam energy Ee, the central
momentum of the HMS pe′ (electron), and of the SOS pp (proton) as
well as the central angles θe and θp for HMS and SOS are given.

Q2 Ee pe′ θe pp θp

(GeV/c)2 (GeV) (GeV/c) degree (GeV/c) degree

0.59 3.298 2.95 14.4 0.85 60.3
0.80 3.298 2.75 17.0 1.00 56.2
1.13 3.123 2.50 22.2 1.25 49.7
1.53 3.298 2.40 25.4 1.50 44.6
1.85 3.298 2.28 29.0 1.70 40.7
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Its uncertainty is estimated to be 0.3%. The data cover a range
of Q2 corresponding to Tp = 0.3 to 1.0 GeV. In the same
kinematics data with a liquid hydrogen target were taken.
This target consists of an upright standing aluminum cylinder
with a diameter of 4 cm and 0.13 mm thick windows. The
background contribution from the windows was subtracted
using two aluminum targets spaced by the dimension of the
cryogenic target. These data serve as a check of the analysis and
for the determination of the kinematical offsets to the values
given in Table I. The offset to the beam energy was determined
to –0.1% from an independent analysis of Ref. [14] using a
large set of H(e, e′p) data. From the remeasurement of the
magnetic dipole field in the magnets located in the arc of the
beam line to Hall C which are used for the determination of
the beam energy, a correction of –0.2% was found [15]. Both
offsets were used in the following analysis and contribute to
the systematic error.

The H(e, e′p) data were also used to determine the fraction
of protons absorbed in the target and on their way to the
detector system. For this the rates of the reaction H(e, e′p)
and H(e, e′) in the HMS were compared in a kinematical
region covered by both reactions. The result of (0.953 ± 0.011)
agrees with the one calculated from the mean free path and the
material thicknesses.

The analysis of the H(e, e′p) data revealed that for mo-
menta larger than 1 GeV/c the protons punch through the
collimator which consists of 2.5 in. tungsten. This leads to
additional energy loss of 50 to 300 MeV for less than 3%
of the events. The effect was included in the simulation (see
below).

The H(e, e′p) data are in good agreement with previous
results. The momentum acceptance relative to the central
momentum 
p/p was –8.8% to 10.4% for the HMS and
±15% for the SOS. It was determined using overlapping
spectra from inclusive electron scattering on 12C in the inelastic
regime where the cross section is a smooth function of the
momentum. Both spectrometers were fixed at 20◦ and the
central momentum was varied in steps of 0.1 GeV/c. This
guarantees an overlap between the settings. A correction of
the order of ±2% was applied to the yield as a function of

p/p.

The spectra from the H(e, e′p) data were compared to the
Monte Carlo simulation SIMC of the Hall C Collaboration
and good agreement were found. The simulation describes
the electron beam entering the target (including the rastering
of the beam over the target used to avoid local heating) and
follows the particles from the reaction vertex to the detector
system. It employs transfer matrices for the spectrometers
and takes energy loss and multiple scattering in material into
account. Radiative corrections are calculated according to
Ref. [16]. The effect of Coulomb distortion on the electron
wave function in the vicinity of heavy nuclei is small at
the momenta considered here (≈1%). It was taken into
account by using the effective momentum approximation.
The angular and momentum resolutions were adjusted to
reproduce best the measured spectra. For this the spectra of the
missing energy Em and missing momentum pm are suitable in
particular. A resolution (FWHM) in Em of ≈7 MeV and in pm

of ≈9 MeV/c is achieved. From the measured kinematic

variables, the missing energy is reconstructed according to

Em = Ee − E′
e − Tp − TR. (18)

Here, Ee is the beam energy and Ee′ and Tp are the (kinetic)
energies of the outgoing electron and proton, respectively. TR is
the kinetic energy of the (undetected) recoiling (A − 1)-system,
which is reconstructed from pm using the spectator model. The
missing energy can be identified with the removal energy E
of the nucleon. In the single-particle region it is the energy
needed to remove the nucleon from a particular state within
the nucleus. In the plane wave impulse approximation (PWIA)
the initial momentum k of the nucleon bound in the nucleus is
equal to the opposite of the missing momentum pm = q − p
where q is the momentum transfer from the electron to the
nucleon. In PWIA the six-fold differential cross section

d6σ

dE dE′ d�e dEp d�p

= K σepS(E, k) TA(Q2) (19)

factorizes into an elementary e–p cross section σep and the
spectral function S(E, k) containing the information about the
nuclear structure. The spectral function is the probability to
find in the nucleus a nucleon with energy E and momentum k.

The choice of cross section σep for the scattering of an
electron on a bound nucleon is not unique. Since the off-shell
form factors are not known the same hadronic currents as in
the case of free nucleons are used but do not lead to the same
result. The deviation between different choices increases with
E and k. For the result of the present work, which is restricted
to the single-particle region, the ambiguity is small. To be
consistent with previous analyses the off-shell prescription
σ cc1

ep of Ref. [17] was used. The deviation to σ cc2
ep [17] and to

σ cc
ep [21] is less than 1.5% for the five settings in the Em-pm

region used for this analysis.
As parametrization for the electromagnetic form factors of

the proton we use the dispersion-theoretical analysis based
on vector meson dominance model of Ref. [18]. The change
on the cross section at the highest Q2 of the present work is
less than 0.5% when the result from the double-polarization
method for the Gep/Gmp ratio [19,20] is employed.

In the framework of PWIA the nuclear transparency enters
as correction factor on the right hand side of Eq. (19).
Experimentally it is obtained by comparing the measured yield
N exp(Em, pm) to the simulation N sim(Em, pm) integrated over
the same phase space V

TA(Q2) =
∫
V

dpmdEmN exp(Em, pm)∫
V

dpmdEmN sim(Em, pm)
. (20)

To restrict the analysis to the single-particle region cuts in
Em � 0.08 GeV and pm � 0.3 GeV/c were applied. The same
cuts were also used in most of the previous experiments.

In the simulation a spectral function has to be chosen which
correctly describes the experimental distribution well in the
region of interest. In Fig. 1 the Em-spectrum of the experiment
(dots) is compared to the simulation using an IPSM spectral
function as input (solid curve). This spectral function factorizes
into an E and k distribution for each orbit. It was also used
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20000
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40000

0 0.025 0.05 0.075 0.1

FIG. 1. Comparison of the experimental yield obtained as a
function of Em in the single-particle region to the Monte Carlo
simulation (solid) for the kinematics at Q2 = 1.13 (GeV/c)2 (see
Table I). Both contributions contain radiative processes.

for the analyses of the experiment NE-18 [22] at SLAC and
experiments at TJNAF [1,23]. The E-distribution is described
by a Lorentzian and the momentum distribution is derived
from a Woods-Saxon potential whose parameters are adjusted
to data measured at Saclay [24]. For this figure TA = 0.6
in the simulation was used. The difference in the yield
reflects the depletion of the single-particle region due to short-
range correlations (SRC). To account for this the simulated
yield for carbon is divided by a factor of εSRC 1.11 ± 0.03.
This factor was used in all the previous analyses and was
estimated from an early examination of NN correlations in
12C and 16O [25,26]. The inverse of εSRC corresponds to
the occupation number, which modern many-body theories
predict to be lower, ≈80% [4,27]. This number is larger than
the spectroscopic factor giving the occupation of a state; it
contains the background term induced by correlations which
cannot be attributed to a specific orbit [28,29]. The above
considerations emphasize that the number of nucleons missing
due to absorption in the nucleus cannot be distinguished from
the depletion of the single-particle orbits due to SRC.

To improve upon this approach a spectral function contain-
ing SRC from the beginning is employed in Eq. (20). This
spectral function is composed of a part due to SRC which
accounts for 22% of the total strength as calculated in LDA,
and the IPSM spectral function mentioned above but reduced
by a factor (1 – 0.22) to ensure normalization. This approach
circumvents the application of the extra factor εSRC which is
a poor approximation because the amount of strength due to
SRC is increasing with pm. Its limitation is demonstrated in
Fig. 2. For a pm bin of (250 ± 50) MeV/c the experimental
Em-distribution is compared to the simulation using the IPSM
spectral function (including the correction εSRC) and the CBF
spectral function. It is obvious that the IPSM fails already
at moderate pm and Em whereas the CBF theory is in good
agreement with the data. Note that the increase of the yield at
larger Em is not due to S(E, k), but is due to bremsstrahlung
shifting events from low to high Em.

Em (GeV)

yi
el

d

0

2000

4000

6000

8000

0 0.05 0.1 0.15 0.2

FIG. 2. Em-distribution for a slice in pm of 250 ± 50 MeV/c in
the quasielastic kinematics at Q2 = 1.53 (GeV/c)2. The experimental
yield is shown as data points, the other curves are simulated taking
radiative processes into account. Using the IPSM model results in the
lower curve (dashed). For the distribution (solid) the spectral function
of Ref. [8] is used as input for the Monte Carlo.

IV. RESULTS

When extracting TA using Eq. (20) good agreement between
Monte Carlo simulation and data is required. Spectra of
kinematical quantities like momenta and angles depend mainly
on the capability to map the optics of the spectrometers. These
were verified using the H(e, e′p) data. The comparison with
the simulated Em and pm distribution then reflects the quality
of the spectral function used as input for the simulation. The
agreement in the Em distribution can easily be judged from
the spectrum given in Fig. 1. In contrast to previous works,
where the same spectral function was used, the width of the
1p3/2 state had to be reduced from 5 MeV to 1 MeV. This
value is closer to the expectation of a vanishing width for
the 1p3/2 state. The momentum distribution of the 1s1/2 state
was obtained from the data. For this the pm distribution was
split into 10 MeV/c bins up to 300 MeV/c. The data then
were compared bin for bin to the simulation using the CBF
spectral function. Simultaneously radiative corrections were
taken into account by the deradiation technique. The ratio was
taken as a correction factor to the momentum distribution.
The total normalization was adjusted to the simulation (using
TA = 0.6) which compensates for small differences in TA in
the five kinematics. The result obtained from the data (squares)
is shown in Fig. 3 compared to the momentum distribution
from the CBF theory (solid blue line) and from the IPSM
(dashed black line) integrated over the same region in Em

(0.03 – 0.08 GeV). The statistical error bars are smaller than the
symbols. The systematic error is given below. Figure 3 shows
clearly that the IPSM fails already above pm = 0.15 GeV/c.
This is in contrast to the measurements done at NIKHEF
on various nuclei (see Refs. [30,31]) where good agreement
was found with the momentum distribution derived from a
Woods-Saxon potential up to momenta of 250 MeV/c. In
these experiments only valence states at the Fermi edge were
examined. For deeper lying states like the 1s1/2 state the
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0 0.05 0.1 0.15 0.2 0.25 0.3

p
m

 (GeV/c)

1
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n(
p m

) 
(G

eV
-3

 s
r-1

)

FIG. 3. Momentum distribution in the region of 0.03 GeV <Em <

0.08 GeV obtained from the data taken in the kinematics of Table I
(squares), the CBF theory (solid) and the IPSM (dashed). Three data
points (circles) are from data focusing on the high pm region [21,32].

influence of SRC leads to modifications of the shape already
at moderate pm.

Since no correction factor εSRC is applied to the IPSM
momentum distribution in Fig. 3 it exceeds the experimental
momentum distribution by ≈20% at small pm. The deviation
at large pm is not a too serious problem because most of the
yield used for the extraction of TA comes from smaller pm.
The CBF theory gives a resonable description to the data up
to pm ≈ 0.25 GeV/c which is close to the upper limit used in
the TA analysis. At higher pm the CBF theory underestimates
the data in this Em region.

The data points shown as full circles were also taken in
the E97-006 experiment but with the aim to examine SRC at
high Em and pm [21,32]. For this a spectral function was
extracted from the data. The momentum distribution was
obtained by integrating the spectral function over the given
Em region. These data are not subject of this article but the
agreement in the overlap region of both data sets provides an
important confirmation of consistency using different analysis
methods.

The results for the nuclear transparency TA obtained using
the IPSM and the CBF spectral functions in Eq. (20) are shown
in Table II. When using the CBF theory the results are about
5% higher than the results using IPSM. This can be traced
back to the larger influence of SRC predicted by the CBF
theory, the correlated strength of which is in agreement with

TABLE II. Nuclear transparency for carbon obtained using the
IPSM and the CBF spectral function in the analysis. The error
given is the quadratic sum of statistical and systematic uncertainty
neglecting the model-dependent error.

Tp (GeV) TA (IPSM) TA (CBF)

0.328 0.598 ± 0.023 0.641 ± 0.025
0.433 0.581 ± 0.023 0.628 ± 0.025
0.625 0.566 ± 0.022 0.605 ± 0.024
0.830 0.561 ± 0.022 0.593 ± 0.023
1.00 0.553 ± 0.022 0.591 ± 0.023

the strength found at high E and k by experiment [32]. From
the εSRC quoted above, which corresponds to a depletion in the
single-particle state of 0.1, and the contribution of SRC in the
CBF theory (0.22) one could naively have expected a larger
difference between the two analyses. The deviation is not so
large due to strength from SRC which also contributes to the
single-particle region.

It should be noted that the results for the momentum
distribution and the nuclear transparency factor might depend
slightly on the kinematics chosen. In general the yield obtained
in perpendicular kinematics exceeds the one measured in
parallel kinematics due to additional reaction mechanisms
present in perpendicular kinematics [33]. In the single-particle
region (below the Fermi momentum) a difference of 6% is
expected [34,35].

In the region of Q2 = 0.15–0.6 (GeV/c)2 Refs. [36] and
[37] found an excess of the transverse response of 40% in 12C
for Em > 0.025 GeV compared to a free proton. At higher
Q2 the transverse response quickly decreases. For the data
point at Q2 = 0.59 GeV/c)2 this would lead to an increase of
the transparency factor of ≈9%. To search for this effect in
the data we extracted the transparency factor from the 1p-state
alone (Em < 0.025 GeV). We find a decrease of TA by 4%, i.e.,
a two times smaller effect. At Q2 = 0.8 (GeV/c)2 the effect is
1% and decreases further for higher Q2.

The error given in Table II is the quadratic sum of
the statistical and systematic uncertainties where the latter
dominates with 3.9% in total. It consists of the already
mentioned uncertainties in the target thickness (0.3%), the
charge measurement (1%), proton transmission (1.1%) as well
as the uncertainties in several correction factors that have
to be applied to the experimental yield like dead time and
detector efficiency (2%). The stability of the result against
different cuts in the data was conservatively estimated to 2%.
For the simulation, in particular the phase space, an error of
2% was taken into account. The influence of the choice of
the kinematical offsets was tested with the above mentioned
second set of offsets corresponding to a difference in energy
of 0.1%. It leads to differences in the result of less than 0.5%.
For the fluctuations from run to run an uncertainty of 0.5%
was estimated. The systematic error does not contain the
model-dependent uncertainty. For the choice of the spectral
function an error of 2% is taken into account which reflects
mainly the agreement between data and simulation discussed
above. The error in the correction factor εSRC of 3% has to be
applied only in the case of the analysis using the IPSM spectral
function. To estimate the influence of the off-shell cross section
the analysis was repeated using the cc2-version of Ref. [17]
and the cc-version of [21,32]. The latter leads to almost the
same result as the cc1-version of Ref. [17]. An error of 2%
was taken into account. The contribution of bremsstrahlung
to the data amounts to 33%. The uncertainty in the correction
due to internal (external) bremsstrahlung was estimated to 2%
(1%). Summing these uncertainties quadratically leads to a
model-dependent uncertainty of 4.7% (3.6%) for the analysis
using the IPSM (CBF) spectral function.

The measured nuclear transparency TA (solid symbols) for
12C is shown in Fig. 4 as a function of the kinetic energy of the
proton together with previous results obtained at SLAC [22]
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FIG. 4. Nuclear transparency TA for C, Fe, and Au as a function
of the proton kinetic energy Tp compared to the correlated Glauber
calculations (solid lines). The data indicated by circles are from the
NE18 experiment at SLAC [22], squares and diamonds are Jlab data
of Refs. [23] and [1] and from Bates [3] (triangle down). The result
indicated by stars is obtained with the correlated spectral function of
Ref. [8].

(circles) and Jlab [1,23] (squares and diamonds). The error
bars shown in the figure contain the statistical and systematic
uncertainty but not the model-dependent error. This applies
also to the data points of the previous works. Since the previous
experiments were analyzed using the same assumption and
ingredients the model-dependent error is the same for them,

while it is somewhat lower in the case of using the CBF spectral
function.

The solid lines drawn in Fig. 4 are the result of the theory
presented in this paper. For comparision also results from
previous experiments [1,22,23] for iron and gold are shown.
For all three nuclei and large proton kinetic energy (>1.5 GeV)
the theory describes the data well within the error bars. At
low energy there is remarkable agreement between theory
and the experimental results obtained using the CBF spectral
function. The two data points at the lowest Tp for 12C could
indicate a deviation from the prediction, but considering the
model-dependent error bar no firm conclusion can be drawn.
With the standard analysis the experimental results are ≈5%
too low but in agreement with previous analyses using the same
ingredients. On the other hand the data points for gold seem
to exceed the theory. For these analyses a correction factor
1/εSRC = 0.78 was used [22,23]. If one would have used the
CBF spectral function the results would be lowered by ≈7%
and thus closer to the theory.

ACKNOWLEDGMENTS

One of the authors (O.B.) wishes to express his gratitude
to S. C. Pieper for a very useful correspondence and for
providing tables of the medium modified NN cross sections.
Many illuminating discussions with V. R. Pandharipande are
also gratefully acknowledged.

This work was supported by the Schweizerische Nation-
alfonds (SNF), the U.S. Department of Energy and the U.S.
National Science Foundation.

[1] K. Garrow et al., Phys. Rev. C 66, 044613 (2002).
[2] V. R. Pandharipande and S. C. Pieper, Phys. Rev. C 45, 791

(1992).
[3] G. Garino, M. Saber, R. E. Segel, D. F. Geesaman, R. Gilman,

M. C. Green, R. J. Holt, J. P. Schiffer, B. Zeidman, E. J. Beise,
G. W. Dodson, S. Hoibraten, L. D. Pham, R. P. Redwine, W. W.
Sapp, C. F. Williamson, S. A. Wood, N. S. Chant, P. G. Roos,
J. D. Silk, M. Deady, and X. K. Maruyama, Phys. Rev. C 45,
780 (1992).

[4] O. Benhar, A. Fabrocini, and S. Fantoni, Nucl. Phys. A505, 267
(1989).

[5] O. Benhar, N. N. Nikolaev, J. Speth, A. A. Usmani, and B. G.
Zakharov, Nucl. Phys. A673, 241 (2000).

[6] M. L. Goldberger and K. M. Watson, Collision Theory (J. Wiley
& Sons, New York, 1964).

[7] R. J. Glauber, in Lectures in Theoretical Physics edited by
W. E. Brittin et al. (Interscience Publishers Inc., New York,
1959).

[8] O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Phys.
A579, 493 (1994).

[9] A. V. Dobrovolsky et al., Nucl. Phys. B214, 1 (1983); B. H.
Silverman et al., ibid. A499, 763 (1989); W. Grein, ibid. B131,
255 (1977).

[10] O. Benhar, in Probing Nucleons and Nuclei via the (e, e′p)
Reaction, edited by E. Voutier, J.-M. Laget, and D. W. Higin-
botham (World Scientific, Singapore, 2004), p. 110.

[11] R. Schiavilla et al., Nucl. Phys. A473, 267 (1987).

[12] T. G. O’Neill (private communication).
[13] A. Baldini et al., in Landoldt-Börnstein, New Series, Vol. I/12b,

edited by H. Schopper (Springer, Berlin, 1987).
[14] E. Christy (private communication).
[15] D. Mack (private communication).
[16] R. Ent, B. W. Filippone, N. C. R. Makins, R. G. Milner, T. G.

ONeill, and D. A. Wasson, Phys. Rev. C 64, 054610 (2001).
[17] T. de Forest, Nucl. Phys. A392, 232 (1983).
[18] P. Mergell et al., Nucl. Phys. A596, 367 (1996).
[19] M. K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000).
[20] O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002).
[21] D. Rohe, Habilitationsschrift, University of Basel, 2004.
[22] T. G. O’Neill et al., Phys. Lett. B351, 87 (1995).
[23] D. Abbott et al., Phys. Rev. Lett. 80, 5072 (1998).
[24] J. Mougey et al., Nucl. Phys. A262, 461 (1976).
[25] I. Sick (private communication), 1993.
[26] J. W. Van Orden, W. Truex, and M. K. Banerjee, Phys. Rev. C

21, 2628 (1980).
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