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Exact numerical diagonalization is carried out for the Bohr Hamiltonian with a β-soft, axially stabilized
potential. Wave function and observable properties are found to be dominated by strong β-γ coupling effects.
The validity of the approximate separation of variables introduced with the X(5) model, extensively applied
in recent analyses of axially stabilized transitional nuclei, is examined, and the reasons for its breakdown are
analyzed.
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I. INTRODUCTION

The Bohr Hamiltonian [1] with a β-soft but γ -stabilized
potential has served as the basis of recent investigations
of the collective structure of transitional nuclei intermediate
between spherical and axially symmetric deformed shape [2].
The solutions obtained so far for the X(5) model [2,3] and
its various extensions [4–9] have relied on an approximate
separation of variables, introduced in Ref. [2], because solution
of the exact problem was not possible. These approximate cal-
culations have been extensively compared with experimental
data [10–20].

However, numerical methods recently developed by Rowe
et al. [21–23] make exact numerical diagonalization of the
Bohr Hamiltonian feasible for transitional and deformed situ-
ations, without recourse to the approximations of Ref. [2]. The
solution process involves diagonalization in a basis constructed
from products of optimally chosen β wave functions with
five-dimensional spherical harmonics. This method yields
much more rapid convergence in the presence of significant
β deformation than is obtained with conventional methods
[24,25].

In the present work, an exact numerical solution for
the X(5) Hamiltonian is obtained (Sec. II). The results
for wave functions and observables are examined, and the
properties of β-soft nuclei are found to be dominated by a
strong coupling between the β and γ degrees of freedom
(Sec. III). Because extensive prior work has been carried out
using the approximate separation of variables of Ref. [2], this
approximation is reviewed and the reasons for its breakdown
are analyzed (Sec. IV).

II. HAMILTONIAN AND SOLUTION METHOD

The Bohr Hamiltonian, in terms of the quadrupole defor-
mation variables β and γ and the Euler angles ϑ , is [1]
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+ V (β, γ ), (1)

where L̂′
κ are the intrinsic frame angular momentum com-

ponents. For the transition between spherical and axially
symmetric deformed structure, it is appropriate to consider a
potential V (β, γ ) that is soft with respect to β but that provides
confinement about γ = 0. In the X(5) model, a schematic form
V (β, γ ) = Vβ(β) + Vγ (γ ) is used, where Vβ is taken to be a
square well potential [Vβ(β) = 0 for β � βw and ∞ otherwise]
and Vγ provides stabilization around γ = 0.

Under the approximate separation of variables of Ref. [2],
most results are independent of the specific choice of Vγ .
Consequently, in Ref. [2], the confining potential Vγ (γ ) is
simply described as ∝ γ 2 for small γ . For solution of the
full problem, Vγ (γ ) must be defined more completely. In
general for the Bohr Hamiltonian, the potential energy V (β, γ )
must be periodic in γ , with period 2π/3, and reflection
symmetric about π/3, to ensure that the potential energy
is invariant under relabeling of the intrinsic axes [25]. The
natural choice of such potential is Vγ (γ ) ∝ (1 − cos 3γ )
[Fig. 1(a)], as considered in Ref. [21]. However, for consis-
tency with Ref. [2], in the present work the γ potential is
chosen to be the oscillator potential, given by Vγ (γ ) = Aγ 2

on the interval 0 � γ � π/3 and obtained outside this interval
from the symmetry requirements on γ [Fig. 1(b)].

As usual for eigenproblems involving the Bohr Hamilto-
nian, the parameter dependence of the solution can be simpli-
fied by an appropriate choice of dimensionless parameters.
Transformation of the potential as V (β, γ ) → c2V (cβ, γ )
or multiplication of the Hamiltonian by a constant factor
both leave the solution invariant to within an overall scale
factor on the eigenvalues and an overall dilation of all wave
functions (e.g., Ref. [26]). Consequently, all energy ratios and
transition matrix elements obtained from diagonalization of
the Hamiltonian (1) depend on only the parameter combination

a ≡ 2ABβ2
w

h̄2 , (2)

which measures the “γ stiffness” of the Hamiltonian. In the
remainder of this article, the notation is simplfied by setting
h̄2/(2B) = 1 and βw = 1, so that a = A. (Results for any other
values of these parameters may then be obtained according to
simple scaling relations [26].)

For a = 0, the potential is γ -independent, and the Hamilto-
nian (1) reduces to the E(5) Hamiltonian [27]. In this case, an
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FIG. 1. Simple forms of the potential Vγ (γ ) satisfying the coor-
dinate symmetry constraints of Ref. [25]: (a) Vγ (γ ) = χ (1 − cos 3γ )
[21] and (b) Vγ (γ ) = Aγ 2 (0 � γ � π/3), used here for consistency
with Ref. [2].

exact separation of variables occurs [28], and the eigenproblem
can be solved analytically [27]. Nonzero values of a yield
confinement around γ = 0. The realistic range of values for a
is discussed in Sec. III.

Rowe et al. [21–23] have recently proposed a method
for numerical diagonalization of the Bohr Hamiltonian, with
respect to an optimized product basis constructed from the
five-dimensional spherical harmonics [29,30]. Much as a basis
for solution of the Schrödinger problem in three dimensions
can be formed from the products of a complete set of radial
functions fi(r) with the three-dimensional spherical harmonics
YL

M (θ, ϕ), a basis for solution of the Bohr problem can be
constructed from products of radial basis functions fi(β) with
the five-dimensional spherical harmonics 
vαLM (γ, ϑ).

This method is especially suitable for application to
transitional and deformed nuclei, because the radial basis
functions can be chosen to match the particular radial potential
at hand. It provides vastly more rapid convergence in the
presence of significant β deformation than is obtained with
conventional methods based on diagonalization in an oscillator
basis (see Ref. [23]). Also, it can be applied to potentials for
which the oscillator basis methods are simply inapplicable.
For the X(5) problem, the wave functions must vanish for
β > 1. This boundary condition cannot be satisfied in a finite
basis of oscillator eigenfunctions. Instead, in the present work
suitable basis functions are defined as fi(β) ∝ β−3/2Jν(xν,iβ)
for β � 1 and zero elsewhere, where xν,i is the ith zero of Jν .
The calculation of Hamiltonian matrix elements with respect to
this radial basis is described further in the appendix. The choice
ν = 3/2 makes these fi(β) the exact radial wave functions for
the seniority zero states in the E(5) limit (a = 0) [27].

Rowe et al. [22] provide an algorithm for the explicit
construction of the five-dimensional spherical harmonics, as
sums of the form 
vαLM (γ, ϑ) = ∑L

K=0
even

FvαLK (γ )φL
MK (ϑ),

where φL
MK (ϑ) ≡ {(2L + 1)/[16π2(1 + δK )]}1/2[DL

MK (ϑ) +
(−)LDL

M−K (ϑ)]∗. The spherical harmonics are seniority
eigenstates, labeled by the seniority quantum number v, a
multiplicity index α, and the angular momentum quantum
numbers L and M. They are the exact angular wave functions
in the γ -soft (a = 0) limit of the present problem. In the

Hamiltonian (1), the angular kinetic energy operator (the
quantity in parentheses) is simply the negative of the seniority
operator �̂ [28]. Thus, calculation of its matrix elements be-
tween spherical harmonics is trivial (A6). The matrix elements
of an arbitrary spherical tensor function of γ and the Euler
angles can be obtained through a series of straightforward
integrations, as detailed further in the appendix.

High-seniority spherical harmonics are needed for the
construction of highly γ -localized wave functions. Thus, in
general, diagonalization for larger γ stiffnesses requires larger
angular bases. For the range of γ stiffnesses considered in the
present work (0 � a � 1000), a product basis constructed from
the first ∼5 radial functions and the 15 to 20 lowest seniority
spherical harmonics suffices to provide convergence of the
calculated observables for low-lying states.

III. RESULTS

Results obtained from numerical diagonalization of the
X(5) Hamiltonian, for a = 200 and a = 1000, are shown in
Fig. 2. Level energies and E2 transition strengths for the
lowest-lying levels are indicated. More detailed tabulations of
energy and B(E2) observables, calculated for 0 � a � 1000,
are provided through the Electronic Physics Auxiliary Pub-
lication Service (EPAPS) [31]. For the transitional rare-earth
nuclei (with N ≈ 90) the γ band head energy is ∼6 to 8
times the 2+

1 energy, consistent with a γ stiffness a ≈ 200 to
300. This may therefore be considered the most “realistic”
range of values for the γ stiffness parameter, of the greatest
phenomenological interest.

First let us note some basic properties of the solution
(Fig. 2). The levels are organized into clearly defined bands,
characterized by strong intraband transition strengths. The
lowest energy bands have the spin contents associated with
a rotational ground-state band, β band, and γ band. From
a comparison of the a = 200 and a = 1000 cases shown in
Fig. 2, it is apparent that such properties as the band head
excitation energies, energy spacings within the bands, and
transition strengths are strongly dependent on the γ stiffness.
This is true for both the β and γ bands. Although it is natural
to expect the γ band energy to increase with γ stiffness, it is
seen from Fig. 2 that the β band head energy also increases
with γ stiffness by a comparable amount. For larger γ stiffness
[Fig. 2(c)], the energy spacings within the bands tend toward
rigid rotor [L(L + 1)] spacings.

Before considering the spectroscopic observables in greater
detail, let us first examine the underlying features of the wave
functions ϕ(β, γ, ϑ). In the approximate treatments of the
problem [2], the wave functions were separable into products
of β, γ , and Euler angle functions, which were considered
separately. This is no longer possible for the full solutions,
but we can still consider the probability distributions with
respect to one or more of these coordinates, constructed by
integration over all remaining coordinates (see Appendix).
The integration metric appropriate to the Bohr coordinates is
β4dβ| sin 3γ |dγ dϑ [1,25]. Contour plots of the probability
distribution with respect to β and γ are shown in Fig. 3,
for the ground, β, and γ band head states. The probability
distributions with respect to β or γ individually, i.e., integrated
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FIG. 2. Level schemes for a = 200 (top) and
a = 1000 (bottom), from the exact numerical so-
lution for the X(5) Hamiltonian. Excitation ener-
gies of the lowest members of the ground, β, and
γ bands, normalized to E(2+

1 ), are shown at left.
Electric quadrupole transition strengths, normal-
ized to B(E2; 2+

1 → 0+
1 ) = 100, are shown at

right.

over the other coordinate, are shown for these same states in
Fig. 4.

The γ dependences of the probability distributions of
the various states [Figs. 3 and 4 (right)] are modulated by
the | sin 3γ | factor in the integration metric, which causes
the probability density to vanish at γ = 0 and π/3. In the
γ -soft limit, the probability distributions for several of the
lowest-lying states are simply P (γ ) ∝ sin 3γ [Fig. 4(b)] and
thus peaked at γ = π/6, or 30◦. For the γ -stabilized cases
[Figs. 4(d), (f)], the γ distributions for the 0+

1 and 0+
β states are

similar to each other, whereas that for the 2+
γ state is peaked

at nearly twice the γ value. The probability distributions
are compressed closer to γ = 0 with increasing Hamiltonian
γ stiffness, but even for the stiffest case considered (a = 1000)
the value of 〈γ 〉 is ∼11◦ for the ground state and ∼16◦ for the
γ band head.

Thus, for realistic γ stiffnesses, the wave functions exhibit
considerable “dynamical” γ softness. This is perhaps contrary
to the common conception that nuclei with well-defined
γ bands, like those in Fig. 2, are “axially symmetric” and
have γ ≈ 0. (Recent empirical estimates of the effective
γ deformation of transitional and deformed rare-earth nuclei
[32] yield comparably large dynamical γ softness.)

The β dependences of the probability distributions of the
various states [Figs. 3 and 4 (left)] are seen to be strongly
influenced by β-γ interaction, migrating toward larger β as

the γ stiffness increases. This evolution can be understood
in a qualitative fashion in terms of the five-dimensional
analog of the centrifugal effect. In the γ -soft limit, where
the problem is separable, the β wave function is governed by
a radial Schrödinger equation containing a term Vc(β) = (v +
1)(v + 2)/β2 [28,33], analogous to the centrifugal potential
in the three-dimensional central force problem, as shown in
Fig. 5(a). The strength of this term depends on the seniority

quantum number v, alternatively denoted τ in Ref. [27]. The
1/β2 dependence energetically penalizes small β values and
tends to “push” the wave function toward larger β. But even
in the γ -stabilized situation, an analog of the centrifugal
effect occurs, and its general features may be understood by
observing that the angular kinetic energy operator [the factor in
parentheses in the Hamiltonian (1)] multiplies a β-dependent
factor 1/β2. The angular kinetic energy contains contributions
from both the rotational degrees of freedom and the γ degree
of freedom. As the γ stiffness of the potential increases, the
confinement about γ = 0 results in a larger γ contribution to
the kinetic energy, even for the ground state, where this is
essentially the γ vibrational zero-point kinetic energy. Thus,
as the γ stiffness increases, the influence of the 1/β2 term in
the Hamiltonian becomes larger, displacing the wave functions
toward larger β.

An idea of the strength of the centrifugal effect in the
γ -stabilized cases can be obtained by numerically evaluating
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FIG. 3. Contour plots of the probability dis-
tributions with respect to β and γ , from the exact
numerical solution for the X(5) Hamiltonian, for
(top) the ground state (0+

1 ), (middle) the β band
head (0+

β ), and (bottom) the γ band head (2+
γ ).

These are shown for γ stiffness parameter values
a = 0 (left), a = 200 (middle), and a = 1000
(right). Contours of the potential [Vγ (γ ) = aγ 2]
are also shown (dashed curves). For the γ -soft
case a = 0, where the bands are not well defined,
the 0+

1 (ξ = 1, v = 0), 0+
2 (ξ = 2, v = 0), and 2+

2

(ξ = 1, v = 2) states, respectively, are shown.
Plots are in the standard polar form, with β as the
radial coordinate and γ as the angular coordinate.

the expectation value of the angular kinetic energy for
any given state. The resulting “effective” centrifugal poten-
tial Vc(β) = 〈(v + 1)(v + 2)〉/β2 = 〈�̂ + 2〉/β2 is shown in
Fig. 5(b). (This potential is not of calculational value, but it
is useful in understanding the solution properties.) For the
square well β potential used in the present model, the extent
of the wave function in β is limited by the hard wall at β = 1.
The centrifugal effect compresses the wave function against
the wall, so for large γ stiffnesses the wave function becomes

localized with respect to β, just within the wall. Thus, even
though the potential is flat in β, the β-γ interaction inherent
in the kinetic energy operator induces something akin to rigid
β deformation.

The 0+
β state has a bimodal probability distribution with

respect to β [Fig. 4 (left)]. In the γ -soft limit [Fig. 4(a)], an
exact zero in the probability distribution arises from the node
in the radial wave function, but for a > 0 an exact zero is not
expected. The 0+

β state also has a smaller mean value of β than

FIG. 4. Probability distributions with re-
spect to β (left) and γ (right) for the ground
state (solid), the β band head (dashed), and the
γ band head (dotted), shown for γ stiffness
parameter values (top) a = 0, (middle) a =
200, and (bottom) a = 1000. The γ -confining
potential Vγ and the level eigenvalues are shown
in the insets. In panel (b), as in Fig. 3, the
0+

1 (ξ = 1, v = 0), 0+
2 (ξ = 2, v = 0), and 2+

2

(ξ = 1, v = 2) states are shown. These states
have identical γ distributions, P (γ ) ∝ sin 3γ .
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FIG. 5. (a) Centrifugal potentials Vc(β) = (v + 1)(v + 2)/β2 for
the radial Schrödinger equation in the γ -soft limit, for quantum
numbers v = 0 and 2. (b) Effective centrifugal potentials Vc(β) =
〈(v + 1)(v + 2)〉/β2, schematically indicating the strength of the
centrifugal effect for the γ -stabilized case a = 1000. The level
energies and centrifugal potentials are shown for the same states
as in Figs. 3 and 4, namely the ground state (solid), the β band head
(dashed), and the γ band head (dotted).

the ground state. The 0+
β state is subject to a similar effective

centrifugal potential to that for the ground state [Fig. 5(b)], but
it has more energy available in the β degree of freedom and is
thus less strongly confined against the wall at β = 1. The 2+

γ

state instead has a larger mean β than the ground state. The
angular kinetic energy for the γ band is about twice that for the
ground state, in the limit of harmonic γ oscillations [2], and
hence so is the centrifugal effect [Fig. 5(b)]. For a = 200 the
mean β values are 〈β〉0+

1
≈ 0.64, 〈β〉0+

β
≈ 0.54, and 〈β〉2+

γ
≈

0.70, whereas for a = 1000 they are 〈β〉0+
1

≈ 0.71, 〈β〉0+
β

≈
0.60, and 〈β〉2+

γ
≈ 0.76.

The dependences of a few basic observables on the γ

stiffness are shown in Figs. 6–8. Naturally, the γ band energy
increases with γ stiffness: the evolution proceeds from the
E(5) limit (a = 0) through γ excitation energies appropriate to
rare-earth transitional nuclei (a ≈ 200 to 300) to very γ -stiff
structures [Fig. 6(a)]. But the β excitation energy increases
with γ stiffness as well, at about half the rate at which the γ

excitation energy does. An avoided crossing of the 2+
β and 2+

γ

states occurs for a ≈ 450.
The angular momentum dependence of energies within the

yrast band varies substantially with γ stiffness [Fig. 8(a)]. For
large a, it approaches the L(L + 1) dependence of the axially
symmetric rigid rotor. In particular, the energy ratio R4/2 ≡
E(4+

1 )/E(2+
1 ) ranges from 2.20 in the E(5) limit to >∼3.2 for

large a [Fig. 6(b)]. The yrast band B(E2) strengths [Fig. 8(b)]
also vary with stiffness, for large a likewise approaching rigid
rotor values. The observables are thus seen to clearly reflect
the rigid β deformation induced by the centrifugal effect at
large γ stiffness.

Further inspection of Fig. 2 provides a more detailed view
of the spectroscopic properties obtained. Strong interband E2
transitions are predicted, some comparable in strength to in-
band transitions. A radical suppression of the spin-descending-
β band to ground-state band transitions (e.g., 2+

β → 0+
1 )

relative to the spin-ascending transitions (e.g., 2+
β → 4+

1 ) is
one of the most notable features. (Only the branching of the 2+

β

state is shown in Fig. 2, but the branchings of the higher-spin

FIG. 6. Dependence of energy observables on the γ stiffness
parameter a, for 0 � a � 1000. (a) Excitation energies of the 0+

2

(solid), 2+
2 and 2+

3 (dashed), and 3+
1 (dotted) levels, normalized to

E(2+
1 ). For large a, these states become the lowest spin members of

the β and γ bands. (b) Energy ratio R4/2 ≡ E(4+
1 )/E(2+

1 ).

band members are provided through the EPAPS [31].) The
strengths of the interband transitions depend in detail on the γ

stiffness, as shown in Fig. 7. As the γ stiffness increases, the
β to ground band and γ to ground band transitions become
weaker overall. They also tend closer to the rigid rotor Alaga
rule branching ratios [1]. Strong β-γ interband transition
strengths occur as well [Fig. 2], but these vary greatly with
γ stiffness.

For all γ stiffnesses, the energy spacing scale of the β

band is enlarged relative to that of the ground-state band
[Figs. 2 and 6(a)]. (In contrast, the spacing scale of levels
within the γ band is similar to that of the ground-state
band.) The enlarged spacing scale may be understood in terms
of the β probability distributions. For a rigid rotor, with fixed
β, the spacing scale of levels within a band is proportional to
1/β2 [1]. As observed above, the probability distribution of
the 0+

β state tends toward smaller β than that of the ground
state, giving a larger average 1/β2. The ratio 〈β−2〉0+

β
/〈β−2〉0+

1

has a maximum value of ∼2.1 for a ≈ 200 and decreases
to ∼1.8 for a = 1000. Similarly, the ratio of spacing scales,
[E(2+

β ) − E(0+
β )]/E(2+

1 ), has a maximum value of ∼2.3 for
a ≈ 200 and decreases to ∼1.9 for a = 1000.

From this understanding of the underlying mechanism, it
is seen that enlarged energy spacing scale of the β band is an
artifact of the rigid well wall in the X(5) Hamiltonian [5]. As
already noted, the extra energy available to the β excitation,
relative to the ground state, allows its wave function to expand
“inward” against the centrifugal potential [Fig. 5(b)], but not
“outward” against the rigid wall. This produces the larger
〈β−2〉 and hence rotational energy scale for the β excitation.
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FIG. 7. Dependence of B(E2) observables on the γ stiffness
parameter a, for 0 � a � 1000. (a) Branches from the 2+

2 level to
the yrast 0+ (solid), 2+ (dashed), and 4+ (dotted) levels, normalized
to B(E2; 2+

1 → 0+
1 ). Immediately below the avoided crossing at

a ≈ 450 this is the 2+
γ level, whereas immediately above it is the

2+
β level (as indicated). (b) Branches from the 2+

3 level to the
yrast 0+ (solid), 2+ (dashed), and 4+ (dotted) levels, normalized
to B(E2; 2+

1 → 0+
1 ). Immediately below the avoided crossing at

a ≈ 450 this is the 2+
β level, whereas immediately above it is the

2+
γ level (as indicated).

A similar expanded spacing scale for the β band is encountered
in descriptions of transitional nuclei with the interacting boson
model (IBM) [34] and the geometric collective model (GCM)
[35]. In these cases the potential wall is no longer rigid but
rather quartic (∝ β4), but the same basic mechanism may apply
(see, e.g., Fig. 15.8 of Ref. [15]).

Another distinctive feature of the exact solution is the
staggering of energies within the γ band, clearly visi-
ble for a = 200 [Fig. 2(a)]. The level energies are clus-
tered as 2+(3+4+)(5+6+) . . . , contrary in sense to the
(2+3+)(4+5+) . . . staggering of the rigid triaxial rotor [36].
The staggering is a remnant of the SO(5) multiplet structure
[28,33] present in the γ -soft limit (a = 0) and is an observable
manifestation of the considerable dynamical γ softness seen
in Fig. 4(d). It disappears with increasing γ stiffness [Fig.
2(c)]. In general in a geometric description, a weakly γ -
confining potential yields both dynamical γ softness and a low
γ excitation energy, whereas a strongly γ -confining potential
yields γ localization and a high γ excitation energy. Hence,
the presence of signatures of γ softness (such as the γ band
staggering) is closely correlated with low γ band energy. The
quantitative relationship between these signatures depends on
the particular potential V (β, γ ) used, so reproduction of the
γ band staggering may prove to be a valuable phenomenologi-
cal test. Staggering of approximately the calculated magnitude
and sense is indeed found in the γ bands of rare-earth

FIG. 8. Yrast band (a) energies and (b) B(E2) strengths as
functions of angular momentum, for a = 0, 200, and 1000 (dashed).
The values obtained under the approximate separation of variables
(Sec. IV) are indicated for reference, as are the rigid rotor values
(solid).

transitional nuclei (e.g., Ref. [34, Fig. 25] or Ref. [37]). Note
that residual γ -soft staggering occurs for transitional structure
in the interacting boson model (IBM) [38] as well, also as
a remnant of SO(5) multiplet structure, disappearing in the
SU(3) limit, which for infinite boson number corresponds to
rigid rotor structure.

The exact solution of the X(5) Hamiltonian has been seen
here to provide valuable insight into the effects dominating
β-soft transitional structure. However, this Hamiltonian has
several limitations as a realistic Hamiltonian for detailed
phenomenological analysis.

(i) The rotational kinetic energy term in the Bohr Hamil-
tonian, ∝ ∑

κ L̂′2
κ /[4β2 sin2(γ − 2

3πκ)], is constructed
using the irrotational flow moments of inertia, Jκ =
4Bβ2 sin2(γ − 2

3πκ). There is extensive empirical evi-
dence [1] that the actual moments of inertia are interme-
diate between the irrotational and rigid body values. This
has only been established for the overall normalization
of the moments of inertia, but it also calls into question
the proper β dependence of these moments of inertia and
therefore the proper β dependence of the accompanying
γ vibrational kinetic energy term. This β dependence
is of central importance, because it generates the β-γ
coupling just found to play such a major role in the
solution properties.

(ii) The hard wall of the X(5) square well potential introduces
unrealistic features to the solution, as already discussed.
The compression of the wave function against the well
wall by the centrifugal effect was noted above to induce
something approximating rigid β deformation. For a
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softer well wall, the wave function is instead free to
expand to larger β, so the compression should be gentler.
The tendency of observables toward rigid rotor values for
large γ stiffness and the enlarged energy spacing within
the β band may both be attenuated.

(iii) The restriction of V (β, γ ) to the form Vβ(β) + Vγ (γ )
was imposed purely for convenience in the approximate
separation of variables [2]. Coupling terms such as
β3 cos 3γ arise naturally in the classical limit of the
IBM [39,40] and have been used extensively in earlier
work with the geometric model (e.g., Refs. [24,25]).
The importance of the β-γ coupling in V (β, γ ) must
be explored.

The numerical techniques of Refs. [21–23] are flexible and
can easily be applied to a broad range of Hamiltonians. It
should therefore be straightforward to investigate many of
the effects just discussed. Exact numerical diagonalization
of such arbitrary Hamiltonians may also be useful for more
abstract studies of the geometric Hamiltonian. In particular, it
is well known that the geometric model and the IBM produce
similar spectra under certain circumstances. But much remains
to be understood about the extent to which IBM coherent state

energy surface [39,40] can be identified with a geometrical
model potential energy surface and the appropriate kinetic
energy operator to be used with this potential energy surface
(e.g., Refs. [41–44]).

IV. APPROXIMATE SEPARATION

Because extensive prior work has been carried out using
the approximate separation of variables of Ref. [2], it is useful
to review this approximation, compare the results obtained
under this separation with the exact results, and establish more
clearly the reasons for the breakdown of the approximation.
Two simplifications are required to obtain an approximate
separation of variables for the Hamiltonian (1). First, in the
limit of small γ , the sum

∑
κ L̂′2

κ / sin2(γ − 2πκ/3) reduces
to 4L(L + 1)/3 + K2(1/ sin2 γ − 4/3), where L is the total
angular momentum quantum number and K the intrinsic frame
angular momentum projection quantum number. Second, in all
terms involving γ , the variable β is replaced with a constant
“average” value β0. This yields a Hamiltonian H = Hβ + Hγ

separable in the variables β and γ ,

H = − 1

β4

∂

∂β
β4 ∂

∂β
+ L(L + 1)

3β2
+ Vβ(β)︸ ︷︷ ︸

Hβ

+ 1

β2
0

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ K2

4

(
1

sin2 γ
− 4

3

)]
+ Vγ (γ )︸ ︷︷ ︸

Hγ

. (3)

The eigenvalues and eigenfunctions of Hβ are given by εβ =
x2

ν,s (s = 0, 1, . . .) and f (β) ∝ β−3/2Jν(ε1/2
β β) (0 � β � 1),

where ν = [L(L + 1)/3 + 9/4]1/2 and xν,s is the sth zero of
Jν [2]. Under the small γ approximation, the eigenproblem for
Hγ reduces to that of the two-dimensional isotropic oscillator,
with quantum numbers nγ and K, and the eigenvalues εγ and
eigenfunctions η(γ ) are as described in Ref. [2]. The full
eigenfunctions of H are products fLs(β)ηnγ K (γ )φL

MK (ϑ) of a
β (“radial”) wave function, a γ wave function, and a rotational
or Euler angle (ϑ) wave function φL

MK (ϑ), defined in terms of
D functions as in Sec. II.

Under these approximations, the X(5) model yields levels
arranged in bands of good K quantum number, but with level
energies [Fig. 9(a)] and E2 transition strengths [Fig. 9(b)]
that differ from those of the rigid rotor. All predictions for
the ground-state band and β excitations are independent of
Vγ . The spin dependence of level energies within the yrast
band is intermediate between those of the rigid rotor and
harmonic oscillator, with R4/2 ≡ E(4+

1 )/E(2+
1 ) ≈ 2.90. The

band arising from the first β excitation occurs at low energy
[E(0+

β )/E(2+
1 ) ≈ 5.65].

Some of the characteristic spectroscopic features found
in the approximate solution (discussed in detail in, e.g.,
Refs. [2,3,13]) are indeed encountered in the full solution
(Sec. III). The β band exhibits a substantially larger en-
ergy spacing scale than the yrast band [E(2+

β ) − E(0+
β ) ≈

(1.80)E(2+
1 )]. Strong interband E2 transitions are predicted,

as is the distinctive branching pattern in which the spin-
descending β to ground band transitions are suppressed.

However, some of the essential features of the full solution
are missing from the approximate solution: the dependence of
the β band head energy on γ stiffness, the confinement of the
wave functions near β = 1 because of the five-dimensional
centrifugal effect, and the consequent tendency of energy and
transition strength observables toward rotational values for
large γ stiffness. Also, the observable signatures of γ softness
obtained in the full solution for realistic γ stiffnesses, such as
the staggering of energies in the γ band, are absent under
the approximate separation of variables, which effectively
enforces γ rigidity in the separation process.

The basic reason for the failure of the approximate solution
to reproduce these features is clear from the analysis of
Sec. III. The approximate Hamiltonian (3) retains only a
portion of the centrifugal (1/β2) contribution to the full
Hamiltonian (1). Through the term L(L + 1)/(3β2), the
portion of the centrifugal effect arising from rotational kinetic
energy is essentially retained. But the replacement of 1/β2

by 1/β2
0 in the remaining terms suppresses the portion of the

centrifugal effect arising from the γ kinetic energy.
For a more detailed understanding of the breakdown

of the approximate separation, we can reexamine the two
approximations made in obtaining Eq. (3).
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FIG. 9. Level scheme for the approximate solu-
tion to the X(5) Hamiltonian. Excitation energies
of the lowest members of the ground, β, and γ

bands, normalized to E(2+
1 ), are shown at left.

Electric quadrupole transition strengths, normalized
to B(E2; 2+

1 → 0+
1 ) = 100, are shown at right. The

γ band head energy Eγ in part (a) and the γ band
transition strength normalizations x and y in part
(b) depend on the details of the γ potential and
are thus left unspecified. For plotting purposes, the
γ band head position and arrow thickness scales
have been arbitrarily chosen to facilitate comparison
with Fig. 2 (top). All observables involving the
γ band are calculated according to the approximate
separation as it appears in Ref. [2] rather than in
Ref. [3], which would yield values differing in
detail [45].

(i) The small angle approximation for γ is in principle arbi-
trarily good for sufficiently large γ stiffnesses. However,
as discussed in Sec. III [Fig. 4 (right)], confinement
to genuinely small angles requires relatively large γ

stiffnesses (a >∼ 1000).
(ii) The validity of the other approximation, replacement of

β with β0 in selected terms, depends on one of two
conditions being met. The approximation would be good
if the wave function were sharply localized in β, so indeed
β ≈ β0. This condition may hold in some other contexts,
such as small oscillations for a rigid rotor [1], but it
is not well satisfied for the X(5) problem, which was
specifically constructed to give a lack of β localization.
Even without reference to the exact solution, it is seen
from the approximate radial wave functions fsL(β) that
the probability distribution with respect to β is broad
and differs significantly from state to state. For the
approximate ground state 〈0+

1 |β−2|0+
1 〉 ≈ 3.90, whereas

for the β band head 〈0+
β |β−2|0+

β 〉 ≈ 7.21, nearly a factor
of 2 larger. Thus, replacing 1/β2 by a “rigid” value 1/β2

0
is not necessarily a small approximation. Alternatively,
the replacement of β with β0 could still yield accurate
results if the overall strength of the approximated term
were small. This is seen from Sec. III to occur when the
kinetic energy in the γ degreee of freedom is small and
hence for nearly γ -soft potentials.

The two approximations are thus valid at large γ stiffness
and small γ stiffness, respectively. If these two regimes
are to have any overlap, it must be at some intermediate
γ stiffness. Indeed, as noted above, there is considerable
qualitative agreement between the exact spectrum for a =
200 [Fig. 2 (top)] and the approximate spectrum [Fig. 9].
However, the significance of this resemblance should not
be overstated, because more detailed calculations reveal that
it arises in part from a cancellation of errors introduced

FIG. 10. Probability decomposi-
tions of the true X(5) wave func-
tions with respect to the radial func-
tions from the approximate solution,
integrated over angular coordinates.
Decompositions are shown for the
ground, β, γ , and ββ band heads for
a = 200 (left) and a = 1000 (middle).
The relevant radial wave function un-
der the approximate separation is indi-
cated (right) for comparison. A basis of
L = 0 radial wave functions from the
approximate solution (ν = 3/2) has
been used for decomposition of the 0+

states, whereas a basis of L = 2 radial
wave functions (ν = √

7/2) has been
used for decomposition of the 2+

γ state.
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by the two approximations. The small angle approximation
tends to cause an overcalculation of the β band head
energy, whereas the rigid β approximation tends to cause an
undercalculation.

A probability decomposition of the true wave functions with
respect to the approximate radial wave functions fLs , summed
over angular wave functions, provides a direct measure of
the resemblance of the true and approximate eigenstates.
This decomposition is shown in Fig. 10 (left, center) for
several states for a = 200 and 1000. The relevant radial basis
state from the approximate solution is also indicated, for
comparison [Fig. 10 (right)]. For intermediate γ stiffness,
the approximate solution indeed dominates the decomposition
of the true solution, e.g., with a 96% probability for the
s = 1 basis state in the true a = 200 ground state [Fig. 10
(left)]. The similarity in wave functions breaks down for larger
γ stiffness [Fig. 10 (center)].

In summary, the approximate separation of variables of
Ref. [2] causes the contribution of the γ kinetic energy
to the five-dimensional centrifugal effect to be suppressed.
This is always a significant contribution and is the dominant
portion for large γ stiffness. The approximate solution for the
X(5) Hamiltonian qualitatively reproduces some aspects of
β-soft transitional structure, but only those which are least
strongly affected by the β-γ interaction. The approximate
results quantitatively resemble the exact results only for a
small range of γ stiffnesses in the vicinity of a = 200. This
is approximately the γ stiffness of phenomenological interest
for description of the rare-earth (N ≈ 90) transitional region.
Consequently, many of the basic conclusions found in prior
comparisons with experimental data [10–20] remain largely
unaffected.

V. CONCLUSION

The numerical techniques of Rowe et al. [21–23] provide a
practicable approach to the exact diagonalization of the X(5)
Hamiltonian. The wave functions and spectroscopic properties
obtained thereby provide insight into the structural features
expected for β-soft, axially stabilized transitional nuclei. The
properties of the solution are found to be dominated by the
β-γ coupling induced by the kinetic energy operator, which
results in a significant five-dimensional centrifugal effect.
Most spectroscopic properties are strongly dependent on the
γ stiffness. The results also highlight the presence of sub-
stantial dynamical γ softness. These basic qualitative features
were not apparent from the approximate solution. The analysis
in the present work can readily be extended to Hamiltoni-
ans that provide a more realistic treatment of transitional
nuclei.
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APPENDIX: MATRIX ELEMENTS

In this appendix a summary is provided of the procedure
for calculating the necessary matrix elements of operators
between radial or angular basis functions. The matrices
of operators in the full product basis are obtained as the
outer products of the radial and angular matrices. The
radial basis functions fi(β) are defined inside the well
(0 � β � 1) as fi(β) = Aν,iβ

−3/2Jν(xν,iβ) and are vanishing
outside the well, where xν,i is the ith zero of Jν and Aν,i =
[−Jν−1(xν,i)Jν+1(xν,i)]−1/2. For fixed ν and for i = 1, 2, . . . ,

these form an orthonormal set of functions with respect to
the metric β4dβ. The angular basis functions are constructed
as sums of the form 
vαLM (γ, ϑ) = ∑L

K=0
even

FvαLK (γ )φL
MK (ϑ)

according to the procedure of Ref. [21]. These are orthonormal
with respect to the metric | sin 3γ |dγ dϑ . The φL

MK are
symmetrized combinations of D functions, φL

MK (ϑ) ≡ {(2L +
1)/[16π2(1 + δK )]}1/2[DL

MK (ϑ) + (−)LDL
M−K (ϑ)]∗, and are

orthonormal under integration over the Euler angles, except
that φL

MK = 0 in the special case of K = 0 and L odd.
Matrix elements of an arbitrary function g(β) between

radial basis functions are calculated by straightforward nu-
merical integration, as

〈fi ′ |g(β)|fi〉 =
∫

β4dβfi ′(β)g(β)fi(β). (A1)

The matrix elements of the radial kinetic energy operator in
Eq. (1) can be reexpressed in terms of matrix elements of β−2

by use of the Bessel equation, as

〈fi ′ |
(

1

β4

∂

∂β
β4 ∂

∂β

)
|fi〉 = x2

ν,iδi ′i − (
ν2 − 9/4

) 〈fi ′ |β−2|fi〉.
(A2)

Observe that for the X(5) Hamiltonian the matrix elements of
Vβ vanish, because Vβ(β) = 0 inside the well. The presence
of the square well radial potential thus enters the calculations
only implicitly, through the boundary condition it places on
the allowed basis functions, which in turn dictates their kinetic
energy matrix elements (A2).

The matrix elements of an arbitrary function f (γ ), such
as the function γ 2 appearing in the angular potential, can
be calculated through a series of straightforward integrations
involving the coefficients FvαLK (γ ), as [21]

〈
v′α′L‖f (γ )‖
vαL〉
= 〈
v′α′LL|f (γ )|
vαLL〉
=

∑
K

even

∫
| sin 3γ |dγF ∗

v′α′LK (γ )f (γ )FvαLK (γ ). (A3)

Here the Wigner-Eckart normalization convention of Rose [46]
has been used in the definition of the reduced matrix element.
The integration can be restricted to 0 � γ � π/3 by periodicity
of the functions in γ [21]. The expression (A3) is readily
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extended, by application of the Clebsch-Gordan series, to give
the matrix element of any spherical tensor operator f λ

µ (γ, ϑ),
provided it is expanded in terms of D functions as f λ

µ (γ, ϑ) =∑λ
κ=0
even

f λ
κ (γ )φλ ∗

µκ (ϑ). The matrix element is

〈
v′α′L′ ‖f λ(γ, ϑ)‖
vαL〉

= 1

4π

[
(2L + 1)(2λ + 1)

2L′ + 1

]1/2 ∑
K′ ,κ,K

even

[
1 + δK ′

(1 + δK )(1 + δκ )

]1/2

×
[

(LKλκ|L′K ′) +
{

(−)λ(LKλκ̄|L′K ′) K � κ

(−)L(LK̄λκ|L′K ′) K � κ

}]

×
[∫

| sin 3γ |dγF ∗
v′α′L′K ′ (γ )f λ

κ (γ )FvαLK (γ )

]
. (A4)

For the leading order E2 transition operator [1],

M(E2; µ) ∝ β

[
D2 ∗

µ0 cos γ + 1√
2

(
D2 ∗

µ2 + D2 ∗
µ−2

)
sin γ

]
,

(A5)

the expansion coefficients are f 2
0 (γ ) ∝ (8π2/5)1/2 cos γ and

f 2
2 (γ ) ∝ (8π2/5)1/2 sin γ . Transition strengths are B(E2; i →

f ) = (2Lf + 1)|〈ϕf ‖M(E2)‖ϕi〉|2/(2Li + 1). The angular
kinetic energy operator is the negative of the seniority
operator �̂ [28]. Because the five-dimensional spherical
harmonics are seniority eigenstates, the matrix elements are

simply

〈
v′α′L′M ′ |
(

1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− 1

4

∑
κ

L̂′2
κ

sin2
(
γ − 2

3πκ
)
)

|
vαLM〉 = −v(v + 3)δv′vδα′αδL′LδM ′M. (A6)

Finally, consider a wave function ϕ(β, γ, ϑ) decomposed
in terms of the product basis functions as ϕ(β, γ, ϑ) =∑

i,k aikfi(β)
kLM (γ, ϑ), where k is a shorthand for the
indices (vα). The probability density with respect to β and
γ , integrated over Euler angles, is

P (β, γ ) = β4| sin 3γ |
∑

K

even

∑
i ′,k′,i,k

ai ′k′aik

× fi ′ (β)Fk′LK (γ )fi(β)FkLK (γ ). (A7)
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